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Lattice losses in an ideal centrosymmetric crystal are considered for electric field frequencies below or of the 
order of the inverse lifetime of the thermal phonons. It is shown that the rate of dissipation of the electric field 
energy into heat can be expressed in terms of the nonequilibrium contribution to the off-diagonal (with respect 
to the spectrum branches) components of the single-particle density matrix, for which an equation is derived. 
The criteria of applicability of the results are discussed. Some order-of-magntiude estimates are given. 
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1. INTRODUCTION 

The problem of the dissipation of energy of a homo- 
geneous electric field into heat in ideal dielectric crys- 
tals has been considered by a number of authors.'-5 
The most complete and detailed study has been that 
made by Gurevich4 (see  also his book6). As applied to 
centrosymmetric crystals, the thrust of his research 
is  a s  follows: an electric field of frequency w, much 
less than the thermal frequency of the phonons G, i.e., 

( T  is  the temperature in energy units, O is  the Debye 
temperature) produces transitions between phonon 
states of the crystal. The thermal phonons a r e  a s -  
sumed to be well defined, i.e., the inequality 

w>> I?. The present work has a s  its aim the filling of 
this gap. It will be shown in the paper that the rate of 
energy dissipation of an electric field into heat in cen- 
trosymmetric crystals is  expressed in terms of the 
nonequilibrium contribution to the off-diagonal (with r e -  
spect to the spectrum branches) components of the sin- 
gle-particle density matrix, for which an equation is  
derived. When the equation is  applicable, the estimates 
of Refs. 4 and 5 a r e  valid to no worse than logarithmic 
accuracy. In the opposite case, a t  w s  r, the dielectric 
losses a r e  determined by the fourth order of ordinary 
single -particle perturbation theory. 

2. THE HAMlLTONlAN 

We shall describe the system of phonons interacting 
with the electric field by the following Hamiltonian: 

holds for their attenuation. H=Ho+H,,t+Hs; 

here H, is  the anharmonic part of the phonon Hamilton- 
By virtue of the centrosymmetric nature of the crys- ian, 

tals, the indicated transitions a r e  possible only between 
different branches of the spectrum. The inequality (1) 1 .. A .. 

H,,,= ,j C p k ( q , ,  q2, q3) E ~ ~ ~ ~ ~ : E ~ : ,  ql+ql+q3=b, 
leads to the result that only thermal phonons from the 

I ,R 

immediate vicinity of the set  of degeneracy points of 
the spectrum can take part in processes of the lowest 
order in perturbation theory. The contribution of such 
processes to the imaginary part  of the permittivity is 
determined by the dimensionality of this se t  and the de- 
pendence of the energy gap and of the matrix element 
of the electric field on the distance in k space (wave 
vectors) to this se t  (for small  values of this distance). 
The symmetric character of these properties permitted 
Gurevich to separate the different types of se ts  of de- 
generacy points, to determine the frequency and tem- 
perature dependences of the imaginary part of the per- 
mittivity corresponding to them, and to elucidate the 
possibility of realization of these types as a function of 
the symmetry of the crystal. The formulas obtained by 
him make it possible in principle to calculate the di- 
electric losses for w>> I?. 

Up to the present time there is  no theory which al-  
lows us to calculate the lattice losses in centrosym- 
metric crystals at w s  r. There is  only a 
for obtaining an order-of-magnitude estimate of the 
imaginary part of the permittivity from its value a t  

where 5: = a,, +a:,, (a:, and a,, a r e  the creation and an- 
nihilation operators, respectively, of a phonon of 
branch i and wave vector q),  b is  the vector of the in- 
verse lattice, and Vijqql, q,, q,) is  the potential of 
triple interaction of phonons. 

For the description of the interaction of phonons with 
the field, we use the electrophonon-potential vector 
Aij(q) introduced by Gurevich;* then the part of the 
Hamiltonian that describes this interaction has the 
form1' 

Here E is the electric field vector, 52,(q) is the disper- 
sion law of phonons of branch i. For brevity below, we 
shall use the notation 

Btl(q) =h(Qt(q) Q,(q) ) '"kJ(q) .  

