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In the small-angle case of classical scattering of high-energy particles or high-energy waves by a nonspherical 
scatterer, the mapping of the impact-parameter plane on the momentum-transfer plane is conformal, provided 
only that the scatterer is harmonic (the potential energy satisfies the Laplace equation). This makes it possible 
to use complex variables in both planes, thereby greatly simplifying the calculations. The rainbow lines (the 
singularities of the differential cross section) degenerate in this case into focal points. As a result, steplike 
singularities are preserved in the cross section after averaging over the orientations, and they can be observed 
in the scattering of protons by molecules or by the crystal surface. The extremal properties of conformal 
mapping lead to rigorous inequalities for the effective cross section for scattering by a system of Coulomb 
centers at small and relatively large momentum transfers. The approximation is applicable also to the problem 
of scattering of a charged particle by a magnetic scatterer, and can thus be used not only in atomic and 
nuclear problems, but also in electron optics. 

PACS numbers: 03.80. + r, 34.10. + x 

1. INTRODUCTION Harmonic potentials other than the Coulomb potential 

Small-angle scattering plays an important role, from 
both the experimental and theoretical viewpoints, in 
such problems a s  scattering of particles by atoms, 
molecules, o r  nuclei, a s  well a s  in electron optics, in 
classical scattering of acoustic and electromagnetic 
waves, and others. On the one hand, the theory be- 
comes greatly simplified and yields the scattering 
characteristics in the form of integrals. On the other 
hand, the intensity of scattering of fast particles de- 
creases rapidly with increasing scattering angle, so 
that large-angle scattering is frequently difficult to ob- 
serve. In classical scattering, a l l  the trajectories a r e  
almost rectilinear inside the scatterer and we obtain 
directly the well-known result1 that the product of the 
scattering angle by the incident-particle energy i s  a 
function only of the impact parameter, so that the 
number of parameters that characterize the scattering 
is decreased. In the wave approach, small-angle scat- 
tering corresponds to the eikonal approximation,2'3 an 
important feature of which is that the unitarity relation 
is satisfied within the framework of this approximation, 
so  that the characteristic and important features of the 
initial problems a r e  preserved (in contrast from a 
rougher approach such as,  e. g., the Born approxima- 
tion). 

The purpose of the present article i s  to point out 
that in the case of a large class of harmonic scatterers, 
when the potential energy satisfies the Laplace equa- 
tion, small-angle scattering is closely related to con- 
formal mapping on a plane. This makes i t  possible to 
introduce complex variables on the impact-parameter 
plane and on the momentum-transfer plane, after which 
all the calculations become exceedingly simple. Be- 
sides the simplification of the calculations for harmonic 
scatterers, i t  is possible to formulate certain rigorous 
theorems that permit estimates of classical scattering 
a t  small and large momentum transfers, as well as to 
elucidate the nature of the singularities in the classical 
differential effective cross  section. It turns out, in 
particular, that rainbow lines a re  impossible for har- 
monic scatterers, and only focal points exist. 

have no spherical symmetry. The real that 
can be treated by this method a r e  the scattering of 
charged particles (e. g., protons) by molecules o r  non- 
spherical nuclei, when the particle does not penetrate 
into the molecule o r  nucleus during the scattering and 
is deflected in this case by a small angle. The time of 
flight must be short compared with the time of rotation 
of the scatterer, so that i t s  rotation during the collision 
time can be neglected. In addition, the collision should 
be elastic o r  almost elastic. 

Owing to the presence of focal points, the singulari- 
t ies  of the differential cross section do not vanish af- 
t e r  averaging over the scatterer orientations, so  that 
the cross section is steplike, in analogy with the at- 
mospheric-halo effect in scattering of light by ice crys- 
tals. 

Complex variables can be used also in the analysis 
of the momentum transferred to the scatterer. Here, 
too, the rainbow lines a r e  replaced by focal points, 
and this can lead to experimentally observable effects 
when rotational states of the molecule a r e  excited. In 
the scattering of ions by a crystal surface it is possible 
to single out those scattered particles that collide with 
only two crystal atoms. The results obtained in this 
case allow us to predict the conditions for grazing 
scattering, when the reflection coefficient for double 
scattering is greatly increased a s  a result of focusing. 

The problem of small-angle scattering by an arbi- 
t rary  combination of electric and magnetic field can 
also be solved by this method i f  the trajectory does not 
pass through a region where field sources (charges and 
currents) a r e  located. 

For  the simplest harmonic potential (a single (201.1- 
lomb center) the scattering is conformal for arbitrary 
angles (not only small ones) and is connected with 
stereographic projection. 

The introduction of complex variables uncovers new 
possibilities in various generalizations of the problem 
of scattering by a harmonic potential, and in particular 
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for inelastic scattering and for elastic scattering in the 
eikonal approximation. 

