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The method of numerical modeling was used to investigate nonlinear plasma instabilities in semiconductors in 
strong electric fields. It was assumed that the dominant mechanism of the scattering of electrons with energies 
exceeding that of optical phonons is the spontaneous emission of such phonons. It was found that the 
application of an electric field produces an instability in two stages, each of which begins with an exponential 
rise of the energy of the self-consistent electric field. During the first stage, whose duration amounts to two or 
three cycles of electron acceleration until the optical phonon energy is reached, the electron distribution 
function becomes strongly modified because of the interaction between electrons and the self-consistent 
electric field. In the second stage, characterized by a relatively smaller increment, the exponential rise of the 
field energy results in plasma bunching and formation of one or several solitons. The electric field in a soliton 
may exceed considerably the external field. Elastic electron collisions are an important stabilizing factor. The 
attainment of the nonlinear stage of an instability is possible only if the value of T ~ T  (T,, is the time of 
spontaneous emission of an optical phonon and T is the relaxation time of the momentum due to the 
interaction with impurities and acoustic phonons) is sufficiently small. 

PACS numbers: 72.30. + q, 71.38. + i 
1. In some semiconductors (for example, those of the that employed in Refs. 7 and 8. If we confine ourselves 

AgBr type) the time of spontaneous emission of an opti- to one-dimensional motions of a plasma, which is the 
cal phonon 7, may be considerably shorter than the mo- assumption made below, we find that the distribution 
mentum relaxation time T in the case of quasielastic functions of electrons f = f ( p ,  2 ,  t )  and of the electric 
collisions with impurities and acoustic phonons:' field intensity E = E(z,  t )  a r e  

T ~ < T .  (1) af P af af 
-+ - -+eE-=I { f ) ,  

If such a semiconductor is subjected to  a strong electric at m az a p  
field, the electron distribution function is found to be 
strongly anisotropic. The electron momentum then var- 
ies  periodically with time. This combination of a plas- 
ma nonequilibrium with periodic electron motion should 
give rise to a number of interesting features of the high- 
frequency plasma characteristics (see, for example, 
Refs. 2-6). For example, Gulyaev and Chusov5 demon- 
strated that an electron plasma satisfying the condition 
(1) and subjected to a sufficiently strong electric field 
may be unstable with respect to buildup of oscillations 
of the electron density and of the self-consistent elec- 
tr ic field. The range of validity of their results5 is lim- 
ited to small perturbations of the electric field and 
small deviations of the electron distribution function 
from that corresponding to a steady-state distribution in 
the presence of a strong electric field and scattering by 
optical phonons. However, it would be  interesting to  
study collective processes in an electron plasma in a 
semiconductor under these conditions beginning from the 
moment of application of an electric field when the plas- 
ma is still in equilibrium and right up to the time when 
the growth of the instability makes the energy of the 
self-consistent electric field considerable and a nonlin- 
ear mechanism begins to limit the r ise  of this field. The 
present paper reports an investigation of transient non- 
linear processes in an electron plasma in a semiconduc- 
tor subjected to a strong electric field when electrons 
a r e  scattered inelastically by optical phonons. 

Here, x is the lattice permittivity; N is the density of 
the compensating background (donor concentration), 
which is assumed to be homogeneous and immobile; 
I( f} i s  the integral representing collisions of electrons 
with impurities and phonons. This coUision integral is 

where the terms on the right-hand side a r e  related to the 
interaction of electrons with impurities, acoustic pho- 
nons, and optical phonons, respectively. 

We shall assume next that the lattice temperature To 
is much less than the Debye value: 

T o < f i ~ G ,  (4) 
where w, is the limiting frequency of optical phonons. 
Then, the term describing collisions of electrons with 
optical phonons can be in the form 

where 

We shall allow for the quasielastic scattering by im- 
purities and acoustic phonons, ignore a weak inelastic- 
ity, and use the following expression which corresponds 

2. In analyzing the plasma dynamics in external and formally to one-dimensional scattering: self-consistent electric fields we used numerical mod- 
eling based on the method of macroparticles similar to Z.{f}+Z.(f)=~-'[f(-p, z, t ) - f  (P, z, t )  1. (6) 
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Strictly speaking, this expression i s  valid for electrons 
in quantizing magnetic fields in the ultraquantum 
when the elastic scattering of an electron along a mag- 
netic field reverses the electron momentum. The use of 
more general expressions for collisional terms in the 
adopted method of numerical modeling presents no fun- 
damental difficulties. 