It is  well known that the power T$ dissipated into heat , 

in a unit volume of the dielectric (9 i s  the rate of in- 
crease of the entropy density) is  expressed in terms of 
the imaginary part of the permittivity tensor p,(o): 
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qoe(w) can be calculated from the formula of Kubo (see 
Ref. 7, p. 367): 

1 6 ,  ( t )  = -z ~ , ' j ( q j ~ ~ ~  (tj~-qj(t) 
2 

where [. . .] denotes the commutator, while (. . .) is  the 
statistical average over the equilibrium distribution 
with the Hamiltonian H, + H,,,, and v is  the volume of 
the crystal. 

For calculation of qa,(w) by formulas (4), we shall 
apply the standard temperature technique (see Refs. 2 
and 7, p. 367). We define the bare temperature propa- 
gator in the following normalization: 

The interaction H,,, generates three-point vertices. To 
the right corner of each diagram there corresponds 
B*,*(q), and to the left, BITq). 

3. SELECTION OF DIAGRAMS AND DERIVATION OF 
THE EQUATION 

In lowest order in anharmonism, qa8(w), which is de- 
termined by the imaginary part of the graph a (Fig. I), 
i s  equal to 

it, 

It is  not difficult to obtain from formula (6) the expres- 
sions for qae(w) that a re  contained in the work of 
G ~ r e v i c h . ~  

We now consider the higher orders. As was noted by 
Leggett and t e r  Haar,' they all contain diverging dia- 
grams. The recipe for calculation of the contribution 
from such diagrams appeared simultaneously with the 
formulation of the Feynman technique. According to it, 
we must sum the most strongly divergent diagrams in 
each order in the coupling constant. We now make a 
selection of such diagrams: 

1. We shall consider only irreducible diagrams, 
since it i s  easy to see that the sum of reducible dia- 
grams of type b (Fig. l )  gives only an anharmonically 
small correction to the sum of the irreducible dia- 
grams. 

2. Among irreducible diagrams of a given order, we 
shall keep only those containing the maximum number 
of free sections (sections that intersect only the lines 
of the principal phonon loop). According to the rule of 
 section^,^ the imaginary part of the diagram contains a 
contribution in which the factor [ a ,  i a j  i w]-' corre- 
sponds to each free section. It is  just these factors, 
which vanish near the set  of degeneracy points, that 
guarantee the divergence of the diagram; therefore the 

FIG. 1. The Latin letters number the branches of the spectrum 
corresponding to the propagators ( the  two vertices in diagram 
e should be  connected by one more line. 

most strongly diverging diagram should be sought in 
the class mentioned a y v e .  We note that this class 
consists of diagrams, in which the propagators a re  re -  
normalized by not more than a simple polarization loop. 

3. In this class, we can neglect diagrams of the type 
d (see Fig. I), which contain corrections to the vertex, 
in comparison with diagrams of type c,  which contain 
corrections to the propagator, since in the first  case 
there is  an extra integration at the same rate of vanish- 
ing of the denominator. This assertion remains valid 
in the calculation of diagrams with exact propagators 
for any relation between w and l?. Physically, this 
selection criterion connected with the fact that only the 
group of phonons from the immediate neighborhood of 
the line of degeneracy, where2' Iai(q) - a,(q) ( max 
(wj, l?), interacts effectively with the external field. 

4. A further narrowing of the class of diagrams con- 
sidered i s  possible: to dress  the propagator, we shall 
use only the diagonal part of the simple polarization 
loop. With diagram e (Fig. 1) a s  the example, this 
means that we keep only diagrams with k = j. Actually, 
a t  k + j and k + i both near the set  of degeneracy points 
of the branches i and j ,  and also of i and k, the diver- 
gence of the diagram i s  weaker than in the case k = j. 
Such an argument holds also for more complicated dia- 
grams. Diagrams with k = i can also be neglected; the 
proof of this fact i s  given in the Appendix, in view of 
its cumbersome nature. 