2. CLASSICAL HARMONIC SCATTERING. BASIC 
FORMULAS 

We consider the scattering of particles moving along 
the z axis with momentum po by a force center with 
potential ~ b ,  y, z). We set the particle mass equal to 
unity. Then, assuming that the transverse momentum 
transfer p~(p,, P ~ )  is small compared with po, we obtain 

+- +- 
p1=- J v I U d t = - ~ O - i v I V ( z ,  y ) .  V ( z ,  y ) =  j U ( z ,  y ,z )dz .  (1) 

-* -- 
We introduce the impact-parameter plane b h ,  y) .  Then 
the classical small-angle classical can be regarded a s  
a local single-valued mapping of the impact-parameter 
plane on the momentum-transfer plane. The inverse 
mapping is not a s  a rule unique, since cases in which 
several values of the impact parameter b(x, y) cor- 
respond to the same momentum transfer a r e  perfectly 
possible, so that the p~ plane is covered several times, 
and certain values of the momentum transfer may not 
be reached a t  a l l  regardless of the value of b, i. e . ,  
there can exist regions of pi that a r e  not covered at  all. 

The differential effective cross  section is defined a s  
the Jacobian of the transformation 

where the summation is over a l l  the values of the mul- 
tiply valued function b(p~)  (it can be "zero-valued" for 
certain p ~ ) .  In other words, the effective cross sec- 
tion is defined a s  the ratio of the a rea  elements on the 
plane b and the plane p ~ .  

In the general case, a round area element on the b 
plane is mapped into an elliptic area  on the p~ plane. 
The lines along which the minor semi-axis of this el- 
lipse vanishes a r e  called rainbow lines. All the par- 
ticles that pass through this area  a r e  mapped on an 
area of higher order of smallness on the momentum- 
transfer plane, and conseque~tly the effective cross 
section becomes infinite alongthese lines. The rainbow 
lines a re  demarcation lines, on the pl plane, between re-  
gions havingdifferent covering multiplicities. At least one 
of the values of the Jacobian a ( x ,  j ) /a  (p,, p,) becomes infin- 
ite on these lines. The mapping of the rainbow lines on the 
impact-parameter plane is defined by the equation 
a(p,, p,)/ab, y )  = 0. For a spherically symmetrical 
potential the scattering is axisymmetric and the rain- 
bow lines a r e  circles on the impact-parameter plane 
and on the momentum-transfer plane with a center at 
the origin, and a r e  defined by the equation dpddb = 0. 

We assume further that the potential U(x,  y, z) and 
hence the potential V(x, y) satisfy respectively the 
three-dimensional and two-dimensional Laplace equa- 
tions. The field sources can be point charges, point 
multipoles, o r  any spatial charge distribution. We 
shall show that for such (harmonic) scatterers the 
rainbow lines degenerate into points that can be named 
focal points. In fact, the Jacobian of the transforma- 
tion 

reduces to the so-called Hess determinant, and when 
account is taken of the Laplace equation the rainbow 
condition (the vanishing of the Jacobian) takes the form 

Instead of one condition that defines the rainbow line on 
a plane, we obtain thus two conditions that define in the 
general case only points on the impact-parameter plane 
and on the momentum-transfer plane (focal points). 

It follows from (1) that the momentum transfer is 
proportional to the field intensity, so  that if V satisfies 
the Laplace equation in the two-dimensional electro- 
static problem, the mapping from b to pL is  conformal. 
This leads directly to the impossibility of obtaining 
rainbow lines, inasmuch a s  in the vicinity of such a 
line the mapping is essentially not conformal and small 
circles on the b plane a r e  mapped a s  ellipses with 
vanishingly small semiaxes on the p~ plane, which is 
perpendicular to the rainbow line. 

It is most natural to describe planar conformal map- 
ping with the aid of complex variables. We introduce 
for this purpose a complex impact parameter and a 
complex momentum transfer 

a s  well a s  a complex potential V(h). We then obtain the 
following formulas for the momentum transfer, the 
focal points, and the effective cross  section 

where the summation is over all  the values of the mul- 
tiply valued function db/dp. 

We consider a system of N point charges q, located 
a t  the points rj(xj, y,, 2,) ( j  = 1,2, . . . , N ) .  The dis- 
position of the charges along the z axis (the values of 
2,) is of no importance in the calculation of the mo- 
mentum transfer, and affects only the region in which 
the approximation is valid. We obtain 

qo/2 is the charge of the incident particle. 

It is easily seen that the multiplicity of the mapping 
of the b plane on the f~ plane is equal in this case to the 
number of N of the charges. Indeed, a t  sufficiently 
large momentum transfers we can find in the vicinity 
of each charge (at b z  b,) one point each corresponding 
to a given momentum. Since there a r e  no rainbow 
lines, the multiplicity of the mapping is the same on 
the entire plane, and by the same token our statement 
is proved. 

