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We consider ion acceleration when a tenuous plasma expands in a vacuum. It is shown that the ion 
acceleration is substantially enhanced for electron distributions that are not Maxwellian and are enriched with 
fast particles. We investigate wave motions in an expanding plasma. The existence of two greatly differing 
wave types is indicated-front waves and quasi-self-similar waves. The acceleration of ions in a 
multicomponent plasma is considered. The results of the theory are compared with the experimental data on 
the acceleration of ions in a plasma produced by intense laser pulses; it is shown that they are in sufficient 
agreement. 
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Rapid acceleration of ions when a tenuous plasma ex- 
pands freely i s  one of the interesting features of plasma 
kinetics. The acceleration has a collective character 
and is due to energetic transfer of electron momentum 
to the fast ions.' It was observed in experiment both in 
a laboratory plasma2+ and in the a s  well 
a s  in a laser spark. '-I1 The accelerated ions reach in 
the latter case energies 1-2 MeV, and carry away a 
considerable fraction of the absorbed laser spark. One 
can expect further increase of the energy density in the 
short laser pulses to increase the role of the accelerat- 
ed ions even more. ' I  

The purpose of the present study was to investigate 
those distinguishing features of the motion of an expand- 
ing tenuous plasma which influence substantially the ion 
acceleration process. In Ql the plasma expansion i s  
considered for a non-Maxwellian electron distribution 
function enriched with fast particles. In 02 we study 
the wave motions in an expanding plasma. Some of them 
determine the motion of the ion front, while others pro- 
duce quasi-self-similar waves that cause oscillations of 
the energy spectra of the accelerated ions. In 03 we 
investigate a multicomponent plasma containing ions with 
different masses M and charges Z. In the concluding 
04 we compare the results of the theory with the laser- 
experiment data. 

8 1. EXPANSION OF A PLASMA IN A VACUUM IN THE 
CASE OF NONMAXWELLIAN ELECTRON DISTRIBUTION 

The expansion of a tenuous plasma in a vacuum i s  
described by a system of collisionless kinetic equations 
for the electrons and ions, in conjunction with the Pois- 
son equation for the electric-field potential rp. We con- 
sider one-dimensional motion-the plasma expands in 
the direction from x - -GO to x - +a. We assume also 
that the electric-field potential rp i s  a monotonic func- 
tion of x .  Then the one-dimensional distribution func- 
tion of the electrons f, takes the form2' 

f.(v, 2, t )  -fa(-v. 2, t)-f,(vo), (1) 
vo=.(d-2eqlrn) ". 

Here f,(vo) i s  the electron distribution function, speci- 
fied in the unperturbed region of the plasma a t  x - -m 

(it is assumed that the potential cp - 0 as x -  -00). 

Equation (1) i s  written under the assumption that the 

electric-field potential forms a wave moving with velo- 
cities on the order of hydrodynamic v,, i . e . ,  much 
slower than the thermal velocities V T  of the electrons. 
Therefore, in first-order approximation in u,/uT the 
variation of the field with time can be neglected, i. e. , 
we can consider the motion of the electrons in a quasi- 
static field (1). '' In this approximation the electron 
density a t  an arbitrary point (x, t )  depends only on the 
electric-field potential 

In particular, in case of a Maxwellian function fe,(vo) 
we get from (1) and (2) an equilibrium Maxwell-Poltz- 
mann distribution for the electrons. 

The ion motion i s  described by the kinetic equation. 
It i s  important, however, a s  shown in Refs. 1, 15, and 
17, that with increasing average ion velocity the ion dis- 
tribution function narrows down rapidly and becomes 
needle-like. The thermal scatter of the velocities is  
therefore of little importance for the motion of acceler- 
ated ions, They can be described in the hydrodynamic 
approximat ion: 

Here N i s  the density and v the average velocity in the x 
direction of the ions with charge eZ and mass M. The 
electric field i s  described by the Poisson equation 

Here NI(rp) is  the electron density. Equations (1)-(4) 
a r e  a closed system describing ion acceleration in an 
expanding plasma. 