Thus, the summation of the most singular terms of 
all orders of perturbation theory leads to an expression 
for  qae(w) which differs from (6) only by the replace- 
ment of the bare temperature propagators G:,(q, i w,) 
by the renormalized G,,(q, i w,). Here Gi!(q, i w,) must 
be found from the Dyson equation, in whlch the diagonal 
part of the simple loop enters a s  the mass operator. 

For the calculations, we make use of the Lehmann 
representation for the temperature Green's function: 

1 Im G,j"(q, U) A in)= J du. 
- - 

We obtain the retarded Green's function G;*(q, u)  by 
analytic continuation in frequency of the solution of the 
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Dyson equation shown above: 

Here r',((w) is  the imaginary part of the mass operator 
after analytic continuation in the frequency; the real  
part is  neglected in writing down (8). 

It is  now not difficult to obtain the following expres- 
sion for ~5 by using (3) and (6) with the substitution 
G:j - G,,, and also (7) and (8): 

Since (9) was obtained by summation of the diagrams 
that diverge near the set  of degeneracy points of the 
spectrum, it is  natural to expect that the fundamental 
contribution to (9) will also accumulate near this set, 
i.e., a t  q for which A" = O,(q) - Oj(q) << ,Q,(q) + ,Q,(q). 

Under this assumption, it is  not difficult to obtain3' 
1 

d,'(t)A:(w-x)=-Re 6[x-8 (q) I - ~ [ x + Q  (q) I 
n -iwx/Q (q) +iAZ1+Fq' (x) +rqJ(x) 

, (10) 

where fi(q) is the frequency of the loop of the spectrum 
at  the point of degeneracy closest to q. 

Substituting (10) in (9) and after simple transforma- 
tions, we represent the answer in the form 

where X: is  determined from the equation 
EB" (q) 

[--io+iA"IX,"+io ------ =- 
Iql+Iq' 

T 2m (N+1) Xq". 

Here i?=M6(q)], and 

is the integrated portion of the linearized collision op- 
erator. In writing (11) and (12), we have used the fact 
that those q a r e  important to us for which << &q). 

To identify the quantity x:' we transform (11) with the 
help of (12) to the form 

On the other hand, the power dissipated into heat per 
unit volume is the average powe_r obtained by the pho- 
non gas from the electric field U, for which we can 
write 

- 
u=s*('&), 

where ,i3 i s  the density matrix, and the bar denotes av- 
eraging over the period. In lowest ordzr in the anhar- 
monism the value of the electric field 0 can be ex- 
pressed in terms of the single-particle density matrix 
PiJ= (aa,a,,). After averaging over the period, we have 

We see  from a comparison of (13) and (14) that 
X:jk(k+ 1) a r e  the nonequilibriurn increments to the 
off-diagonal (with respect to  the spectrum branches) 
components of the single-particle density matrix. We 
note that in our approximation there i s  no contribution 
from the diagonal components to the losses in centro- 
symmetric crystals since Bii(q) = 0 in such crystals 
(see Ref. 4). 

4. LIMITS OF APPLICABILITY OF THE EQUATION 
AND DIELECTRIC LOSSES IN  SPECIFIC CRYSTALS 

In order that the result obtained in Sec. 3 describe 
the dielectric losses in a centrosymmetric crystal, we 
must satisfy two conditions: first, the fundamental con- 
tribution to (11) should be made by the small vicinity of 
the set  of degeneracy points4) (this was used in fact in 
the derivation of (11) and (12); second, this contribution 
should be greater than the contribution from the non- 
diverging diagrams of fourth order. We now check the 
applicability of these conditions for all  types of se ts  of 
degeneracy points selected by Gurevich, thereby ob- 
taining expressions for the imaginary part of the per- 
mittivity in the case w i  I?. 

