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A numerical nonvariational method is proposed for the calculation of the wave functions and energies of 
bound states and of the wave functions of the continuous spectra of shallow acceptor impurities (SAI) in cubic 
semiconductors, with account taken of the terms linear in the parameter 6 that determines the nonsphericity 
of the equal-energy surfaces of the holes. The oscillator strengths of the spectral lines, the spectrum of the 
cross section of the photoeffect from the SAI, and the deformation-potential constants are calculated for a 
number of levels. The singularities of the SAI optical absorption spectrum in Ge are obtained and compared 
with the absorption spectrum of hydrogenlike atoms. A sum rule is obtained for the shallow-impurity optical- 
absorption cross section. Numerical calculations are performed for impurities of group 111 in Ge. 

PACS numbers: 78.50.Ge 

5 1. INTRODUCTION Here tip is the momentum operator, Pt2) is an irreduci- 

Although intensive research into the energy spectrum 
and other properties of shallow acceptor impurities 
(SAI) in cubic semiconductors has been going on for 
more than 25 years, interest in their study remains 
unabated. The reason is, f irst ,  that even in the ef- 
fective-mass approximation the equations for the wave 
functions and eigenvalues of the energy of thee impuri- 
ties comprise a complicated system of differential 
equations that cannot be solved analytically, while its 
numerical solutions must be obtained separately for 
each semiconductor. Second, with advances in the 
technology of obtaining ever purer semiconducting 
materials and with the development of new methods for 
their investigation (in particular, photoelectric spec- 
troscopy), the SAI spectra a re  being constantly refined, 
and a new set of problems ar ises  when it  comes to in- 
terpreting these spectra, especially in highly excited 
states. 

Following the formulation of the effective-mass equa- 
tions for the SAI,1'3 Schechter calculated the energies 
of the ground and f i rs t  excited levels of SAI in Ge by a 
standard variational method. He noted that the prob- 
lem becomes noticeably simpler if the terms having 
cubic symmetry a r e  neglected in the effectivemass 
Hamiltonian and only the spherically symmetrical term 
a re  retained. In this spherical approximation, the 
equations reduce to a system of two ordinary second- 
order differential equations for the radial functions. 5'6 

A similar system was obtained earlier by Mendelson 
and James from a variational principle, using trial 
functions in a form corresponding to the spherical 
approximation. Baldereschi and L i ~ a r i , ~ * '  using the 
technique of irreducible spherical tensor operators, 
represented the effective-mass Hamiltonian Ho for the 
SAI in a form most convenient for obtaining the spheri- 
cal approximation and of the corrections for it. In the 
case when the valence band I', split-off by the spin-orbit 
interaction can be disregarded (A >>I E I), 

ble spherical tensor operator of second rank, made up 
in the usual manner of the components of the symmetri- 
cal tensor p,p, - (1/3)~'6~,; J('' is analogously connec- 
ted with the matrices J of the angular momentum with 
J= 3/2. The parameters p = 2(2y2 + 3y,)/5y1, 6 = (7, 
- y2)/yl, yi  a re  the valence-band parameters introduced 
by Luttinger, and mo is the mass of the free electron. 
Tables of y,, p, and 6 in cubic semiconductors a re  
given in Refs. 8 and 9. 

The f i rs t  two terms of the expression for Ho have 
spherical symmetry, and the part proportional to 6 has 
cubic symmetry. In practically all  the cubic semi- 
conductors (with the exception of silicon) the parameter 
6 << 1 and perturbation theory based on smallness of the 
cubic-symmetry terms'in H, (Ref. 9) is effective 
enough. 

The variational method was used by now to calculate 
the energies of the ground and several excited levels 
for  a large number of values of p and 6, i. e . ,  for al- 
most all cubic semiconductors, and a number of opti- 
cal transitions from the ground states of SAI in Ge and 
Si have been reliably identified. There are,  how- 
ever, many problems whose solution calls not only for 
knowledge of the level energies, but also for knowledge 
of the corresponding wave functions with good accuracy. 
These include the calculation of the intensities of the 
spectral lines (which a re  needed, in particular, for a 
reliable interpretation of the spectra, especially for 
transitions between excited levels), the calculation of the 
deformation-potential constants (for discrete levels) a s  
well a s  of the Zeeman-effect parameters, the SAI po- 
larizabilities in the ground and excited states, and the 
calculation of the transition probabilities between SAI 
bound states with participation of phonons. l3 It is 
known that if the relative inaccuracy of the variationally 
determined eigenfunctions is of the order A (it depends 
on the choice of the tr ial  functions), then the inaccuracy 
of the obtained energy eigenvalues is -A'. The varia- 
tional method yields thus accurate enough values of the 
terms, but the accuracy of the wave functions is lower 
(and is quite indeterminate). We develop therefore in 
this paper, for the solution of some of the problems 
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listed above, a numerical but nonvariational method of cal- 
culating the SAI energies and wave functions, withaccount 
taken of the terms linear in 6 << 1 in the equations for the 
radial functions (see 8 2below). The accuracy of the results 
is limited only by the discarded higher powers of 6, and 
can therefore be estimated beforehand. 

The method developed allows us also to solve a number 
of problems connected with the continuous spectrum of 
the SAI (these problems had heretofore not been solved 
a t  all). These include the calculation of the cross sec- 
tion of the photoeffect from an impurity center, the 
cross sections of the non-Born scattering from an 
ionized impurity, and others. 