The focal points on the b plane a r e  the roots of the 
equation 
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After reducing to a common denominator, we obtain an 
equation of degree 2N - 2, which has according to the 
Gauss theorem 2N - 2 solutions g, @, . . . , b$~-2. Some 
of these can coalesce o r  go off to infinity. To these 
points there correspond on the p plane 2N- 2 focal 
momenta d ,  . . . , dN-2, a t  which the effective cross  
section is singular. In the vicinity of these points we 
have ( p -d)* -(b - bfl2, and consequently, a circuit 
around the point bf on the b plane corresponds to two 
circuits around pf on the p plane. In other words, the 
points pf a re  double-valued branch points of the multiply 
valued function b( P) . 

The effective cross  section 

has a simple pole a t  each simple focal point. When n 
points coalesce, we obtain (p - pf)* - (b  - bf)"+'; we 
have an (n + 1)-valued branch point and 

i. e . ,  the singularity becomes stronger and tends to 
u W  lp-pf a s  n-OW. 

From the point of view of the electrostatic analogy, 
the electrostatic field is uniform in the vicinity of the 
focal points, the quadratic t e rms  vanish f rom the ser ies  
expansion of the potential, and the curvatures of the 
field lines and of the equipotential lines vanish. By 
the same token, all  particles that land in the vicinity 
of this point acquire equal momentum transfers, and i t  
is this which leads to the singularity of the cross sec- 
tion. 

3. EXAMPLES 

We consider f i rs t  scattering by pointlike 2"-pole. 
Then 

where Q, i s  a complex number that characterizes the 
orientation of the two-dimensional multipole. Qo (point 
charge) is a real  number a t  n = 0. It is obvious that 
the mapping of the b plane on p has a multiplicity n + 1. 
For the effective cross  section we obtain 

In particular, for scattering by a point charge and a 
point dipole (n = 0 o r  1) we obtain 

The first  equation in (5) is the Rutherford formula. It 
is interesting that in the classical approximation the 
differential cross section for scattering by a multipole 
is axisymmetric even though the potential has no axial 
symmetry. This symmetry is violated in the quantum 
approximation. 

We consider next the problem of scattering by two 
Coulomb centers ql = q  sin2(ff/2) and q, = q cos2(a/2), 
whose projections on the impact-parameter planes a r e  
located at the points bl = R and b2 =-R.  This problem 

was considered earlier in Ref. 4. Then 

Equation (3) for  the focal points takes the form 

The local points on the b plane a r e  thus located on a 
circle whose diameter is the segment joing both ten- 
ters,  a r e  symmetric about this segment, and a r e  
closer to the smaller charge. If the charges a r e  of op- 
posite signs, then a is imaginary and the focal points 
lie on the straight line joining the center, one inside and 
the other outside the circle, and inversion with re- 
spect to the circle transforms one point into the other. 
If ql=-q2, then one point goes off to infinity and the 
other goes to the center of the circle (to the origin). 

The corresponding momentum-transfer values a t  
which the effective cross  section becomes infinite a re  

To determine the differential effective cross  section 
we solve Eq. (6) with respect to b: 

differentiate with respect to p*, and calculate the sum 
of the squares of the moduli of both derivatives. We 
get 

If the momentum transfer is small compared with Ip'l, 
the the cross  section is equal to  q2q201p Id ,  i. e., we get 
Rutherford scattering by the summary charge q. If 

I pl >> (pf 1 ,  then the cross  section is 

which is the sum of the Rutherford cross sections for 
each of the charges. 

For  like charges q, = q, = q/2 we obtain 

For  unlike charges q, = - q, = q/2 

In the latter case we obtain in the limit of small p 
scattering by the dipole (5) with dipole moment Q1 = q R .  

The third example considered is that of N Coulomb 
centers arranged on the b plane a t  the vertices of a 
regular polygon inscribed in a circle of radius R. 
Then 

The equation for the focal points is of the form 

(bf) "-'[ (b')"+RN(N-1) 1=0, 
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from which it is seen that N- 2 focal point coalesce at  
b = 0, and N points 

form a regular polygon with vertices lying halfway be- 
tween the Coulomb centers. The region b = O  contri- 
butes to the cross-section singularity a t  small momen- 
tum transfers. In addition, we obtain N focal points at  

As N - m  we obtain in the l imi tp=Oat  Ibl CRandp* 
=qo4/~,$ at  I b 1 > R, i. e., the whole interior of the cir- 
cle will not scatter any particles, while the exterior 
will scatter in the same manner a s  a point charge a t  the 
center of the circle. 