The contribution to the imaginary part of the per- 
mittivity from the vicinity of the set  of degeneracy 
points, according t o  (11), (12) and (31, is  

r-l/,(r,i[~.(q) ~ + r , ~ [ ~ ~ ( q )  11. 

In the estimating formulas below, we shall understand 
by r the damping of the thermal phonons. We must 
compare this contribution with the nondiverging con- 
tribution of the fourth-order diagrams c and d (see 
Fig. 1). Such a contribution i s  made by diagrams fo r  
which the phonon spectra, which form the lines of the 
principal phonon loops, do not have any mutual points 
of degeneracy. Since these contributions a r e  of the 
same order, we limit ourselves for comparison with 
(15), to  the regular part of the diagram (Fig. 1): 

Here = N(Oj(q)]. 

For brevity in what follows, we group the classifica- 
tion of types of se ts  of degeneracy points obtained by 
Gurevich4 in a table. 

The third and fourth columns of this table show the 
dependence of the gap between the branches A" and the 
matrix element of interaction with the field BiJ on the 
distance ~q  to the se t  of points of degeneracy a s  ~q  - 0. According to Gurevich, the indicated types can be 
realized in centrosymmetric crystals in the following 
situations, Type 1-on the boundary of a Brillouin zone 
in crystals containing second order screw axes. Type 
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2-on lines of symmetry degeneracy, parallel to the C, 
axis, or on lines of random degeneracy. On the lines 
of degeneracy parallel to  the C, or C, axes, type 3 is  
realized for a measuring field orthogonal to the axis, 
and type 4 ,  for a parallel field. Types 5 and 6 are 
realized at points of random degeneracy of the spec- 
trum, type 7 at the center of  a Brillouin zone. 

We  begin with the case of a surface (type 1). For 
calculation of (15),  we break up the integration, over 
d3q into an integral over the degeneracy surface and 
over the normal to it q,. Since the integral builds up 
mainly at small values of q,, we take into account the 
dependence on q, only in and extend the limits of 
integration to  infinity. Then the integral with respect 
to dq, of the fraction in (15) is equal to 

Further calculation leads to the result of lowest or- 
der perturbation theory. Comparison with qzB(w) gives 

qR/qa=r /~ .  

Thus, in the given case, the formulas (11) and (12) de- 
scribe the dielectric losses with power-law accuracy. 
As a result, rlS,&w) is given in lowest order perturba- 
tion theory for any relation between w and I'. 

Considering type 2 ,  we shall assume for simplicity 
the degeneracy line to be a straight line passing through 
the center of the Brillouin zone. Taking it into account 
that the basic contribution is made by the q which make 
small angles 8 with the line, we replace sinad8 by 
8 d8, and retain the dependence on 8 only in A". For 
the integral of the sum of the two fractions from (15),  
which differ in the order of the symbols i and j ,  we 
have 

For w>> r, further calculation gives the result of 
lowest order perturbation theory 

4nZoE 
,a(.) = ,E j - a i ~ ( q ) ~ ? c q )  

m(m+i) 
i>l 

(2n) l a ~ v a . 6 1 ~  ' 

However, the accuracy is  already worse than before: 

For w.; I' we have 

Comparison of ( 1 8 )  and (16) gives 

This means that the diagrams chosen for (11) and (12) 
are, in the given case only logarithmically large in 
comparison with the remainder. 