The direct cause for undertaking this work was a con- 
tradiction that arose in the determination of the transi- 
tion oscillator strengths and of the photoeffect cross 
sections from the known optical absorption spectra of 
group-III impurities in Ge.14 These quantities were 
needed for the solution of the following problem. It is 
known (see, e. g., the review of Kogan and Lifshitz15) 
that a t  photon energies hv lower than the impurity ioni- 
zation energy &i, a photoconductivity is observed con- 
nected with photothermal ionization of the impurity, 
i. e . ,  with i ts  optical excitation and subsequent thermal 
ionization on account of phonon absorption. The proba- 
bility I of thermal ionization of an impurity center in the 
excited state (the alternate process is the return to the 
ground state) is of interest not only for photoelectric 
spectroscopy, but also for the physics of cascaded 
carr ier  capture by an attracting impurity. The values 
of I for various states of an impurity center can be 
obtained by comparing the photoconductivity and optical- 
absorption spectra of this impurity,1° namely, i t  is 
necessary to find the ratio of the area under the line in 
the photoconductivity spectrum to the magnitude of the 
photoresponse at hv = ci, and then find the analogous 
ration in the optical absorption spectrum, and divide 
the f i rs t  ratio by the second. By comparing in this 
manner the photoconductivity spectra of ultrapure p-Ge 
with the SAI optical-absorption spectra obtained in 
Ref. 14, Sidorov17 obtained values of I larger than 1, 
thus casting doubts either on the correctness of the 
values of the oscillator strengths of the optical transi- 
tions and of the photoionization cross sections deter- 
mined from the spectra,14 o r  else on the photoconduc- 
tivity mechanism at  hv = ti. TO resolve this contra- 
diction if was necessary to calculate the oscillator 
strengths of the principal lines in the spectra of the SAI 
in Ge and the photoionization cross section on the red 
edge of the photoeffect. This is due in the present pa- 
per (§§5,6). 

52. METHOD OF CALCULATING THE BOUND 
STATE WAVE FUNCTIONS AND ENERGIES 

At 6 = 9, the effective-mass Hamiltonian of SAI in 
cubic semiconductors [see ( I ) ]  is spherically symmetri- 
cal. Therefore the total angular momentum is F = L + J 
where L is the orbital angular momentum and is con- 
served. The wave functions of a hole in the Coulomb 
field of an impurity can be represented in the form6e7 

where (LJFF,) a re  known function in the L-S coupling 
scheme, and F and F, a r e  the quantum numbers of the 
total angular momentum and of its projection. Given 
F 3 3/2, the orbital quantum number L (an integer) is 
equal either to F - 3/2 o r  to F - 1/2, depending on the 
parity of the state. At F =* Eq. (2) contains only one 
term with L = 2 (even state) o r  L = 1 (odd). If the en- 
ergy is measured in units of R, =moe4/2V2yl, where 
x is the dielectric constant, and the distances a r e  mea- 
sured in units of a=k?ny,/m,e2, then the equations for  
the radial functions take a t  F 2 3/2 the fonn5-6*8*9-18 
(V= - 2 4  

Allowance for the cubic-symmetry term in (1) in 
f i rs t  order in 6 has no effect whatever on the energies 
of the states with F < 5/2, but leads to a splitting of the 
levels with F > 5/2" In this approximation the wave 
functions that transform in accord with definite double 
valued representations I?,, r,, o r  of the T, group 
must be sought in the form9 

'4' F,, ( r )  = R L F ~  ( r )  @ (LFrn)  +Rr+a, rr ( r )  0 (L+2, Fl'n) , (4 

where r is one of the indicated representations, the 
index n labels the functions belonging to one represen- 
tation, and 

The matrix of the coefficients c ( F r F , )  can be easily 
found for each F and I?. 

When account is taken of the terms linear in 6, the 
equations for the radial functions differ from (3). The 
corrections to the differential operators acting on R, 
and R,,, a r e  conveniently represented in matrix form 

1 2  "/, "/,I 
Here L, and L2 take the values L and L + 2, the curly 
brackets contain a 9j-symbol, (L, 11 PC2' (1 L2) is a re -  
duced matrix element, and A,, is an eigenvalue of the 
system of equations for the-determination of c(FrnF,). 

The method used by us to solve Eqs. (3) for the radial 
functions (with the correctness linear in 6 taken into 
account) consists of finding the fundamental solutions 
of these equations in the form of power ser ies ,  and 
finiding a linear combination of these solutions that 
behaves correctly a s  r - m. A similar procedure was 
used in Ref. 7 to solve the system of equations obtained 
for the radial functions from the variational principle. 
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In general form, the idea of selecting a linear combina- 
tion of the fundamental solutions was set  forth also by 
Gel'mont and D'yakonov. 

We seek the f i rs t  fundamental solution in the form 

Substitution of (6) in (3) leads to the following recur- 
rence relations for the coefficients (for simplicity, we 
leave out here the terms proportional to 6): 

i-$' 
(IT- i+), p) (n-L)  (n+L+l)a.+2n.-,+Ea,,-~ 

It is seen that a t  n < L + 2 we have a, = b, = 0, while a,,, 
and b,,, a r e  connected by the equation 

The series in (6) thus begin with n =  L + 2. We put for 
the sake of argument a,,, = 1. 