We shall assume that the initial conditions a r e  

f (p, Z ,  t=0) = f a  (PI ,  E(z, t=O) =Eo, (7) 

where fo@) is the distribution function of the initial state 
which may .be an equilibrium state; Eo is an external 
static electric field. The boundary conditions a r e  taken 
in the form 

E(-O, t )  =E(.-L. t ) ,  j E(z, t ) d z - - w ,  (8) 
0 

where L is the thickness of the sample in the direction 
of the electric field. The conditions (8) should be sup- 
plemented by the boundary conditions for electrons and 
these a re  in the form of the periodicity condition. 

3. The system (2), (3) with allowance for electron 
scattering described by the collisional term (5) and (6) 
was solved by the method of macroparticles implement- 
ed in the form of a uniform code.'*9 Both types of scat- 
tering were modeled by Monte Carlo algorithms (see 
Ref. 11). The algorithm employed with sequences of 
random numbers was similar to that used by  other^'^*'^ 
who modeled pair collisions in a gaseous plasma using 
the macroparticle method. 

The initial electron distributions were assumed to be 
Maxwellian with the temperature To, which varied with- 
in the limits of the inequality (4). The numerical values 
of the parameters T,, and T 

and of L were selected in these numerical experiments 
from the conditions 

The first  of these conditions means that the process of 
electron acceleration by a field is interrupted abruptly 
by the emission of an optical phonon and elastic colli- 
sions a r e  rare. The second condition corresponds to 
the fact that during the transit time across a sample an 

FIG. 1 .  Evolution of the electron distribution calculated for 
~ ~ / i z w , =  0.1, swp = *, TZW, = 40,  and the following values of 
t w,: 1) 0 ;  2 )  18; 3) 20; 4 )  26; 5 )  80. 

FIG. 2 .  Evolution of the electron distribution calculated for 
T~/@= 0.2,  rap = 80 ,  7&dp = 20,  and the following values of 
t w,: 1) 0 ;  2)  20; 3 )  30; 4 )  60 .  

electron undergoes many cycles of acceleration to the 
optical phonon energy. One of the consequencies is a 
reduction in the role of the boundary effects. 

The following sets  of parameters were used in the 
calculations: rowp = 0.5; rEwp = 2, 20; rwp = 20,26,80, 
03; L/lE = 12, 18.25; To/tdO = 0.1,0.2,0.3, and 0.4. The 
number of macroparticles (electrons) was 20 x 1024, 
30 x 1024, and 35 x 1024. 

4. The main results of the numerical experiments a r e  
presented graphically. Figures 1 and 2 show the evo- 
lution of the thickness-average distribution function of 
electrons after the application of an electric field: 

For comparison, Fig. 1 includes (dashed curves) the 
steady-state electron distributions found by solving Eq. 
(2) f o r  a homogeneous steady-state system. 

We can see  from the figures that distributions close 
to the steady-state form a r e  established after two or  
three electron acceleration cycles. It is characteristic 
that the occurrence of elastic collisions results in sig- 
nificant symmetrization of the distribution function rel- 
ative to the point p = 0. 