If the characteristic spatial scale of the expanding 
plasma R i s  much larger than the Debye radius D 
= (T,/ 4ae2N)1'2, then the Poisson Eq. (4) reduces, ac- 
curate to small terms of order (D/R)', to the quasi- 
neutrality equation 

N=N. ((p) . (5) 

Equations (3) and (5) admit of self-similar solutions; 
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In particular, in the problem where a half-space filled 
with a plasma having at  the initial instant t = 0 a sharp 
boundary at  x = 0 expands into a vacuum, we have, . 
changing in (3) to the self-similar variable T =  x/t and 
putting N = N(r) and v =v(r),  

where the function rp= rp(N) is  defined in accordance 
with (2) and (5). Changing over to the variable rp, we 
obtain the general solution of Eqs. (6) in the form 

where the dependence of 7 on rp is determined by the 
relation 

We note that by putting N=N(v) in (6) we can repre- 
sent the obtained solution also in the form 

where the function N(v) is determined from the rela- 
t ion 

and rp = rp(N,) and dN/drp a r e  determined by the quasi- 
neutrality Eq. (5). 

In the case of a Mawellian distribution function of 
the electrons, the solution (7) and (8) agrees with the 
previously obtained1 solution 

v=r+s,, N-No exp (-rlso-I), 

In the case of a two-temperature distribution function 
(i. e. , consisting of two Maxwellian functions with dif- 
ferent temperatures T and T,>> TI), Eqs. (7) and (8) 
lead to the results of Wickens et a1.18 

In the general case the dependence of N on r o r  on v, 
according to (71, (81, and (8a), i s  determined essen- 
tially by the form of the function NI(rp) (2), i. e. , in final 
analysis, by the form of the electron distribution func- 
tion f,(v,) (1). 

Figure 1 shows a plot of N(r) for a Maxwellian, a two- 
temperature, and a power-law4 distribution function. 
It i s  seen that the presence of fast electrons influences 
strongly the ion acceleration. Interesting qualitative 
peculiarities also occur. It follows from (7) and (8) 
that the dependence of 7 on rp has a monotonic charac- 
ter  if the following condition is  

If condition (10) is violated, however, the function 
T(V) becomes nonmonotonic, and consequently P(T) is  
not single valued. The density and velocity profiles 

FIG. 1. Ion density N as a function of 7/so, so = (T, /M)'/~, for 
different electron distribution functions: 1 -Maxwellian (No, 
T,), 2-two-temperature (Th = ST,, Nh = O.lNo), 3-power- 
law (iV= ~~/l-ecp/T)~. 

N(r) and ~ ( 7 )  contain in this case singular points (aN/ 
ax - -, &/ax - -). These a r e  singular points of hy - . 
drodynamic type. In the vicinity of these singular 
points the quasineutrality condition (5) i s  violated, and 
ion-sound oscillations develop. In particular, in the 
case of a two-temperature distribution function of the 
electrons the condition (10) is  violated if the tempera- 
ture T, of the hot component exceeds by more than 9.6 
times the temperature T, of the cold electrons.'' 

82. WAVES IN AN EXPANDING PLASMA 

We have considered above self-similar solutions cor- 
responding to the quasineutral approximation (5). They 
differ substantially from the exact solutions of the com- 
plete system of Eqs. (3) and (4). Indeed, assume that 
a t  the initial instant t=O the ions, just a s  in the self- 
similar solution, occupy a half-space and do not move: 

No, z c o  
v-0-0, "'-0- { o, z>o . (11) 

In the quasineutral approximation (5) and (21, the initial 
distribution of the electron density N, and of the poten- 
tial rp(N,) also takes the form of a jump a t  x=O.  On the 
other hand, the exact solution of the Poisson Eq. (41, 
(11) leads to a different answer: N, and rp a r e  smeared 
out in the vicinity of the boundary x = 0. The solution 
of Eqs. (4) and (2) is obtained subject to the boundary 
conditions 

The solutions for rp on the right and on the left a r e  joined 
together a t  the boundary x =  0 (continuity of rp and of 
aq?/ ax), where the ion density has a discontinuity. The 
boundary of the discontinuity o r  the boundary of the ion 
front x,(t) exists also hereafter a t  all  values of t. The 
result of numerical integration of Eqs. (31, (41, and 
(2) with the initial and boundary conditions (11) and (12) 
i s  shown in Fig. 2 for the case of a Maxwellian dis- 
tribution of the electrons. The dash-dot line in the 
figure shows the self-similar approximation. It i s  
seen that the exact solution approaches the self-similar 
solution in the course of time. Its main difference 
from the self-similar solution is the presence of an 
abrupt leading front of the ions: at  each instant of 
time t one can indicate the limiting point x,(t) which 
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FIG. 2. Densities of the ions Nand of the electrons N, (dash- 
ed) and the ion velocities vi a s  functions of 7/sO a t  the instants 
of time: 1) ti= ~ / c A ~ ~ ,  2) t z=  30/Qoi = (4* e 2 ~ o / ~ ) i / 2 .  Dash- 
dot curve-self-similar solution. 

the ions have reached and the limiting velocity v,(t) to 
which the ions were accelerated. 