4. AVERAGING OVER THE ORIENTATIONS 

In real problems, the scatterers a r e  frequently ran- 
domly oriented relative to the directions of the incident 
particles. Then the observed quantity is an averaged 
effective cross  section that has axial symmetry and de- 
pends only on the modulus Ip I of the momentum trans- 
fer. It is reasonable to carry out the averaging in two 
stages-first over the rotations of the system about the 
z axis, which is equivalent to averagin over the argu- 
ment of the compiled momentum p = Ip 7 exp(irp), and 
then over the inclinations of the axis of the scatterer 
relative to the z axis-over the angle 8. (For systems 
that have no axial symmetry it is necessary to average 
also over a third, Euler angle +rotation about the 
scatterer axis.) We have 

1 as 
a .  0 ,  (o)=(a)er j <o).sine do. 

2n 0 0 

We consider f i rs t  averaging in scattering by an axi- 
symmetric multiple. Under all  possible rotations in 
three-dimensional space, the projection Q, of the mul- 
tipole Q: on the (x, y) plane behaves like Q:( sing)". In 
this case the non-averaged effective cross  section is 
already axisymmetric, so that averaging over the azi- 
muthal angle cp is unnecessary. The additional factor 
c, takes upon averaging over 8 ,  the form 

where B is an Euler integral of the first kind. Using 
(4), we obtain 

The coefficients c, vary in small ranges about co = 1, 
when the averaging, obviously changes nothing; next, 
cl =n/4=0.785, c2 =0.740, c3=0.719, . . . and a s  n-- 
we have c,= $. The averaging for the other multiple 
components, which transform under rotation like pro- 
ducts of mutually orthogonal unit vectors, is more 
complicated and will not be considered here. 

We carry out next the averaging for the problem of 
two Coulomb centers, and confine ourselves to the 
cases of two unlike and two like charges. We denote 
by Ro the half-distance between the charges (then R 

= Ro sin8) and introduce the dimensionless parameters 
s = Rpo Ip 1 /qqO and so = R&O Ip I qq0. We then have for 
the unlike charges 

where K is a complete elliptic integral of the first  kind. 
Averaging over the inclinations yields 

q2qz 2 yK[ 2(s0 sino)"' 1 so sidB o=ag(so). (a)=-- 
Ipl' n l+s, sin 9 l+so sin 0 

(8) 

We see that averaging over cp and over 40 and 8 yields a 
Rutherford cross  section multiplied by a certain form 
factor, which is a function that depends on one dimen- 
sionless parameter. The argument of the function K 
in expressions (7) and (8) is alwa s less than or  equal 
to unity. Equality is reached a t  & I = Ifit  I, in which 
case the function K, and hence (u),, diverges logarith- 
mically. 

We obtain similarly for two like Coulomb centers 

1 1 "  4,sintl ) s i n  
] 1+4sOz sin2 8 1+4s,'sinz 9 ' 

0 

and we again obtain for the Coulomb scattering form 
factors that depend on one dimensionless parameter. 

Let us see now what remains of the focal singularity 
of the effective cross  section after averaging over the 
scatterer orientations. We can use for this purpose 
an electrostatic analogy. In fact, the singularities of 
the cross section a t  the focal points on the p plane 
(simple poles) a r e  analogous to the singularities of the 
three-dimensional potential of pointlike charges located 
on a plane. Averaging over cp means the smearing of 
the point charges over a circle on the p plane with cen- 
ter at  the origin. The singularity in the cross section 
(u), is then logarithmic-the same a s  that of a potential 
of a uniformly charged ring. It was precisely this 
result which was obtained in the preceding examples. 

Averaging over the inclinations changes Id 1 ,  and for 
the considered cases we have 16 I -(sin@)-', i. e., IPf / 
is minimal for a transverse placement of the scatterer 
(8 = n/2), and (d ( increases with decreasing 9 .  Aver- 
aging of the singular part of the potential over the in- 
clinations is equivalent to calculation of the potential 
of an axisymmetric charge distribution on the p plane, 
with a charge density equal to zero a t  p <  d and be- 
having like (p  -&)-'I2 at p >& and p - d .  But this is 
precisely the charge distribution on the edge of a 
charged conducting half-plane, and consequently, after 
averaging over the inclinations, the cross  section, just 
a s  the potential of a charged half-plane, is smoothly 
varying a t  p >& and varies in proportioli to - (d - P)''~ 
a t  p <&, remaining continuous a t  p =d. It is obvious 
that the coefficient of the singular part of the cross 
section is proportional to the residue g of the non- 
averaged effective cross  section a t  the point when the 
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scatterer is transversely placed, i. e., a t  the minimum 
value p'=d. 

We calculate now the relation between these quantities, 
assuming fl =A/ sine. We obtain 

Changing from integration with respect to 0 to integra- 
tion with fl we get 

We see that a t  fl the equivalent charge density be- 
haves like (g/n)(26,)-3'2(fl - pf,)-'I2. From considera- 
tion of the potential 9 of a charged half-plane x > 0, 
-m < y <+rn, with a surface charge density 7  AX-'/^, 
we obtain 9 = - 4 7 ~ ~ ( -  x)'I2 a t  x < 0 and 9 = 0 a t  x > 0 .  
Hence 

Against the background of the decrease with increas- 
ingp, which i s  typical of the slowly varying part of the 
effective cross section, the focal point yields after 
averaging a peculiar "tooth" with a vertical tangent on 
the smaller-momentum side (Fig. 1). Formulas (9) 
a re  exact for any linear distribution of the charges. 
All that changes for the projection on the b plane in the 
case of inclinations is the scale, and the relation (9) 
remains in force. In the more general case of an axi- 
symmetric scatterer, however, this result is typical. 
Only the dimensionless coefficient of formula (9) can 
change. 