Figure 3 shows, in a logarithmic scale, the time de- 
pendence of the energy of the self-consistent electric 
field. We can see that there a r e  two regions of expon- 
ential r i se  of the energy of the field with time. The f i rs t  
corresponds to the time interval O<rE, a t  the end of 
which the peak of the distribution function approaches 
the point p =Po. When the major fraction of electrons 
returns to the passive region (141 <Po), the field energy 

FIG. 3 .  Time dependences of the self-consistent electric field 
energy calculated for rowp = 0.5, T,yUp = 20 and different values 
of the parameters To/liw0 and 7wp: 1) TO/huO = 0.1,  7wp = O0 ; 
2 )  0.2, "; 3)  0.2, 80; 4 )  0.4,  ". 
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FIG. 4. Time dependences of the distribution of the self-con- 
sistent electric field Ek)  for LAE= 12 (formation of one soli- 
ton) plotted for various values of twp : 1) 20; 2) 50; 3) 80; 4) 
110; 5) 140; 6) 170. 

decreases in a certain time interval. The observed 
features of the behavior of the field energy indicate that 
plasma oscillations initiated by inelastic electron scat- 
tering a r e  excited and grow rapidly. The growth incre- 
ment of these oscillations in the time interval O< t < 7, 
is found to depend onthe  relative width T0/tiw, of the 
initial electron distribution. A similar dependence on 
the initial temperature i s  exhibited also by the maximum 
obtained value of the self-consistent field energy. 

The second stage of practically exponential r i se  of the 
energy of the self-consistent electric field (t 2-37,) is 
characterized by an increment y - 7;: which i s  indepen- 
dent of the width of the initial electron distribution. 
This corresponds to the linear growth of an instability 
predicted by Gulyaev and Chusov.' The difference be- 
tween the instability increments in the f i rs t  and second 
stages is due to a considerable difference in the aver- 
age distribution function after the f i rs t  acceleration cy- 
cle and after a large number of such cycles. The fact 
that the values of the growth increments obtained for 
the second stage (ye?-;') a r e  somewhat greater than the 
values predicted in Ref. 5 is due to the fact that in nu- 
merical experiments it was assumed that TEw4>> 1, 
whereas in analytic calculations5 it was postulated that 
T,w,,<< 1. However, a comparison of the analytic and 
numerical calculations for the same values of the para- 
meter T,W, is complicated by the circumstance that 
when T,w@>> 1 it  i s  not possible to obtain analytic ex- 
pressions for the increment, whereas in the ~Ew,<< 1 
case the computer time needed for calculations increas- 
e s  strongly. 

In our opinion, the greatest interest l ies in the behav- 
ior of an electron plasma a t  a later stage of the insta- 
bility growth (t 2 57,) when the energy of the self-con- 
sistent field exhibits nonlinear saturation of i t s  rise. 

The main feature of the nonlinear regime of the in- 
vestigated instability is the "bunching" of an electron 
plasma, namely the appearance of solitary traveling 
waves (solitons o r  domains) of the electron density and 
of the associated waves of the self-consistent electric 
field (Figs. 4 and 5). The resultant nonlinear waves 

FIG. 5. Time dependences of the distribution of the self-con- 
sistent electric field E(a) for LAg  = 18.25 (formation of two 
solitons) plotted for various values of tw, : 1) 20; 2) 50; 3) 
80; 4) 110; 5) 140; 6) 170. 

travel in the direction of the electron drift a t  a constant 
phase velocity ~ ,~a0.3p, /m.  Experiments indicate that 
the number of solitons created in the nonlinear stage is 
governed by the ratio L/1,. If L/l,  = 12, a l l  the vari- 
ants predict formation of one soliton, whereas for L/I, 
= 18.25 the number of solitons is two. The amplitude of 
the electric field E ,  in a wave is many t imes greater 
than the electric field intensity E,. A typical value of 
the ratio of the fields is E,/EOM 10. 

Formation of large-amplitude solitons accounts for 
the instability saturation mechanism. It is clear from 
Figs. 4 and 5 that everywhere, except in the region of a 
soliton, the self-consistent electric field is directed 
opposite to the external field. Thus, the flux of elec- 
trons to the active region ( 1 ~ 1  >Po) of the phase space, 
which is the source of energy for the growing waves, 
decreases strongly. 