Qualitatively this is  easy to understand. The self- 
similar solution (7)-(9) presupposes, in accord with 
the very formulation of the problem, that a t  the initial 
instant of time t = 0 the potential cp near the plasma 
boundary x = 0 changes jumpwise from cp = 0 (as x - -0) to cp= -.e (as x -  +O). The ions a r e  acted upon 
here, consequently, by an infinite force F = e acp/ ax. 
This produces in the plasma immediately ions with a r -  
bitrarily large velocities. In the exact solution, the 
potential cp(x) a t  t = O  i s  smeared out, i. e. , it varies 
smoothly. The force acting onthe ions i s  then always 
finite, so that the ions move with a finite velocity that 
increases with time. The ions can be accelerated in a 
finite time only to a fully defined limiting velocity-the 
velocity of the front v,(t). The ion acceleration depends 
essentially on the function Ne(cp), i. e . ,  on the electron 
distribution function (1). This i s  seen from Fig. 3, 

FIG. 3. lon-front velocity vF/so a s  a function of the time t for 
different electron distribution functions: I) Maxwellian (No, 
T,); two-temperature (2-T, = 6.67 T,, Nh = 0.02No, 3 -Th=9Te, 
N~ = 0.02No); 4-power law. Dashed-calculation of v,, by for- 
mula (20) for: 1 ) so = (T, /M)'/', 2,3) s o  = (T* /M)'". 

which shows the dependence of the front velocity a, 
on the time for different electron distribution func- 
tions. The front velo.city increases with increasing 
number of fast electrons. If the number of fast elec- 
trons exceeds (1-2)0/,, then they practically always 
determine the velocity of the ion front (see curves 2 
and 3 of Fig. 3). 

The singularities of the motion of the ion front can be 
easily understood by considering the behavior of the 
perturbations in a self-similarly expanding plasma. We 
seek the solution of Eqs. (3) and (4) in the form 

N=Na(r)+8N(z, t) ; v=vS(r)+6v(z, t); ~=q.(r)+&q(z, t). (13) 

Substituting the expansion (13) in Eqs. (3) and (4) and 
1,inearizing them, we get 

Considering perturbations whose spatial dimension k" 
i s  small compared with the characteristic scalar var- 
iation of the self-similar solution, but large compared 
with the Debye radius, 

we obtain in place of (14) the wave equation 

Its approximate solution under the conditions (15) i s  

6N=6N0 (x-Vt), 6v=6v0 (2-Vt), 

The result i s  quite natural-the ions move with velocity 
va(r), while the perturbations propagate with the speed 
of sound s relative to the ions. 

The wave traveling towards the rarefaction, which 
we shall call the wave of the front, has a local vebcity 

We have taken into account here expression (7) for the 
velocity v,(r). Since 

it follows from (18) that 

In particular, in the case of Maxwellian electrons (9) 
we have 

&, ZT, 'A 
z,=2ts0 ln t+Cts.. v, - - - 2 (T) ln(tQo,C.), 

dt (20) 
&=(4neWo/M)". 

The velocity of the wave of the front (20) increases bg-  
arithmically with time. It i s  shown dashed in Fig. 3. 
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One can see  the good agreement with the result of the 
numerical calculation. The integration constant C,, 
determined by matching to the numerical solution, 
equals 0.9. 

For the front velocity in the case of a two-tempera- 
ture distribution function, formula (20) i s  also valid, 
but the electron temperature Te must be replaced by 
the temperature T, of the fast component. The constant 
C, depends in this case on the relative density of the 
fast particles. 

It follows from (19) that the time variation of the ion- 
front velocity is determined in the general case by the 
local speed of sound s(r) ,  which depends substantially 
on the form of the electron distribution function (51, 
(71, (8). 

We consider now perturbations that move towards the 
dense plasma. In an immobile coordinate frame they 
have a velocity (17), (7) 

i.e., they a r e  self-similar. But strictly-self similar 
waves a r e  impossible in hydrodynamics, since the 
self-similar solution (7), (8) i s  uniquely defined. Per-  
turbations movingtowards the dense plasma must there- 
fore be investigated in greater detail, with allowance 
for the nonlinear and dispersion corrections. 