Thus, even after averaging over the orientations, the 
cross section (0) retains a perfectly noticeable singu- 
larity that can be observed in experiment in the corre- 
sponding problems. It is clear that i t  is precisely be- 
cause of the presence of the focal points (of the strong- 

FIG. 1. Halo effect for ion scattering by dipole molecules. 
Cross section, averaged over radom orientations of the mole- 
cules, in the vicinity of the halo angle d 

e r  singularities) for the harmonic scatterers that the 
effect remains noticeable also after the averaging. 
The rainbow lines typical of anharmonic nonspherical 
scatterers,  maxima remain after the averaging and a r e  
much more smeared out, more difficult to observe, 
and more difficult to identify with the focusing pheno- 
menon. 

In analogy with atmospheric optics, we can name this 
maximum of the averaged cross section (0) the halo 
effect. In the atmosphere this effect is due to the re- 
fraction of light by randomly oriented ice crystals with 
60' angle between the refracting planes. Symmetrical 
passage of a light ray corresponds to minimum deflec- 
tion of the ray and, after averaging, to maximum in- 
tensity, with an abrupt decrease of the intensity a t  
small angles and with a smoother decrease a t  larger 
angles. 

The focal points can be treated classically if the 
change of phase is large for the different trajectories 
in the impact-parameter region, where the singular 
part of the effective cross  section remains noticeable 
above the background of the smooth part of the cross 
section, or, equivalently, the change of action is large 
compared with Planck's constant. On going over to the 
wave treatment, the singularity in the nonaveraged 
cross  section and the jump of the derivative of the 
averaged cross section with respect to the scattering 
angle a r e  smeared out on the halo circle. Interference 
maxima and minima appear in the non-averaged cross  
sections, and their t races  may remain in the vicinity 
of the maximum also after the averaging. 

In real  physical problems, which will be discussed 
below, the conditions for the applicability of the classi- 
cal treatment of scattering a r e  frequently satisfied in a 
wide range of the parameters of the problems. 

5. LARGE AND SMALL MOMENTUM TRANSFERS 
AND EXTREMAL CHARACTER OF CONFORMAL 
TRANSFORMATION INTO A CIRCLE 

We return now to the problem of scattering by N Cou- 
lomb centers and consider f i rs t  small momentum trans- 
f e r s  and large impact parameters. We expand formula 
(2) for the momentum transfer in a ser ies  in  the mul- 
tipoles 

If the f i rs t  n values Qo, . . . , Q,-I vanish, then this 
property, a s  well a s  the value of the multipole Q,, does 
not depend on the choice of the origin on the b plane. 
We can then choose the origin such that the mul t ip le  
Qn+l is zero. We put Qo# 0 and Q1 =0, and invert the 
ser ies  (10): 

We calculate now that part of the effective cross sec- 
tion (gyp, averaged over the azimuthal angle, which 
corresponds to long distances. We differentiate the 
series (11) with respect to p*, put p = 1 0  1 exp(irp), 
square the modulus, and integrate with respect to 40. 
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All the cross  terms vanish in this case and we get 

namely a ser ies  that consists only of positive terms, 
so  that by retaining in i t  a finite number of terms we 
obtain a lower bound fo r  the cross  section (a),. The 
f i rs t  term of the ser ies  does nct depend a t  all  on the 
orientation of the system of Coulomb centers, so that 
we arrive at the following theorem: The classical ef- 
fective small-angle scattering cross  section, averaged 
over the azimuthal angle a s  well a s  over the various 
orientations and even over the various configurations of 
the harmonic scatterer, is always larger than the 
Rutherford cross  section for a summary point charge. 

The theorem is valid so  long a s  the ser ies  (11) con- 
verges, i. e., so  long a s  I p I does not exceed the mini- 
mal focal momentum p i , .  for a given assembly of scat- 
terer  orientations and configurations, a s  well as,  of 
course, so  long as the small-angle scattering approxi- 
mation is applicable. We note that in the expansion 
(12) in even powers of Ip I there is no ( p  term, so  
that a t  small Ip I the correction to the Rutherford 
cross  section is small. 