From the viewpoint of contributions to  the loss, the 

TABLE I 

surface 
line 

3 line 
4 line 
5 point 
6 point 
7 point 

lines of type 3 are equivalent to  lines of type 2 ,  while 
the lines of type 4 are equivalent points of type 5. 
Without pausing to prove these assertions, we proceed 
to  the analysis of the points of type 5. I t  i s  simple to 
see that in this case the integral accumulates princi- 
pally in the immediate vicinity of the degeneracy point 
only in the case w>> r. In the limit r / w -  0 ,  we get the 
result of lowest order perturbation theory from (15): 

Here qi, are the coordinates of the points of degeneracy. 
Comparison of (19) and (16) gives 

Thus, it i s  no longer sufficient here that we have the 
inequality w >> I', as is  usual of lowest order perturba- 
tion theory predominates, but the following stricter 
condition is required: 

At w S  r ,  the vicinity of degeneracy points cannot as- 
sure the dissipation of the energy, and formulas (11) 
and (12) are not applicable. The imaginary part of the 
permittivity is determined by  the regular contribution 
of the fourth order diagrams. 

Consideration of points of types 6 and 7 leads to  re- 
sults only slightly different from those obtained in the 
previous case: the integral (15) accumulates as before 
in the vicinity of the point only at w >> I?. The second 
(lower) order in the anharmonism determines the losses 
for type 6 at 

for type 7 at 

In the case of nonsatisfaction of these criteria, the 
regular contribution of fourth order diagrams is  op- 
erative. 

We note that in the calculation of the regular contribu- 
tion of fourth order diagrams, one should take into ac- 
count not only c and d ,  but also the diagrams f and g5) 

(see Fig. 1). The latter contains vertices that describe 
the interaction of the electromagnetic field with three 
phonons. I t  is easy to see that any graphs containing 
such vertices drop out of  the sequence selected in Sec. 
3. Therefore, in order not to  distract attention, we 
have not written out the term in HE that generates this 
vertex. The same applies to the four-phonon interac- 
tion. 
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5. CONCLUSION 

We have considered the dissipation of energy of a 
homogeneous electric field, due to interaction with the 
phonon system of a centrosymmetric crystal. A char- 
acteristic feature of this system is the absence of a 
linear term in the expansion of the phonon frequency in 
ters  of the applied electric field. Therefore, with the 
help of the kinetic equation (the Akhiezer mechanism), 
it is  possible to describe nonlinear losses only. In the 
description of the linear losses, we can distinguish two 
cases: 1) the energy dissipation takes place mainly in 
a small fraction of the excited volume of k space; 2) 
the dissipation takes place uniformly throughout this 
volume. 

In the f i rs t  case, the role of the kinetic equation is 
played by the algebraic equation (12) obtained in Sec. 3 
for the nonequilibrium increments to the off-diagonal 
components of the density m a t r k 6  The fact that the 
equation, unlike the kinetic equation, does not contain 
an integral part, is a manifestation of the narrowness 
of the group of phonons taking part in the absorption. 
This equation allows us to calculate the dielectric 
losses at wS r and to establish strict  cri teria for the 
applicability of the results of lowest order perturbation 
theory. A comparison of the results for wr; r with the 
estimates obtained in Refs. 4 and 5 shows the validity 
of the latter with accuracy to ln(G/r). 

In the second case, the rate of energy dissipation is 
no longer dictated by the equation describing the collec- 
tive motion of the phonons, but is determined by the 
fourth-order single-particle perturbation theory (see 
Footnote 5). 

As was shown in Sec. 4, the f i rs t  case is  realized a t  
w s  r for the first  three types of sets of degeneracy 
points of the phonon spectrum of the crystal (see the 
table). We obtain estimating formulas for the contribu- 
tion to the imaginary part of the permittivity for these 
types at w s  r. In obtaining these estimates, we shall 
assume that the basic contribution is made by thermal 
phonons, i.e., we shall take the thermal values of the 
integrand quantities outside the integral sign. Accord- 
ing to Gurevich4, the thermal value of the electro-pho- 
non potential vector i s  

I A'' I =h~/p'"w%, (20) 

where p is  the density of the crystal and w is the mean 
sound speed. For the contribution from the degeneracy 
surface of type 1, using (15), (17) and (20), we have 

It has been assumed here that near the degeneracy sur-  
face 

1 aA'j/dq,l =w. 