To this end we rewrite the Poisson Eq. (4) in the 
form 

Here (P,(N) i s  a specified function, the inverse of the 
function N e ( ~ ) ,  and i s  defined by the quasineutrality 
Eq. (5). In the case of a Maxwellian distribution 

Assuming now that the dispersion and the nonlinear 
corrections a r e  small, we get from (22) 

Substituting this expression in (3), we arr ive  
equations 

at the 

(24) 

which describe the hydrodynamics of the ions in a plas- 
ma with arbitrary distribution of electron velocities and 
with account taken of the dispersion corrections. In the 
case of Maxwellian electrons (231, Eqs. (24) coincide 
with the previously known ones." 

When considering waves that a r e  close to self -simi- 
lar, it i s  natural to change over from x and t to new 
variables r and t. Separating, in addition, the princi- 
pal self-similar flow N,(T),u,(T): 

we obtain 

a ~ ,  av, dv. sX aNi d ( s z / ~ . )  d ~ .  
t -+- ( s+v , )+v , -+- -+N, - -  

at BT dr  N.  a~ a ~ .  dr  

We have taken here into account the relations (7) and 
(21). 

Under the conditions (15), when the scale of the per- 
turbations i s  large compared with the Debye radius and 
small compared with the characteristic scale of the 
variation of the self-similar solution, Eqs. (25) have in 
first-order approximation solutions of the type of 
simple waves 

NI-Nlo(v i ) .  (26) 

In this case 

i. e. , v ,  i s  constant on the lines r = u l  lnt +C. 

It is  natural under the same conditions to seek a more 
general solution in a form close to a simple wave: 

where ON, i s  quantity of higher order of smallness. 
Substituting expression (28) in Eq. (25) and taking (26), 
(27), and (7) into acocunt, we arrive a t  the following 
equation for v,: 

The calculations in the derivation of (29) a r e  fully 
analogous to those usually employed to derive the Kort- 
eweg-de Vries equation (see Ref. 22,115). Equation 
(29) differs from it in the last two terms,  which take 
into account the inhomogeneity of the medium in which 
the perturbation propagates. In addition, in place of 
the time we have here f =lnt and the coefficient of the 
higher-order derivative depends significantly on f and 
r. Neglecting the inhomogeneity we have 

and over distances Ax<< rt it goes over into the usual 
Korteweg-de Vries equation. 

The perturbations described by Eq. (29) a r e  close to 
self-similar. It i s  natural therefore to call them quasi- 
self-similar waves. The profile of quasi-self-similar 
waves in terms of self-similar variables, as follows 
from (29), varies slowly with time. Quasi-self-similar 
waves a r e  always excited upon expansion of a multi- 
component plasma (see 83). 

We have considered above one-dimensional planar 
motion of a plasma with an abrupt initial ion boundary 
(11). Numerical solutions of Eqs. (3) and (4) show that 
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FIG. 4. Ion-front velocity vp/sO, SO = (T1 / I % I ) ~ / ~ ,  as a function 
of the time t for a hkmellian electron distribution function: 
1) planar problem with abrupt boundary; 2) planar problem 
with non-abrupt boundary; 3) cylindrical problem with abrupt 
boundary, Ro= 100D; 4) cylindrical problem with abrupt boun- 
dary, Ro = 1 OD; 5) cylindrical problem with non-abrupt boun- 
dary; 6) spherical problem with abrupt boundary, Ro = 10D, D 
= ( T , / 4 n e 2 ~ d ' / 2 ,  R~ is the initial radius of the cylinder or the 
sphere. 

the acceleration retains i ts  character also when the in- 
itial boundary is not too strongly smeared. In this 
case, in the region where the ion density initially van- 
ished smoothly, there i s  produced an abrupt front of 
finite intensity, which evolves in the course of time in 
the same manner a s  in the problem with the abrupt in- 
itial boundary. The formation of this front can be 
easily understood if it i s  noted that in the region where 
N vanishes smoothly at t = 0 the electron density Nu 
should exceed N, and the acceleration of the ions in this 
region is initially smaller than that of the ions located 
on the left, in the region where Nu< N. As seen from 
Fig. 4, in the case of smeared boundary the total ac- 
celeration of the ions (at tQ,,>> 1) does not differ great- 
ly from the acceleration in the case of a sharp bound- 
ary. 