We seek the second fundamental solution in the form 

where k is a constant. The recurrence relations for 
c,, and d,, are  of the form 

An analysis of the recurrence relations (which we shall 
not write down) shows that the lowest power of n is -L -1, 
a fact already accounted for in (13). 

It is known that for excited SAI states, especially 
states with L>O, the effective-mass approximation is 
valid with high accuracy. In this case (the ground state 
will be calculated below) the sought radial functions 
must be sought in the form of a linear superposition of 
the solutions (6) and (9), which do not diverge at r = O :  

R, ( r )  =C (gL+Mfdr RL+: ( r )  =C ( g ~ + z + M f ~ + t ) .  (14) 

Here C is the normalization constant, and M is a coef- 
ficient whose value, just a s  the eigenvalue of the energy 
E of the state, must be found from the conditions for the 
correct behavior of the radial functions a t  infinity. 

To analyze the asymptotic behavior of the radial func- 
tions i t  is convenient to change over from Eqs. (3) for 
R, and R,,, to equations for the functions 

where 

It follows therefore that c, = d, = 0 a t  n < L. Putting 
n=Lin( lO) ,  we find thatdL=O. A t n = L + l w e f i n d  
that d,,, and c, a r e  connected by the relation 

From Eqs. (10) with n =  L + 2, taking (8) and (11) into 
account, we obtain the connection between c, and 
ka,,, = k. Assuming for the sake of argument c, = 1 
(we recall that d, =O), we obtain an expression for the 
coefficient k: 

The equations for P,(r) and F,(r)  a re  of the form. 

The second equation is obtained from this one by in- 
terchanging F, and Fa a s  well a s  P, and P, . We note that 
a t  F = 3/2, and in the spherical approximation also a t  
F > 3 / 2 , w e h a ~ e A ~ ~ , ~ ~ = O , ~ ~ = P - ' , ~ ~  =-P,andexpres- 
sions (15) and equations (16) become much simpler. 

An asymptotic expansion of the solutions (16) a s  
r - can be easily obtained by usual methods (see, 
e.g. ,  Ref. 19). We write down only the first  terms of 
the corresponding series in r-': 

Both solutions, (6) and (9), a r e  finite a s  r -0. We In this expansion, A;,, a r e  coefficients, 

need also a third fundamental solution of (3), which 
diverges a s  r - 0: ah, l = [ - ~ ~ ( ~ - p h ,  I W )  I",  (1 7a) 

hL ( r )  = m,,rn+gL In r-kjL ( ln r )  '12, 
"--&-I 

(13) In the case of excited states of the discrete spectrum 

k + . ( r )  - 2 p.rn+pL+~ ln r-kfL+z (1.  r)'/2. (E <O) the constant M in (14) and the energy eigenvalue 
n--L-i E should be chosen such that A; =A; = 0, i. e., that the 
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wave functions behave properly as r - m. Thus, in con- 
trast to the solutions of the usual Schriidinger equation, 
which (at arbitrary energy E) contains one exponential 
that increases as r -- w, in the SAI problem the solu- 
tions of the equations for the radial functions contain, 
generally speaking, two increasing exponentials: a 
rapidly increasing "heavy-holew exp(1,~)  and a rela- 
tively slower "light-hole" exp(X r). The condition that 
the wave function decrease at infinity leads correspond- 
ingly to a determination not only of the discrete values 
of the energy, but also of the discretevalues of the coef- 
f icient M .  

We denote by A;,, A;,, and A:,, A:, the coefficients in 
the asymptotic expansions of the functions F,,, F,, and 
F,,, F,,, determined with the aid of ( 1 5 )  from the fun- 
damental solutions ( 6 )  and ( 9 )  of Eqs. (3), According to 
(141, 

I f  the energy E is close to a certain eigenvalue E,, 
and the coefficient M is close to the corresponding cor- 
rect value M,, then in the linear approximation in 6E 
= E - E,  and 6M = M - M ,  we have the coefficient 

A similar equation holds for A;(E).  

Assume that at a given E (generally speaking not 
coinciding with any eigenvalue E,) the coefficient M 
in (14) is chosen such that A;=O. We designate this 
value of M by M(E). However, at M = M ( E ) ,  generally 
speaking, A,+ # 0.  The latter goes through zero and 
reverses sign only when the energy coincides with the 
eigenvalue E,, and M = M (E,) = M,. 

We describe now the procedure for numerically cal- 
culating the wave functions and energies of the discrete 
excited levels. Using the fact that at r < l  the series in 
( 6 )  and ( 9 )  converge rapidly, it is necessary, after 
specfiying a dertain value of E,  to use these series to 
calculate f,, f,,, and g,, g,,,, as well as their first 
derivatives at a certain small but finite r = r ,  < 1. To  
attain the necessary accuracy it suffices to calculate 
only the first few terms of each of the series ( 6 )  and ( 9 ) .  
It is  next necessary to find with the aid of ( 1 5 )  the value 
of the functions Ffh, Ff , ,  F,,, and F,, and their first 
derivatives at r = Y,. Their linear combination [see (14 ) ]  
with a certain value of M is  the initial value in the nu- 
merical computer solution of Eqs. (16)  at Y >ro. At 
each given energy E the value of M ( E )  can be easily 
found, since it is  precisely at M = M ( E )  that the asymp- 
totic form F,(r) reverses sign. 