Our numerical experiments dealt also with the influ- 
ence of elastic scattering on the growth of the investi- 
gated instability. The results  indicated that the role of 
such scattering could be considerable. For example, i t  
is clear from Fig. 3, showing the time dependence of the 
field energy in the case when T,/T = t and 70 /~E  =h, 
that there is no region of r i se  of the field energy cor- 
responding to the instability. However, in the variant 
T,/T= &, r0/7, = a the elastic collisions reduce the 
growth increment of the field energy but do not suppress 
the instability completely. Hence, i t  follows that the 
attainment of the nonlinear stage of the instability and 
generally i t s  effective manifestation in the physical ex- 
periments requires that the condition (1) be satisfied 
with a sufficient margin. In this sense, semiconductors 
of the AgBr type, for which it i s  estimated that 7/r0- 
500, a r e  very promising. 

The authors a r e  grateful to V. M. ~ leonsk i r ,  A. K. 
Zvezdin, and R. A. Suris for discussions and valuable 
comments. 
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The huge optical nonlinearity of the mesophase of a nematic liquid crystal (NLC), recently predicted and 
observed by the self-focusing of light, and caused by reorientation of the NLC director under the influence of 
light fields, is discussed. A calculation is carried out of the nonlinear advance of phase and of the optical 
power of the nonlinear lens for a layer of NLC oriented by means of one or two surfaces. Proposed 
experiments would enable one to obtain quantitative information about the orienting action of a free surface. 
Methods of increasing the accuracy of the experiment are discussed. Expressions are also obtained for the 
power of the nonlinear lens in a number of specific problems on external self-focusing of light in NLC. 

PACS numbers: 42.65.J~ 

1. INTRODUCTION periment  . 
A huge optical nonlinearity of the oriented mesophase 

of a nematic liquid c rys ta l  (NLC) was  recent ly p re -  
dicted theoretically and observed experimentally.' T h i s  
nonlinearity is caused by reorientation of the  NLC di- 
rector by the electric field of the light wave. In the  ex- 
periment,' the  original uniform planar orientation of 
the NLC was preserved  because of the r igid orientation 
of the  d i rec tor  on the rubbed sur face  of the cell walls.  
A suitable depar tu re  

of the d i rec tor  f r o m  the unperturbed direction lowers  
the energy of interaction with the light wave but leads 
to the appearance of a positive energy of nonuniform de- 
formation 

where  K is a Frank  constant ( see  below). Minimization 
of the sum of these  energ ies  leads t o  a local equation 
f o r  bn, whose solution w a s  c a r r i e d  out' with allowance 
f o r  the rigid pinning of the d i rec tor  a t  the  boundaries 
and gave a completely sat isfactory agreement  with ex- 

P a p e r s  of ~ a d a ' "  d i scuss  theoretically a possible  
mechanism of the or ient ing effect of a f r e e  NLC sur face  
(that is, f o r  example, the  boundary between the  NLC and 
a i r ) .  T h e  point is that t h e r e  is a p r e f e r r e d  orientation 
of the NLC d i rec tor  with respec t  to such  a f r e e  sur face ,  
and th i s  orientation may b e  different f o r  different speci-  
f ic shapes  of the NLC ( s e e  Refs. 4 and 5). The  degree  
of rigidity of the  orientation along such  a p r e f e r r e d  
direct ion can b e  character ized2 by the orientation-de- 
pendent p a r t  of the sur face  energy density, 

~[erg/cm'] -0. (6~)' 

( see  below f o r  a m o r e  exact definition). F r o m  the  con- 
s tan t s  a, and K we can f o r m  a quantity of dimensions 
length, l=K/ua. If the  total  thickness  L of the  cell is 
much l a r g e r  than 1, i.e., if L>>K/o,, then the  effect of 
the sur face  may b e  considered to b e  pract ical ly  a r igid 
pinning of the director .  If, on the contrary,  L<<K/u, 
(o r  equivalently, if a, - O), the f r e e  sur face  exerts no 
influence a t  all on the orientation of the director .  
~ a d a ' ' ~  notes  that so f a r  no methods are known f o r  ex- 
perimental  measurement  of the value of the orientation- 
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