Figure 4 shows also the velocity of the ion front for 
the expansion of plasma cylinders with abrupt and 
smeared boundaries. It i s  seen that in the cylindrical 
case the ion acceleration i s  less considerable and also 
preserves its character in the case of weak smearing 
of the initial boundary. The figure shows also the velo- 
city of the ion front an expanding a plasma sphere with 
abrupt boundary. In this case v, is  bounded. 23 

83. EXPANSION OF MULTICOMPONENT PLASMA 

We have assumed above that the plasma consists of 
one sort of ions. In real  problems the plasma has fre- 
quency many components, i.e., it consists of ions with 
different masses M, and charges 2,. Equations (3) a r e  
written in this case independently for each ion compon- 
ent: 

In the Poisson Eq. (41, N i s  now the summary effec- 
tive ion density 

N- c NA. (31) 
L 

It i s  seen from (30) and (31) that in a multicomponent 
plasma the ion acceleration depends essentially on the 
ratio Zk/Mk. For ions with the same ratio ZJM,, Eqs. 
(30) a r e  identical. This means that the acceleration of 
such ions i s  identical, i.e., their relative densities 
NJN,, have an identical dependence on the velocity v, 
It is also obvious that ions with larger values of Z,/M, 
a r e  more strongly accelerated. 

If the plasma contains one basis ion component &, 
M, and small impurities of ions 2, , M,, such that NIZl >>x,,, NkZk , then the potential rp i s  determined by the 
basic component. The acceleration of the different ions 
depends then on the parameter 

A special situation ar ises  then for Maxwellian electrons. 
In this case ap/ax=const/t (9) and Eqs. (31) for the dif- 
ferent impurity components a r e  identical in form when 
v, is renormalized to (p,)'". This means that the 
energy spectra of the accelerated impurity ions should 
be similar, with a similarity parameter p,. 

We consider now a plasma consisting of two compon- 
ents-ions N,,Z,, M, and N,,Z,, M,. In the self-similar 
limit, Eqs. (30), (311, and (5) take then the form 

dNl du, dNa dun 
(v,-T)- +'Ni - = 0, (u;-T)- +Nz -= 

d r  d r  d r  0, 
d r  . 

The dependence of Ne on rp a t  an  arbitrary electron dis- 
tribution function i s  determined a s  before by relation 
(2). 

The system (33) has the integral 

In the case of a Maxwellian distribution this integral 
coincides with the one previously ~ b t a i n e d . ~ . ~ ~  Using 
it, we eliminate from Eqs. (33) one of the variables, 
and we rewrite these equations in the form 

du F du, F t=:--, + ( I - p -  --- 
dr  us-T d r  u;-T 

+ Mt F, 
d r  eZ1 

Equations (34) were integrated numerically with 
boundary conditions 

corresponding to the problem of expansion of a half- 
space into vacuum. The velocity v, is  the velocity of 
a rarefaction wave traveling in the direction of the dense 
plasma (see Ref. 23). The distributions of the den- 
sities N, and N, and of the velocities v ,  and va a r e  shown 
for the case  of Maxwellian electrons in Figs. 5 and 6. 
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FIG. 5. Change of the density and velocity of the ions as a 
function of 7/s0, so= ( T , / M ~ ) ' / ~  in the case of expansion, into 
vacuum of a plasma containing a mixture of 90% oxygen ions 
0' (Nl,vi) and 10% of hydrogen ions H+ (Nz,q). At T= 

rJ 1 .7so the oxygen density vanishes. Dashed-distributions , 
obtained by integrating the total system of equations (30) and 
(311, of the density and velocity of the hydrogen past the sing- 
ular point ?. 

It i s  seen that the ion motion depends significantly on 
the ratio ZJMk. Interesting qualitative pecularities 
also arise. In a one-component plasma the ion density 
vanishes only a s  7 -m,  inasmuch a s  in the quasineutral 
limit (5) the potential cp- in the place where N- 0. 
In a two-component plasma the situation i s  different. 
Here the component of the ions with the smaller Zk/M, 
i s  less accelerated by the electric field. Their density 
N, decreases more rapidly than the density of the second 
component. Therefore, a t  Z,/M, << Z,/M, the density 
N, becomes equal to zero a t  a certain finite value T 

= rf (Fig. 5). The potential cp remains, naturally, fi- 
nite in this case [since the density N, # 0, and cp i s  de- 
termined by the combined density (3111. The ions of 
the first component a r e  accelerated consequently only 
to a velocity u, = T, and exist only at  T rf. At T > rf 
these ions do not exist, so that the remaining compon- 
ent Z,, M2 propagates here alone. Near Tf there is 
produced in this case a region of very slow N,(T) varia- 
tion-a plateau region. 

In the case when the difference between Z,/M, and Z d  
M, i s  small, the density N, does not vanish and the plat- 
eau region i s  not strongly pronounced: there is only a 
region with a slower decrease of the density N, (the re-  
gion 7/so - 1-4 in Fig. 6). 