Assume that we vary E in certain steps, choosing 
M = M ( E )  each time, an let us track the sign of the 
asymptotic form F, (r ) .  When E goes through a certain 
value E,, the sign of F , (Y)  is  reversed. This value 
E =E,  is in fact the sought energy eigenvalue, and the 
functions F ,  and F, obtained thereby (meaning also R, 
and RL+,) are then the sought radial functions. 

At energies E close to the sought eigenvalue E, we 
can obtain the values of M(E) for any E ,  knowing only 

FIG. 1. Radial functions Ri and R3 of the first three states of 
type (m of SAI in Ge. The states are numberd in order 
of increasing energy: a) R1, b) R3. The radius r is in units of 
a= 108.5 A. 

M ( E )  for two values of E,  v i z . ,  M l = M ( E l )  and M ,  
=M(E,). Indeed, from ( 1 9 )  it follows that 

MzE,-MlE2+E (M,-ME) 
M ( E )  = 

El-Es 

The use of this relation simplifies the calculations 
greatly. 

By varying the energy in certain steps, we obtain 
successively its eigenvalues and the corresponding ra- 
dial functions for each value of F ,  r, and parity. 

The general form of the radial functions R, and 
R,,, can be established also without a numerical cal- 
culation. It follows from (6) ,  ( 9 ) ,  and (14) that near 
r = O  we have R, -rL and R,,, -r,+,. Therefore in the S 
states R,(O) # O  and R, has a node at zero. At L >O each 
radial function has a node at zero. It follows from (11)  
that near r = 0 the functions R, and R,,, are always of 
opposite sign. 2'  Since the asymptotic form of the cor- 
rect (decreasing at infinity) radial functions are deter- 
mined by the exponential exp(-A,?'), and the function 
F,(r) ,  according to (151, enters in R, and R,,, with 
opposute signs, the radial functions approach zero 
from opposite sides as r -- m i .  e . ,  they always are of 
opposite sign at large r. At each given combination of 
the quantum number F and the parity, the radial func- 
tions of the state with the lowest energy have sites only 
at r=O (see above). With increasing number of the 
state of given symmetry, the number of nodes of the 
radial functions increases in succession. Since R, and 
R,,, must have opposite signs as r - m ,  the number of 
nodes of R ,  and R,,, increases simultaneously. 

FIG. 2. Radial functions Ri and R3 of the first three states of 
type PSl2 (q) of SAI in Ge. The remaining notation is the same 
as in Fig. 1. 
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The method described was used in calculations for 
SAI in Ge(yl= 13.35, ~ = 0 . 7 6 6 ,  6 = O .  108). The ob- 
tained radial functions of several of the excited states 
a r e  shown in Figs. 1-3, and the corresponding level 
energies a r e  given in Table I. We note that in all 
cases the obtained energies a r e  lower than those of 
the same levels calculated in the same approximation 
by the 6-variational methods (the states 3P3 and 
3P,,,(r;) were calculated for the f i rs t  time ever). 

It is known that the accuracy of the effective-mass 
approximation decreases near that crystal cell in which 
the impurity center is located. This inaccuracy is es- 
pecially substantial for the ground state and causes i ts  
energy to deviate from the value obtained in the effec- 
tive-mass approximation. This correction to the level 
energy can be called the central-cell correction (CCC). 
Although the central cell influences noticeably the energy 
of the ground level, the behavior of the wave function in 
this region has little effect on i ts  normalization and all  
the more on the dipole-moment matrix elements 
calculated by us (see below), since their integrands con- 
tain an additional power of the radius r. For  our pur- 
poses i t  suffices to obtain the wave function outside the 
central cell, where the effective-mass approximation is 
valid, but i t  is necessary to specify the experimental 
values of the energy E(lT",) of the ground level, i ,  e,  
to take the CCC into account (a similar calculation for 
donors in Si was performed in Ref. 21). This not only 
leads to a more accurate form of the ground-state wave 
function, but also allows us  to track the variation of the 
different properties in an SAI sequence in one and the 
same semiconductor. 

Allowance for the cubic-symmetry terms in Ho would 
lead to corrections of the order of 6'1 ~ ( l r ; ) (  to 
E(lr;) .  The CCC are  usually larger, therefore al- 
lowance for the CCC within the framework of the 
spherical approximation is justified. 

So long a s  we a r e  seeking solutions outside the region 
r = 0 ,  i t  is necessary to include in the sought linear 
combination of the fundamental solutions also the solu- 
tion (13), which behaves for the ground state (L = 0) 
like r-l a s  Y - 0; 

The coefficients M and N a r e  determined from two con- 
ditions that the functions decrease a t  infinity: A;=A; 

FIG. 3. The radial functions Ri and Rs of the first three states 
of Wpe P5/*(ra  of SAI in Ge. The remaining notation is the 
same ae in Fig. 1. 

TABLE I. Energies of excited states (in units of R,  = m0e4/2h2 
x2y = 4.35 meV) and oscillator strengths of optical transitions 
(in units of 10-9 from the ground state Ira and from the excit- 
ed state 2 q  for shallow acceptor impurities in Ge. 

= O  (the value of the energy E ,  on the other hand, is 
taken from experiment). The procedure of determining 
M and N is similar to the procedure described above 
for finding M and E of the excited states, but is much 
simpler, since the dependence of the sought solution 
on M and N is explicit and linear (in contrast to the de- 
pendence on E). In particular, a formula similar to 
(20), with E replaced by N, is valid for all N (and not 
only near the "eigenvalue" No). 

states 

Figure 4 shows the radial functions Ro and R, a t  
Y>O. 1 for the ground states lc of B, Al, and Ga 
impurities in Ge (the energies of the ground levels 
were taken from Ref. 10). 