In addition to long flights, parts a r e  played in the 
small-angle scattering by the vicinities of those "equi- 
librium" values b = fl fo r  which the momentum transfer 
vanishes, i. e., by the roots of the equation 

For N Coulomb centers there a r e  in the general case 
N- 1 such points. In analogy with scattering by a cen- 
t r a l  field, we can call these points on the b plane glory 
points. If the glory points do not coalesce, then in the 
vicinity of each of them 

p = g m ( b - b m 8 ) + 0 ( 1  b-bmBI'), m = l ,  2, .. . , N - I .  

The contribution of these points to the effective cross  
section yields 

m-i 

so that there a r e  added to  the ser ies  (121, starting with 
the second term, also terms connected with the glory 
effect. In the semiclassical approximation the corre- 
sponding amplitudes will interfere, with account taken 
of the phase shifts of each of them. If n glory points 
coalesce, then the glory points and the focal points co- 
incide, and an additional singular contribution o' 
, I p  1 -2+2/n appears in the small-angle scattering cross  

section. It is easy to write out also the succeeding 
terms of this expansion. 

If the summary charge Qo is equal to zero, but the 
dipole moment Q1 is nonzero, then for the case Qo =Ql  

= 0 and Q2 + 0 we obtain correspondingly 

In these cases the dependence of b on p is doubly and 
triple-valued, respectively. 

On circuiting around the point p = 0, some values go 
over into others, so  that in the averaging over the azi- 
muthal angle we can, instead of summing over the dif- 
ferent values of I db/dp 1 2 ,  simply extend the integration 
limit from zero to 4n and to 6n, respectively. This 
ensures again the vanishing of the cross terms and we 
obtain for (ax ser ies  of positive terms: 

This result can be easily generalized to the case when 
the first  n multipoles vanish. The averaged cross  sec- 
tion always turns out to be larger than the scattering by 
the first  nonvanishing pointlike equivalent multiple.  
The larger n, the better the convergence of the corre- 
sponding series,  since the expansion is in t e rms  of ever 
decreasing fractional powers of Ip 12""'1'. 

We proceed now to the case of large momentum trans- 
fers. Obviously, we assume here a s  before that a l l  
the momentum transfers to be much l ess  than po; the 
concept "large" means simply that in this case the 
particle passes near one of the Coulomb centers q j  a t  
a distance much smaller than the projections of the dis- 
tances from qj  to the other Coulomb centers. In the 
vicinity of the point bj  the momentum transfer is deter- 
mined primarily by the center q,, and then by the 
smooth part of the field produced by all  the remaining 
centers. Then 

Inverting the series,  we obtain an expansion in the in- 
verse powers of p* 

and, integrating o up to q, we obtain the averaged 
cross  section 

We have thus obtained again a ser ies  consisting of posi- 
tive terms, the f i rs t  of which corresponds to the sum 
of the cross  sections for scattering by each of the cen- 
t e r s  and does not depend on their arrangement. We 
arrive a t  the following theorem: For  small-angle scat- 
tering by a system of Coulomb centers, a t  momentum 
transfers larger than the largest of the focal momenta 
pL (the condition for the convergence of the series),  
the classical cross  section, averaged over the azimuth- 
al angle, is always larger than the sum of the cross  
sections for scattering by each of the Coulomb centers. 
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This result remains valid also after additional aver- 
aging over different configurations of the projections 
of the centers on the plane b, connected, for example, 
with the vibrations of the corresponding molecule. Un- 
fortunately, when averaging over the slopes and ori- 
entations of the scatterer one always encounters ar-  
rangements such that the projections of two centers 
a r e  close and coincide in the limit. Then $-- and 
the region of convergence of the series and of the vali- 
dity of the theorem vanishes. 

Of course, the fact that for  a system of Coulomb cen- 
t e r s  and small and large momentum transfers we ob- 
tain in the limit, respectively, scattering by the sum- 
mary charge o r  a sum of scattering by individual 
charges, is quite obvious. However, the fact that the 
cross section is always larger than these limiting cross 
section in rigorously defined momentum-transfer re- 
gions is f a r  from obvious and is typical only of har- 
monic scatterers. 

The method used here to integrate the square of the 
modulus of the series,  in the phase q, of the particular 
variables in terms of which the expansion is made ( p  
or  p-'1, with vanishing of all  the cross  terms, which 
leads to a ser ies  of only positive terms, is used in the 
theory of conformal mapping to prove the extremal 
character of the conformal mapping of a c i r c ~ e , ~  ac- 
cording to which this mapping always leads to an in- 
crease of the area,  provided that the center of the cir- 
cle is mapped with unity scale. The inequalities ob- 
tained here a r e  the direct consequence of this variation- 
a l  principle. 

6. POSSIBILITY OF COMPARISON WITH EXPERIMENT 

The simplest and most natural region of application 
of this theory is for ion-molecule collisions. This 
raises immediately the question of when and to which 
degree the potential of the interaction of the ion with 
the molecule can be regarded a s  harmonic. We can 
single out a t  least two cases when this assumption is 
natural. 