FIG. 6. Change of the ion density a s  a function of 7/s0, so 
= (T,/M~)'/~ in the case of expansion, in a vacuum, of a plas- 
ma containing a mixture of 1/3 carbon ions e6w3 and 2/3 
hydrogen ions H+ (Nz). Solid curve-solution of complete sys- 
tem of equations (30) and (31) at various instants of time: 1) 
t 4' = 15; Z) t 4 4  = 35; 9) t no* = 65. Dash-self-similar solu- 
tion. 

Solutions with allowance for the complete Poisson 
Eq. (4) show, just a s  in a one-component plasma, a 
gradual transition to a regime close to self-similar. 
However, the presence of steep fronts of the two ion 
components leads to excitation of quasi-self-similar 
waves. They a r e  particularly intense in the region of 
plateau or  the slow decrease of the density N, (Fig. 
6). The region of the slow decrease turns out to be 
more strongly pronounced than in the self-similar 
regime. We note that analogous self-similar waves a r e  
excited also in the kinetics of a quasineutral plasma.' 

84. ION ACCELERATION IN A LASER PLASMA 

Accelerated ions a r e  observed in an expanding laser 
plasma. In the case of short intense laser pulses, the 
rapid ions carry away up to 50% of the absorbed ener- 
gy.8'11 An investigation of the x rays shows that the 
electrons have a non-Maxwellian velocity distribution 
with a clearly pronounced high-energy tai1.25*26 Since 
it i s  precisely the energetic electrons that a r e  import- 
ant for the ion acceleration, an investigation of the fast- 
ions spectra can be useful for the diagnostics of a laser 
plasma. 

We shall consider the results of Decoste and Ripin,lo 
which a r e  most detailed. A neodymium-laser pulse ( A  
=1.06 p m , 4 = 7 5  psec,Wn(l-2)x 1016 w/cm3) i r -  
radiated flat targets of CD,, CH,, and CH. The radius 
of the focal spot (at half laser power) was Ro = 10-12 
pm. In a chamber of -75 cm diameter, a vacuum 
d10-8-10-7 Tor r  was maintained, so that collisions and 
charge exchange could be avoided in the ion flux dis- 
persing away from the target. 

The distribution of the accelerated ions was investigat- 
ed with ion analyzers. It was observed in this case that 
the ions were in the main completely ionized, i.e., the 
ions C* and the ions H+ or  D* were observed, depend- 
ing on the type of target. Figures 7 and 8 show the en- 
ergy distribution of the ions C *', D +, and H* produced 
when Cd, and CH, targets a r e  irradiated. It is seen that 
the carbon ions Ct6, which have the large charge Z 
=6, a r e  accelerated to high energies -1 MeV. The en- 
ergy spectra contain a number of peaks whose heights 
and positions vary substantially from experiment to ex- 
periment. On the other hand, the (smoothed) curves 

FIG. 7. Energy spectra of accelerated ions c+= and D+ for a 
CQ target in two different reali~ations.'~ Solid line-first 
experiment, das hed-second experiment. Thick solid line-- 
calculation in accord with the theory in the self-similar a p  
proximation for T, = 15 keV. E-energy in keV, Z-ion charge. 
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FIG. 8. Energy spectra of accelerated H+ (a) and c + ~  (b) ions 
for a CH2 target in various  realization^.'^ Thick solid lines- 
calculation in accord with the theory in the self-similar a p  
proximation at& = 15 keV, dashed-solution of the complete 
system of equations (30) and (31) at  tQoi = 50. E is the energy 
in keV and Z is the ion charge. 

averaged over the oscillations a r e  stable. We note that 
simultaneous measurements of the x rays  in the 1-100 
keV band show the distribution of the electrons in the 
plasma to be on the whole essentially non-Maxwellian, 
but in the region of the tail of t h e  distribution function, 
20 keV S c S 100 keV, the electron spectrum i s  approxi- 
mately Maxwellian with an effective electron tempera- 
ture 

We compare now the results of the experiments with 
the theory. 

Dependence on Z/M. It i s  seen from Fig. 7 that in 
terms of the chosen variables the energy spectra of 
the ions C  +6 and D + ,  which a r e  produced by irradiation 
of CD,  targets, a r e  the same  in each realization-they 
practically coincide. This i s  in full agreement with the 
theory considered here. Indeed, the ions C + 6  and D +  
have the same z/M ratio. Equations (30) for them a re  
identical, and in this case, a s  indicated in 83, the rela- 
tive densities of the accelerated ions N,/N,, should have 
the same dependence on their velocity v,= (E/Z)lf2(22/ 
M)'". This i s  well confirmed by the experimental data. 
On the contrary, for C*' and H*, which have different 
Z/M ratios, the experimental spectra a r e  substantially 
different (Fig. 8), as they should. 