Once the wave functions a re  known, i t  is easy to find 
for each level the deformation potentials that describe 
the change of the spectrum due to uniaxial strains. The 
expression for the splitting of the SAI level r,, a s  is 
well known,22 differs from the expression for the split- 
ting of the edge of the valence band only in that the de- 
formation potentials a r e  different: b' replaces b and d' 
replacesd. A simple analysis shows that in the approxi- 
mation employed by us  we have for all levels of the type 
s3 12(r;) 

FIG. 4. Radial functions Ro and R2 of the ground- state 
(I?;) of group111 impurities in Ge and of the excited state 
(GI. 1) B, 2) Al, 3) Ga, 4) state 2Ss12 (4) : ah &o, b) &. 
Inset-initial sections of Ro of ground levels. The radius r is 
in units of 108.5 A. 

-'" 
a w t h l  
f0ltl.M- 
tmnafrom 
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Oscillator strengths for trandtmns from 16. 

B 1 -41 j Ga 
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For  the ground levels of B, Al, and Ga in Ge, the ra- 
tios (22)  a r e  equal respectively to  0 . 5 5 1 ,  0 . 5 4 8 ,  and 
0 . 5 4 6 ,  i. e . ,  they decrease slightly with increasing 
depth of the ground level. For  the 2S3/ , (Pe)  state we 
have b ' / b = d l / d = O .  645. 

The ratios b l / b  and d l / d  for the ground level of SAI 
in Ge were found earlier 23 using Schechter's varia- 
tional functions4 b'/b =O. 56 and d t / d =  0 . 6 1 .  The au- 
thors of Ref. 23 note, however, that i t  was difficult to 
assess  the calculation accuracy since the accuracies of 
the employed variational functions were unknown. 

The constants b' and d' for the ground level of SAI in 
Ge were measured in Ref. 24 and found to be b' = - 1 . 4  
eV and d'= -2 .5  eV. Using the experimental values of 
the band constants in Ge ( b  = - 2 . 2 1  * 0 . 1 3  eV and 
d = - 4 . 4 * 0 . 3  eV, Ref. 25) and the ratios obtained by 
us,  we obtain for  the ground levels of the SAI in Ge 
the values b l = - l . 2 2 k 0 . 0 7  eV and d l = - 2 . 4 2 + 0 . 1 7  eV. 
It is seen that the value of d' is close to the experimen- 
tal one, while 6' is somewhat less in absolute magnitude. 

For  the P3,,(I';) levels we have b l / b  = d'/d = - 1 / 3 ,  
and for  P, , , ( r ; )  

Calculation using the real  functions determined by us 
yields for l P , l , ( r ; )  the ratio b l / b  = -0 .185 .  

The constant b' for the 2P, , , ( r ; )  level of the SAI in 
Ge was measured by Gershenzon, Gol'tsman, and 
KaganaZe: b' = 0 . 4 5  +C 0 . 0 5  eV. This agrees with the 
calculated b' = - b / 5  = 0 . 4 4  * 0 . 0 3  eV. 

We note that a small uniaxial strain does not shift 
the r, levels. 

93. CONTINUUM STATES 

We normalize the functions of the continuous spec- 
trum, a s  usual, to 6(E - E l ) .  Then 

j d r [ ~ . . ( E ' ,  r )Fh(E ,  r ) +  Fl ' (Er ,  r )  F, ( E ,  r )  ]= 6 ( E - E r ) .  (24)  

The normalization of the continuous-spectrum func- 
tions is determined by their asymptotic behavior. From 
an analysis of Eqs. (16)  i t  follows that a s  r -- m 

Fb=Ah ( E )  sin [khr+ah In 2khr+6,,(E) 1, 

Ft=At(E)  sin [klr+al In 2klr+6, ( E )  1, (25)  

where k,, ,  are  given by Eq. (17a)  for X,,,, in which -E 
must be replaced by E ;  6 , , ,  a r e  the phase shifts. 

For  any value E>O we can find two linearly indepen- 
dent solutions ( 6 )  and ( 9 )  for R,  and R,,,, which a re  
regular a t  zero. According to (15) ,  they correspond 
to two solutions of Eqs. (16):  F,, F,,  and F,, F,, .  
Their asymptotic form is given by (25)  with the corre- 
sponding aplitudes (A,, A, ,  and A,, A, , )  and phase 
shifts (6,,,, 6 , f  and 6,, 6,,) of the sinusoids. These so- 
lutions, generally speaking a r e  not orthogonal to one 
another. We obtain now their orthogonal linear combi- 
nations (the index i takes two values): 

The orthonormalization condition (24)  takes the form 
( E  >O) 

There is of course a certain leeway in the choice of 
the values of M ,  for each given energy. We can put, for 
example, M ,  = -M, = M .  Then 

Thus, for each value E  >O there a r e  two linearly in- 
dependent solutions of the system (16) ,  given by expres- 
sions (26) ,  (28) ,  and (29) ,  and accordingly two ortho- 
normalized solutions for R,  and R,,,. In the numerical 
calculation it is  necessary first  touse formulas (16) - (12)  
to obtain the solutions f,, f,,, and g,, g,,, and their 
f i rs t  derivatives a t  r,, < < l .  With the aid of (15)  we cal- 
culate the corresponding functions F ,  and f ,  a t  r = 0 ,  
which a r e  then used a s  the initial conditions in the nu- 
merical computer solution of ( 1 6 )  in the region r >yo.  
With the aid of the obtained amplitudes and phase shifts 
of the asymptotic sinusoids we get from ( 2 6 )  and (27)  
the parameters of the orthonormalized solutions of the 
system ( 3 ) .  