Considering the contribution from the line of type 2, 
we shall assume that aij i s  not anomalously small. 
For thermal phonons traveling almost to such a line, 
this leads to the estimate 
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Assuming that the contributions from all  lines of type 
2 a r e  of the same order,  we obtain for their total con- 
tribution, using (18), (20) and (22), 

where n is  the number of lines of type 2. As has been 
shown above, the contributions from the line of type 2 
and the line of type 3 a r e  of the same order. Thus, 
formula (23) gives the total contribution from lines of 
both types if by n we mean their total number. 

Gurevich4 has obtained still another estimate-the 
estimate for the contribution from the random degen- 
eracy surface in a hexagonal crystal. The surface ex- 
isted only in the approximation of elasticity theory, 
i.e., for thermal phonons its place i s  taken in fact by a 
gap of order EB~/o. In obtaining this estimate; the gap 
has been neglected. It is  seen from the analysis of (15), 
that this is  permissible only in the case 

It i s  not possible to satisfy (24) without invoking addi- 
tional sources of scattering and, generally speaking, 
we must take the gap into account. Allowance for the 
gap leads to vanishing of the localized contribution in 
the case of complete lifting of the degeneracy. If de- 
generacy lines from the surface now remain, then, a s  
it i s  not difficult to  obtain, their contribution is O / ~ i i  
times greater than that given by formula (23), in which 
by n is  now meant the number of these lines. 

For formula (23), which describes the most wide- 
spread situations, we present a numberical estimate 
for T=  O= wa= 300 K, w- I'- TO/EMW~ (M is the aver- 
age atomic mass, a is  the lattice constant): 

In obtaining (25), it was assumed that MW'= lo4 - lo5 
K. We note that in high-symmetry crystals, n (the 
number of degeneracy lines belonging to the excited 
part of the spectrum and participating in the absorp- 
tion) can reach values of 20-30 at T 2 6. 

All the estimates above refer to crystals with per- 
mittivity E of the order of several units. The consid- 
eration for ferroelectrics of the displacive type, where 
c can reach values of a thousand and higher, leads to 
a quantitatively different result. Thus, in the work of 
the author5, the contribution to losses from a line of 
degeneracy of type 2 for SrTiO, was estimated a t  T =  90 
K, w =  2.2 x lolo HZ, r= loL1 HZ: 

At this temperature in SrTiO,, there a re  in operation 
a t  least 12 symmetric lines of degeneracy of branches 
of the soft mode.5 Taking this into account and also 
the factor In ( d l ? )  omitted previously5 we have for the 
total contribution to  the tangent of the angle of dielec- 
t r ic  losses: 

which agrees in order of magnitude with the experi- 
mentally found tan 6 = 1.6 X 10-3.12 
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We thus see  that the contribution to dielectric losses 
from energy dissipation processes taking place near 
the set  of points of degeneracy of the spectrum can be 
amenable to experimental observation even a t  w s  r. 
Estimates for SrTiO, show that this contribution can in 
a number of cases turn out to  be quite substantial. 

In conclusion, we note that, together with the contri- 
butions that we have considered, there exists a contri- 
bution from fourquantum processes, which differs pa- 
rametrically from the contribution (23) only by the ab- 
sence of the factor ln (G/ r )  (see Sec. 4). It is  evident 
that it is  not possible experimentally to detect such a 
difference. A method for distinguishing these contribu- 
tions from one another has been proposed by the author 
in a previous paper,5 in which it was proposed to carry 
out measurements of tan 6 in the presence of a constant 
electric field, and to distinguish the contributions ac- 
cording to their field dependences. 

The author is  grateful to B. D. ~ a k h t m a n  for a use- 
ful discussion, to Yu. M. Galperin and V. L. Gurevich 
for reading the manuscript and for a number of valuable 
comments. 

APPENDIX 

The purpose of this Appendix i s  to show that diagrams 
containing even a single free section with identical pho- 
non lines a r e  not subject to selection. For  proof, we 
make use of the fact that potentials of a centrosym- 
metric crystal a r e  odd: 

v'jk(qt, q2, 9 ; )  =-V'jh(-q,, -q2, q , ) ,  Bi j (q)  =-B"(-q) .  