FIG. 9. Spectra of the ions o + ~ ,  c + ~  (.), c+' (0), and 0" (A) 
(Ref. 11) as functions of the parameter (E/Z,~,)'/~; E-energy 
in keV, 2,-charge of ions, pa-similarity parameter (32). 
Relative ion concentrations N ~ O + ~ ,  c + ~ :  N~C'~:N,O'~= I :O. 8:O. 4. 
Solid line-theory [(9) and ( 3 2 ) j .  

Averaged spectra. The thick solid curves in Figs. 7 
and 8 a r e  the results of the calculation of the energy 
spectra of the ions in the self-similar approximation. 5 ,  

One can see sufficient agreement with the averaged 
experimental data. The electron temperature was as- 
sumed m the calculation to be 15 keV, in agreement 
with (35). We note that the averaged energy.spectrum 
of the ions on Figs. 7, when plotted in logarithmic 
scale, decreases linearly with increasing ion velocity, 
in accordance with the predictions of the theory.' The 
same dependence is clearly seen also in Fig. 9, which 
shows the spectra of various impurity ions, obtained by 
Berger et al. ," and renormalized to a unified theore- 
tical curve. Here, too, the similarity law of the impur- 
ity -ion spectra i s  well satisfied with a similarity param- 
eter (32). 

In the case shown in Fig. 8, ions with different Z/M 
a r e  accelerated. The region of the slow decrease 
(plateau) of the A +  ions i s  clearly seen on the experi- 
mental curves, in agreement with the calculation (see 
Fig. 6). 

OsciUations of the spectrum. The osciilations of the 
energy spectrum can be naturally connected with the ex- 
citation of quasi-self-similar waves. As seen from 
(361, in the self-similar limit an important role is  
played not only by the N(T) oscillations, but also by the 
d u / d r  oscillations which can lead to an enhancement 
of the spectrum oscillations. According to the numeri- 
cal  calculation data (Fig. 6), the characteristic period 
of the oscillations is 

It i s  seen from the experimental curves of Fig. 7 and 
8 that the period i s  

A (E/Z)'"=2.2-3 keV. 

From a comparison of (37) and (38) it follows that T* 
5 10-20 keV, in rough agreement with (35). 

Energy limits of accelerated ions. The maximum 
ion-acceleration energy is strongly influenced by the 
dimension of the focal spot on the target, which deter- 
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mines the size of the produced plasma. According to 
(20), the maximum ion energy i s  given by 

Here t, is the total acceleration time. 

Recognizing that the acceleration takes place only up 
to a certain distance R, from the target, we find that the 
time t, i s  given by 

where D is  the Debye radius for the fast electrons. 
Recognizing that on the plasma boundary (i. e . ,  at  the 
point of reflection of the laser wave) the electron den- 
sity is  

we obtain yM=20 for a CD, target. We have taken into 
account here the fact that the average charge in the C" 
+ 2D+ mixture is  Z= 8/3, and set the distance R, 
equal to the radius R, of the focal spot. At distances 
larger than R,, the plasma expansion is no longer one- 
dimensional, and the ion acceleration in the direction 
normal to the target is  practically stopped. 21123 We then 
get from (39) for C+6 ions at  TI= 16-18 keV an energy 
limit (E/C),= 250-280 keV, in agreement with the ex- 
perimental data. lo For the D* ions, allowance must 
be made for the fact that deuterium can begin to ex- 
pand freely before the C+' ions (by virtue, e. g. , of the 
faster ionization). Consequently, the limiting energies 
of the deuterium ions a re  determined by the expansion 
of the D* plasma with Z =  1. According to (39) and (40), 
a t  the same value of RM we obtain y,- 30 and (E/Z), 
= 350 keV, in accord with the experimental data. 

For CH, targets, the limiting energies of the H+ ions 
a r e  approximately the same a s  for the D+ ions, and the 
limiting energies of the C+' ions a r e  somewhat lower: 
(E/Z), = 180 keV, since the C+' ions in the mixture with 
H+ a r e  less accelerated because of the lower value of 
Z / M  (see Fig. 5). 