Just  a s  in the problem of the hydrogen atom, the so- 
lution of the equations for the wave functions a t  E  = O  
calls for a separate analysis, since the asymptotic 
form (25)  is valid only a t  >> 1. We make the fol- 
lowing substitutions. 

By substituting (30)  in ( 1 6 )  we obtain the equations for 
U,and U , .  A t E = O w e  have 

U - 2 ~ ( L + 2 )  (Lt-3)  f 3(u-V)  ]+$hZ w ( U 2 f  14L+3)- w ( ~ L ' +  1 0 ~ - 3 ) ) - I =  0 .  
x2 

(31)  

The second equation is obtained from the above by in- 
terchanging U ,  and U , ,  a s  well a s  P ,  and @,. The 
asymptotic form of the solutions ( 3 1 )  is 

Uh. sin[(u-ph, , ~ ) - ' ~ z + A h ,  I-ah. a h .  1 -1)  I. (32)  

The asymptotic form of the solutions of ( 1 6 )  a t  k , r  >> 1  
[see (25) ]  and the asymptotic forms of the correspond- 
ing solutions (31)  a t  r >> 1- [see ( 3 2 ) ]  a r e  interconnected. 
As E - 0  we have 

To calculate the wave functions at E  = 0  it i s  necessary 
to use formulas (6 ) - (12) ,  (15) ,  and (30)  to obtain the 
functions U,, U I f ,  U,, and U,, and their derivatives a t  
r = r, << 1, and to solve Eqs. (31)  numerically with a 
computer a t  r >yo .  The obtained functions, amplitudes, 
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and phase shifts of the asymp@ticsinusoids a r e  used 
[with the aid of (28), (29), and (32)] to construct two 
orthonormalized solutions of the system a t  E = 0. 

94. SUM RULE FOR THE OPTICAL ABSORPTION 
CROSS SECTION OF A SH,ALLOW IMPURITY 

If the known conditions for the applicability of the 
effective-mass approximation a r e  satisfied, the motion 
of the conduction electron o r  hole not only in a static 
field but also in a high-frequency field is determined 
by the smooth (macroscopic) part of this field. This 
makes it possible to express the probability (per unit 
time) the transition of a ca r r i e r  in a shallow impurity 
from one stationary state to another, under the influ- 
ence of the radiation, in terms of the matrix elements 
of the dipole moment on the smooth effective-mass 
functions. An elementary calculation shows that the 
cross section for impurity absorption, neglecting the 
line broadening, is 

4n2e2a 
u ( a ) = - z  w,I (er), ,I2{6(E,-Em-ha)- 6(E,-E,+ho)} .  (33) 

ex 
m.- 

Here w is the cyclic frequency of the radiation, e is  the 
unit vector of the radiation polarization, the subscripts 
m and n number the quantum states of the impurity 
center, and w, is the probability of the stay of the 
impurity center in the state m. 

Let us integrate (33) with respect to the photon en- 
ergy. Since u(w) becomes negligible already a t  ener- 
gies that exceed the ionization energy E, of the shallow 
impurity by only a few times (and c, <<E,), the upper 
limit of the integral can be set equal to infinity. After 
the usual transformationsz7 we obtain 

The angle brackets denote here averaging over states 
with probabilities w,. 

The effective-mass Hamiltonian i=i, + V, where 
V(r) i s  the potential-energy operator and is in the 
absence of a magnetic field a quadratic form of the com- 
ponents of the momentum operator Ep. Since the dipole- 
moment operator commutes with V(r) and with the spin 
operators, expression (34) reduces to 

where H,(e) is the operator &, in which p was replaced 
bye.  

In cubic semiconductors a substitutional impurity 
has the symmetry T,, therefore the optical-absorption 
cross section in the absence of external fields should 
be isotropic and independent of the polarization e. This 
means that only the spherically symmetrical part of 
H,(e) contributes in fact to the sum rule (35). 

If the shallow impurity is an acceptor, then H, is in 
the general case a 6 x 6  matrix (see, e.g., Ref. 22). 
A simple calculation yields 

2n'he'yt - I.CJ$).10-14 $ e~ .cm-'2, j d h a  = - - 
mocxl" 

0 

The sum rule is thus determined by only one parameter 
y ,  of the valence band. The remaining ones (y,, y,, and 
A) influence only the distribution of the absorption over 
the spectrum. 

The sum rule (35) can be applied not only to shallow 
acceptors and donors, but also to absorption in the 
fa r  infrared band of exciton and of exciton-impurity 
complexes. It can be used to monitor the measure- 
ments of the absolute values of impurity-absorption 
cross  sections. 

95. INTENSITIES OF DISCRETE SPECTRUM LINES 

We define now the oscillator strength of each line in 
the impurity spectrum a s  the fraction of this line in the 
total integral (36) of the absorption cross  section: 

Here a and b a re  the initial and final levels of the opti- 
cal transition, Ea and Eb a re  the corresponding ener- 
gies, and g, and gb a r e  the degeneracy multiplicities 
of these levels. The summation is over all the states 
of the initial and final multiplets. 