The first  is collision of relatively slow ions, but fast 
enough compared with the speed of rotation of the mole- 
cule, i. e . ,  starting with an energy of several eV to 
several hundred eV. The condition under which the 
collisions a r e  classical is also well satisfied here, 
and usually the electronic states of the molecule a r e  
not excited here, and the molecule itself can be re- 
garded a s  immobile during the collision time. It is 
then possible to regard as harmonic that part of .the 
potential which lies outside the molecule and is de- 
scribed mainly by this part of the interaction potential. 
In addition to the harmonic multipole terms there a re  
also anharmonic polarization forces that decrease in 
inverse proportion to the fifth power of the distance, a s  
well a s  octupole forces. It is natural therefore to con- 
fine oneselves in the interaction between a neutral 
molecule and an ion to two terms-dipole and quadru- 
pole: 

and assess  the possibility of experimentally observing 
a focal singularity and the halo effect. The focal im- 
pact parameter d and the focal scattering angle 9' can 
be directly determined: 

and in order that the point bf lie outside the molecule 
it is  necessary that the dipole moment Q, be small enough- 
a condition easily satisfied for many diatomic mole- 
cules. 

If only the singular and dipole parts a r e  retained in 
the cross  section when averaging over the orientations, 
we obtain the universal relation 

which is valid in the vicinity of the focal angle and is 
shown in Fig. 1. It is seen that the halo effect for the 
molecules is small, but i t s  t races  can be experimental- 
ly observed already a t  a relative angular and intensity 
resolution on the order of 1%. The quasiclassicism 
condition is satisfied if a t  b = b' the angular momentum 
of the incident ion is of the order of 10' ti. At an ener- 
gy on the order of 100 eV this condition is easily satis- 
fied, especially for helium and for heavier ions. Ac- 
cording to (13) the halo angle is determined by the ratio 
of the dipole interaction energy over the distance d to 
the energy of the incident particle. Quantum interfer- 
ence phenomena a s  well a s  polarization forces smooth 
out this effect, but preliminary estimates show that al- 
lowance for this factor does not alter the picture quali- 
tatively. 

Second, one can expect the presented approximation 
to be valid if the molecule is located almost exactly 
along the direction of the incident ions (or atoms), and 
the fast particle passes in the course of i t s  travel close 
to both nuclei, i. e., we can neglect in principle the 
screening in the calculation of the momentum transfer 
and assume a pure Coulomb interaction. In this case 
the projections of the molecule nuclei and of the ion 
on the plane of the impact parameter lie in a region that 
is small compared with the nuclear size. It was shown 
in Refs. 6 that the energy lost by a fast particle scat- 
tered twice through a given angle can be less than in 
single scattering by one atom. This makes i t  possible 
in principle to single-out double ("cannonball") scat- 
tering' by measuring scattering with a given energy 
loss. 

Another possibility of singling out the configuration 
of interest to us  for tight binary collisions is to con- 
sider glancing scattering of ions by the surface of a 
single crystal in a direction close to one of the crystal 
axes. It is then practically impossible to have scatter- 
ing with small impact parameters with more than two 
successive atoms on this axis: before and after the 
double scattering the atom travels notably farther from 
the nuclei of the other atoms, and screening makes it 
possible to neglect their influence. For  binary tight 
collisions we can consider the focal points for two Cou- 
lomb centers, found by Komarov and shcherbakov4 and 
considered in Sec. 3. The focal scattering should lead 
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potential A, we obtain 

FIG. 2. Focal specular reflection of a grazing ion beam from 
the surface of a single crystal. I ,  I2 +ion trajectory, s - 
scattering plane, H-crystal surface, b-impactrparameter 
plane; A ,  B ,  C, and D--successive atoms along the crystal 
axis on the surface H; 1;' and C-projections of the nuclei 
B and C on the impact-parameter plane b; P-angle of in- 
clination of optical axis to the scattering plane. Focusing 
conditions-the points B' , I z  and C' lie on a circle with cen- 
ter at 0, i.e, OBI= OI,= oC'. 

to an increase of the specular reflection coefficient if 
the crystal is so turned that the crystal axis is slightly 
tilted away from the scattering plane. The rotation 
angle is determined such that the projection of the two 
atoms and of the ion trajectory on the plane of the im- 
pact parameters form a right equilateral triangle (Fig. 
2). 

Many experimental d a d  offer evidence that the spec- 
ular reflection coefficient of fast ions does indeed have 
a maximum when the crystal axis is inclined to the 
scattering plane by angles that satisfy this condition 
approximately, but the question of the applicability of 
the theory and of the correct allowance for  the various 
perturbing factors calls for a special investigation. 