Qle-dimensional character of the acceleration. In the 
experiments represented in Fig. 7 and 8, the acclerat- 
ed ions were observed in a direction normal to the tar- 
get. Decoste and Ripinlo report also results of mea- 
surements at  a small angle a = 12.5" to the normal 
(CH, target). The distribution of the C *' ions is  then 
substantially changed-the number of fast ions is much 
less than in the case of propagation in the normal di- 
rection. This shows that the ions a r e  accelerated main- 
ly in a direction normal to the plate, and consequently 
the ion acceleration i s  one-dimensional in accord with 
the theory considered here. That the ion acceleration 
in short-laser pulses is  one-dimensional i s  indicated 
also by the experiments of Ref. 9. 

We emphasize that to describe the motion of the ions 
in the theory presented here we have used the equations 
of ideal hydrodynamics in a strong electric field (3), 
which a re  valid at  arbitrary ion mean free paths. For 
impurity ions with Z/M different from that of the main 
ions, the collisions may turn out to be substantial, and 

if they play the decisive role, Eq. (3) is  againvalid, with 
Z and M representing the average mass and the aver- 
age charge of the ions. On the other hand, the electron 
motion is assumed to he collisionless [ ~ q s .  (1) and (2)]. 
We estimate therefore the electron mean free path 1,. 
In the region near the start  of the expansion we have 
1, +r 18 c2 @m; the electron energy E i s  expressed here 
in keV, and account i s  taken of the fact that for a neo- 
dymium laser the electron density calculated from (41) 
i s  No= 10'' cm". It i s  seen therefore that for electrons 
with energy c 2 3 keV the condition of collisionless ex- 
pansion I,>> R, is well satisfied. 

We note in conclusion that our analysis can explain the 
mechanism of effective transfer of energy of an intense 
laser pulse to the dispersing accelerating ions. When 
a laser pulse acts on a target, the resultant plasma is  
pushed towards the target by the pressure of the light. ' 
The electrons a r e  reflected from the inhomogeneous al- 
ternating electric field of the wave, which produces in 
fact the barrier c M  that contains the plasma. This per- 
tains, however, only to electrons whose kinetic energy 
is  c c = e2Ei/4mw2; here EM is  the maximum ampli- 
tude of the wave field. The energy E. i s  several times 
larger than the thermal energy of the plasma electron in 
the region of wave reflection. The fast electrons, 
whose energy exceeds E ,, a r e  not retained by the elec- 
tromagnetic bar.rier. At c x=- cM the barrier i s  of no 
effect at  all-these electrons expand freely in the 
vacuum. It i s  they which lead to the ion acceleration 
observed in the experiment. For example, in the pre- 
viously considered experiments of Ref. 10, the aver- 
age thermal energy of the electrons was of the order 
of 1 keV, and the height of the barrier was &," (5-15) 
keV, whereas the observed ion acceleration was effect- 
ed by electrons with energies 20-200 keV. 

It i s  important that with increasing laser-pulse energy 
a larger role is assumed by the anomalous mechanism 
of absorption of i ts  energies," which leads to the ap- 
pearance of a large number of fast electrons. These 
electrons a r e  not retained by the field of the wave. 
When the plasma spreads they give up their energy to 
the accelerated ions. It i s  this which causes the very 
effective transfer of the anomalously absorbed energy 
of the intense laser pulse to the energy of the expand- 
ing fast ions. 

The authors thank L. P. ~ i t a e v s k i r  for a helpful dis- 
cussion. 

'1 Accelerated ions a r e  also observed in laser pulses of lower 
intensity and longer duration, although they seem to play a 
lesser role.12 

') If the potential has a nonmonotonic variation it  is necessary 
to use an adiabatic distribution of the  electron^.'^'^^ 

$1 The influence of hydrodynamic motion on the electron dis- 
tribution function was taken into account by ~ e n a v i t ' ~  and by 
Mora and ~ e l 1 a t . l ~  

'1 The power-low dependence chosen by us, N, (cp) - (1 - eq  
/ T , ) - ~  corresponds to an electron distribution function 

5, The energy distribution of the accelerated ions observed a t  
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the pointxo is very simply connected with N(r) a n d ~ ( r ) . ' * ~ ~  
Let R be the total number of ions passing through a unit area 
a t  the pointxo: u = I  N ~ d t .  Then 

where the function T(E) is defined in accordance with 7 = 7 

(v), II - (~E/M) ' /~  [see (8a)l. From (36) it is  seen that the 
energy spectrum in its basic exponential part i s  determined 
by the course of the N(r) dependence. 
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