We prove this by rewriting H , in terms of the dis- 
placement of the atoms R, and the anharmonic tensor 
D'1y2y3 ( y  enumerates the cartesian coordinates of the 
dlsp ?lnfs acements and the atoms in the cell, n numbers the 
cells): 

H~, , ,  -1 3! CD"RCRER:.  
7. n 

The invariance of Hi,, relative to spatial inversion 
makes directly anharmonic tensor odd: 

We now express vi5k(q1q2qJ in terms of the anharmonic 
tensor and the eigenvectors of the dynamic matrix 
ei(q), which, thanks to the centrosymmetry of the crys- 
tal, can be chosen to be even in q: 

V1*(qt, Q, 1 1 ~ )  -z ~ ~ ~ ~ , e , , ~  ( q , )  e,,'(qz) 
",I 

x e,,(qs) exp[-i(niq,+n%q2+n8q~) I .  (A.2) 

It i s  easy to see  that (A.2), with account of (A.l), de- 

FIG. 2. The numbers denote the branches of the spectrum 
corresponding to the propagators. These diagrams differ by 
a relative turn of the lateral blocks. 

fines an odd potential. The oddness of the electro- 
phonon potential is  proved in similar fashion. 

We proceed directly to the proof. Let us consider a 
diagram of order 2m, satisfying the previously formu- 
lated selection principles and containing a single free 
section with idential phonon lines. It is  not difficult 
to  establish the fact (by using the section rule of Ref. 
9) that its imaginary part i s  actually of order 2m - 2, 
but also contains the factor r/w. At w<< T, such a dia- 
gram would be subject to selection, since, for a dia- 
gram of order 2m - 2 it contains the maximum number 
of divergences. However, let us consider a diagram 
which differs from the f i rs t  by the relative turn of the 
lateral blocks (Fig. 2). At w= 0, the inverted block dif- 
fers  in sign from the uninverted one, since it contains 
an odd number of vertices that a r e  odd in the momen- 
tum, while the temperature propagators a r e  even both 
in momentum and in frequency. Consequently, the sum 
of the block and its inversion i s  equal to zero. It i s  not 
difficult to  show that a t  w << T/E this sum has the small- 
ness of Ew/T. Thus, the sum of diagrams that differ in 
the mutual inversion of the blocks, has the order 2m 
- 2 and the factor Ew/T, i.e., i s  of order 2m. Conse- 
quently, such diagrams a r e  not subject to selection, 
since for order 2m they do not contain the maximum 
number of divergences. The proof of the smallness of 
the sum of diagrams containing several f ree  sections 
with identical phonon lines i s  similar, but it requires 
repeated iteration of the procedure of inversion of the 
blocks. 

'1 It will be shown below that allowance in HE for terms des- 
cribing the interaction of the field with three and more phon- 
ons leads to some quantitative changes. 

2, We note that upon absorption of Longitudinal sound of fre- 
quency w by longitudinal acoustic phonons a t  u >> r only a 
narrow group of pho~ons  is removed from equilibrium, which 
premitted ~ h k l o v s k i i ~  to neglect a lso  the corrections to the 
vertex a t  o >> r. 

')We shall not linger on the derivation of ( lo) ,  since an ana- 
logous formula has  been obtained by Holstein lo for A, ' k)A,,t '(u - X I .  

4)All the considerations that follow pertain to the neighboring 
regions that belong to the excited par t  of the spectrum. 

5, The contribution of diagrams of this order  has F e n  consid- 
e red  in detail by Balagurov, Vaks, and ~hlovksii. '  

6, We note that an  equation s imi lar  to (12) was obtained ear l ier  
by Gurevich in the description of the growth of fluctuations 
in a semiconductor with acousto-electric instabi1ity.li 
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