As the third example, we consider the scattering of 
protons by nonspherical nuclei. At an energy of sev- 
era l  dozen MeV o r  more the proton wavelength is 
substantially less  than the size of the nucleus and the 
classical approximation holds for peripheral collisions. 
At these velocities we can consider scattering by an 
immobile nucleus and use formula (12), in which we 
retain two terms and in which we average over the 
quadrupole orientations. We see that there is added to 
the Rutherford cross  section a term due to the quadru- 
pole interaction and independent of p .  This term can 
be noted a t  sufficiently large momentum transfers, 
when the ratio of this term to  the Rutherford term is 
already within the attainable relative measurement ac- 
curacy. 

7. SOME GENERALIZATIONS 

We shall show that if the scatterer contains a mag- 
netic a s  well as an electric field, the scattering re- 
mains conformal as before, provided only that the tra- 
jectories of the scattered particles do not pass through 
the field sources-the charges and current. In fact, 
generalizing (I), we have 

Replacing p ,  by 00, neglecting p, and py in comparison 
with po in the right-hand side, and changing over from 
the components of the magnetic field H to the vector 

If Ax and A, vanish as z 'PO, the corresponding inte- 
grals vanish, and the potential V simply acquires an 
additional term 

which also satisfies the two-dimensional Laplace equa- 
tion outside the field source, s o  that the scattering re- 
mains conformal, and a l l  the previously obtained gen- 
era l  results apply also to magnetic scatterers.  

The second generalization relates to the possibility 
of calculating the angular momentum transferred to the 
scatterer. We return again to the problem of N nucleon 
centers and assume that each of them acquires in the 
scattering a transverse momentum p j  =qoq,pil(b - bj)-'. 
Then the components of the total angular momentum 
transferred to the scatterer a r e  

Introducing the complex transferred angular momentum 
L = L, + iLy we obtain 

and consequently the mapping of the plane b on the 
(L,, Ly) plane is conformal, and all the general results 
on the momentum transfer a r e  valid also for the L 
plane. In particular, focal points and predominant val- 
ues of the momentum transfer appear, and can be con- 
nected with selective excitation of the rotational states 
of molecules. We note a curious cross-symmetry: for 
two identical Coulomb centers, the function ~ ( b )  (zl 
=-zz) is the same a s  the function p(b) for two centers 
with opposite charges, and vice versa. 

The third generalization related to  the possible ex- 
tension of the range of angles in which the given ap- 
proximation is valid. It is noted in Ref. 3 that re- 
placement of the scattering angle 8=p/po by 2 sin(g/2) 
extends this region (in this case the formulas for the 
Coulomb problem become exact). One can expect that 
this replacement extends the range of validity also for 
a sufficiently large class of harmonic scatterers. We 
note in this connection that the classical Coulomb scat- 
tering [ I b I = bo cot(6/2)] realizes a conformal mapping 
(a stereographic projection) of the scattering-angle 
sphere on the impact-parameter plane. This unique 
property of the Coulomb field is undoubtedly connected 
with i t s  internal symmetry, and with the role, discov- 
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ered by Fock,' of the transformation of the stereo- 
graphic projection in momentum space for this prob- 
lem. This ra ises  the question of whether other poten- 
tials exist such that scattering by them realizes con- 
formal mapping of the impact-parameter plane on the 
scattering sphere, and if they do, what a re  their prop- 
erties. In other words, is it  possible to generalize 
the theory considered above to include all angles, dis- 
regarding the trivial case of a single Coulomb center. 

We consider finally the transition to the limit of an 
arbitrary anharmonic potential. It is clear that by in- 
creasing the number of Coulomb centers and letting the 
charge of each of them tend to zero, we can obtain any 
potential. In this case the role of the Coulomb singu- 
larities on the b plane will decrease, and the role of 
the focal points constantly increases. The number of 
focal singularities in the effective cross  section will 
increase continuously, and their averaging yields in 
the limit the cross section fo r  the limiting anharmonic 
potential. This complicated character of the limiting 
transition can be easily traced by letting the number of 
charges in the last  example of Sec. 3 tend to infinity. 

8. CONCLUSION 

The results show that the processes of small-angle 
scattering by harmonic scatterers constitute an inter- 
esting class, the natural formalism for whose descrip- 
tion makes use of complex variables and conformal 
mapping, and the prospects of further development of 
the theory continue to improve with further investiga- 
tions of problems by this method. 

The use of complex variables in two-dimensional 
problems very frequently simplifies to the utmost their 
solution, but two-dimensional problems a r e  not so 
frequently encountered in physics, and usually a r e  by 
way of models. In the small-angle scattering problem 
one dimension (the direction of motion of the fast parti- 
cles) drops out, and the problem naturally becomes two- 

dimensional. Therefore introduction of the complex 
impact parameter, of the complex momentum transfer, 
and of conformal mapping serves as an adequate and 
very fruitful device. Other and possibly more effective 
applications of the theory than considered in Sec. 6 
will undoubtedly be found. This is possible, in par- 
ticular, in electron optics, where the results a r e  ap- 
plicable when a thin electromagnetic lens scatters an 
electron beam through a small angle to dimensions 
larger than i t s  initial width. 
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