In the approximation in which the cubic-symmetry 
terms in H, a re  taken into account in the approximation 
linear in 6 ,  the SAI wave functions take the form (4). 
Each level is characterized by the number of the repre - 
sentation I" of the group T,, and by the quantum number 
F (as well a s  by the parity). The matrix elements e r  
on the functions (4) a re  expressed in terms of the ma- 
tr ix elements on the functions (2), and they can be ex- 
pressed with the aid of the Wigner-Eckart theorem in 
terms of the irreducible matrix elements of the coordi- 
nate ( F  I lx UP). If the energy is measured in units of 
Ra and the lengths in units of a (§2), then the f i rs t  coef- 
ficient of (37) vanishes. Expressions (37) take the 
form 

x ( F' ) c' (rFrnFz) c (rFrnFzr) c ( I " F ' m m ~ P ) c ~ ( ~ ~ F ' m m ~ ~ ) .  
4,' 0 F,' 

(38) 
In this equation 

(FllrllP.)= ( - I ) v ~ + r ' + L [  ( W + I )  (2Ft+I)  1% {( L F 
F ' L '  i } ( L I I ~ I I U )  

and 3j- and 6j-symbols a r e  used. 

For  transitions from even states with F = 3/2 (in par- 
ticular, from the ground level), expression (38) takes 
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the simpler form 

and the second term in the curly brackets of (39) 
vanishes. The sum in (40) is equal to 1/3 a t  F' c 3/2, 
to 2/9 for transitions into the states r;(F = 5/2), and to 
1/9 for transitions into the states r;(F= 5/2). 

The oscillator strengths for a l l  the noticeable transi- 
tions from the ground state IT", and from the excited 
state 2 c  in group-III impurities in Ge were obtained by 
using the radial functions calculated by the method de- 
scribed in 82. The results a re  given in Table I. It is 
seen that in agreement with all the experiments two in- 
tense lines dominate in the spectra of the SAI in Ge, 
namely D [transition 1 r; -1 r i (P ,  /,)I and C [transitions 
into lr;(P,I,) and 2r;(P3/,)]. The oscillator strengths 
in them a r e  weak, however. This distinguishes the SAI 
in Ge from the hydrogenlike atoms, in whose spectra 
the most intense line L, accounts for 0 . 4 1 6  of the en- 
t ire absorption in the discrete and in the continuous 
spectra. It is also of interest that the oscillator 
strengths in states of definite symmetry (e. g. , P,,,), 
vary nonrnonontonically with the number of the state 
(see Table I). 

No monontonic dependence of the oscillator strengths 
on the depth of the ground level of the SAI is observed; 
this can be seen also from the experimental data. l4 As 
for the absolute value of the "chemical effect," the in- 
tensities of the lines G and I ,  change greatly on going 
from one group-111 impurity to another, but the lines 
themselves a r e  weak. On the other hand, in the in- 
tense lines D, C ,  and B the chemical effect is small 
and does not exceed several percent. In particular, 
the fact that the ratio of the intensities of lines C and 
D in the spectrum of boron is larger than in the spec- 
trum of aluminum can be seen in experiment.14 

$6. SPECTRUM OF PHOTOEFFECT FROM SHALLOW 
ACCEPTOR IMPURITY 

It follows from (33) and (39) that a t  6 << 1 the cross 
section for the photoionization of the SAI from the 
ground state is equal to 

, ( , ) = b i a z ~  w(rlF'i; ha). ha>ac=IE(Ir.+) I .  
3hcx" r,,,. 

Here RO and R2 are  the radial function of the initial 
state, $7 r') and R ~ T  "' a r e  the orthonormalized radial 
functions of the states of the continuous spectrum 
(i = 1 and 2, see 03) with energy E = tie - I ~ ( l  r ~ , )  I ; 
a ( + ,  r s ) = a ( 3 / 2 ,  r , )=  I ,  a(5/2, r , )=2 /3 ,  a(5/2,  r , ) =  1/3. 

To solve certain problems (for example, photoconduc- 
tivity), we must know the probabilities of the generation 
of light and heavy holes, i.e., know the partial cross 

TABLE 11. Cross sections of the photoeffect from the ground state 
of a group111 impurity in Ge. Energy E = ti* Ei in units of R, 
= 4.25 meV, cross sections-in units of 10''~ cm2. The partial 

, cross sections a,, and a, are given for the boron impurity. 

sections of the photoeffect with production of a light 
(a,) and heavy (a,) hole. An analysis based on the non- 
stationary perturbation theory leads to the following 
result: 

Here v, and v, a re  the velocities of the heavy and light 
holes, AiroF') and a r e  the amplitudes of the radial 
functions Fhi and F z i  [see (25) and (26)]. 

The cross sections of the photoeffect of the SAI in Ge 
were calculated using wave functions obtained by the 
methods of 8 8  2 and 3. The cross sections for a num- 
ber of photon energies in three group-111 impurities a re  
given in Table 11, and for the boron impurity also in 
Fig. 5. The accuracy of the results is limited by the 
approximation linear in 6 used to calculate the wave 
functions. The expected e r r o r  is therefore of the or- 
de r  of or  less  than - 10%. 

The photoeffect cross  section o(ci) near the red edge 
varies nonmonotonically, going through a minimum and 
a maximum. The formal cause is that the matrix ele- 
ment of the dipole moment of the transition in (41) is a 
sum of integrals with different signs. The decrease of 
a(w) past the maximum is relatively slow, so that the 
greater part of the total absorption (36) falls in the 
continuous spectrum. These features of the SAI photo- 
effect spectrum set i t  in strong contrast to'the spec- 
trum of the photoeffect of hydrogen atoms: in the latter 
o(w) decreases monotonically and much more rapidly 
with increasing photon energy (see Fig. 5). 

FIG. 5. Cross section of photoeffect of boron impurity in Ge: 
black circles connected by dashed curve 1-present calculation, 
curve 2-experimenti4; curve 3-photoconductivity spectrum 
of Ge:Ga (Ref. 29) (see the text). Curve 4 photoionization cross 
section that would be possessed by a hydrogenlike impurity 
with the same ionization energy as  the SAI in Ge, in a crystal 
with we same value of x .  The energy E = Ed-Ei i s  in units 
of R, = 4.35 meV. 
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The optical-absorption line spectra and the initial 
sections of the continuous spectra of group-IlI impuri- 
ties in Ge were measured by Jones and Fisher. l4 Their 
measured cross sections o(t,) on the red edge of the 
photoeffect are  1.0, 1.9, and 0.87 (in units of 10'14 
cm2) for B, Al, and Ga, respectively. It is seen that 
our values of a(&,) differ significantly from the experi- 
mental ones and display furthermore a much smaller 
"chemical effect. " The present calculation has shown 
that in the case of the SAI in Ge there a re  no reasons 
for the onset of s o  strong a "chemical effect9* in u(w) a s  
observed in Ref. 14. 

The photoionization spectrum of the boron impurity, 
observed in Ref. 14, shows a monotonicity of o(w) 
of exactly the same type a s  in our calculation (Fig. 5). 

Figure 5 shows also the spectrum of the impurity 
photoconductivity of SAI in Ge a t  h >&, . This spectrum 
was chosen (see Refs. 28-30) to have a t  tiw >ci the same 
form a s  the photoeffect cross-section spectrum at  suf- 
ficiently high crystal temperatures, strong electric 
fields, and low densities of the compensating impurity, 
when the effects of incomplete thermalization of the 
photocarriers a r e  negligible. The experimental spec- 
trum is matched to the theoretical one a t  E = 1. 

The cross sections o, and o, near the red edge of the 
photoeffect a re  of the same order, while at higher pho- 
ton energies, a s  expected, only light holes a re  gene- 
rated in the main (see Table 11). 

As indicated in the Introduction, to determine the 
probabilities of the thermal ionization of the impurity 
centers over the spectrum of the impurity photocon- 
ductivity a t  values Ew > E, i t  is necessary to know the 
ratio of the area  under the lines in the spectrum of the 
optical-absorption cross  section to the photoeffect 
cross section a(&,). According to the data of Tables I 
and 11 and formula (36), this ratio for the D line in the 
spectrum of the boron impurity in Ge is 0.32 meV. 
According to the spectra given in Ref. 14, this ratio 
is -0.07 meV. The reasons forthis strong discrepancy 
are  not clear. 

If we use the measuredx7 spectra of the photoconduc- 
tivity of Ge with B impurity (N, - N," 10" ~ m ' ~ )  and 
take the oscillator strengths and the cross sections 
u(c i )  used above (rather than from Ref. 14), then the 
probabilities of thermal ionization a t  temperatures 
T = 5, 6, and 7 K,  for the states into which the transi- 
tions from the ground state corresponds to the lines D 
and C, turn out to be respectively I, = 0.054, 0.12, and 
0.25 and I, = O .  17, 0.36, and 0.55. It is seen that the 
obtained probabilities a r e  less than 1, in contrast to the 
values obtained when the experimental data on ab- 
sorption14 a re  used (see the Introduction). 

The parameters /.i = 0.767 and 6 = 0.114 of the valence 
band of GaAs a re  very close to the corresponding para- 
meters of Ge. It follows therefore that the dimension- 
less energy levels and wave functions of the excited 
states of SAI in GaAs (energy unit R,, length unit a) 
a re  very close to the corresponding values (calculated 
above, see Table I) in SAI in Ge, and i t  need be mfrely 
kept inmindthat GaAs hasR, = 11.3 meVanda = 50.8A. 
The ground level of the SAI Zn in GaAs (c, = 31 meV 

= 2.74 R,) is somewhat deeper than, say, the Ga level 
in Ge (&, = 2. 60Ra). Therefore the dimensionless wave 
functions of the ground state and the oscillator strengths 
of the optical transitions from the ground level should 
differ somewhat from the corresponding values calcu- 
lated for grouping 111 impurities in Ge. The difference 
between the dimensionless Ei, however, is s o  small that 
the main spectrum regularities obtained for the SAI in 
Ge should hold also in the case of the SAI in GaAs. 

The authors thank B. L. Gel'mont, N. I. D'yakonov, 
and V. I. Perel'  for a valuable discussion of the work. 

')We note that an incorrect value of the correction to the coef- 
ficient of RL+ 2 for the case is given in Ref. 9 E = 5/2 and 
r= q: 34/115 should be changed to 34/175. 

') Attention should be called to the fact that the functions RL+2 
are given in Refs. 8 and 9 with incorrect sign. 
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