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The motion of atoms in a resonant light wave that excites the atoms in a transition from the ground state to 
an excited state is considered. A kinetic equation of the Fokker-Planck type is obtained to describe the motion 
of the atoms due to the recoil of the induced and spontaneous transitions. The equation is used to analyze 
velocity monochromatization and focusing of an atomic beam in a laser beam. 

PACS numbers: 79.20.Rf, 42.60.He 

1. INTRODUCTION. FORMULATION OF PROBLEM 

The recent calculations and the results  of the f i r s t  
experiments ( see  the reviewst4) have demonstrated 
convincingly the effectiveness of using laser-radiation 
pressure to act on the spatial motion of neutral parti- 
cles. Thus, by using the pressure  of l a se r  light i t  be- 
comes possible to deflecthe5 focus: and slow down' atom 
beams. 

On the theoretical level, the investigations of light 
pressure were based s o  f a r  on the study of the motion 
of atoms either in plane light waves o r  in light waves of 
constant bounded c r o s s  section. These approaches have 
revealed the role played by the main processes respon- 
sible for  the existence of light pressure,  and the char- 
acter  of the motion of the atoms in the simplest field 
configurations. At the s ame  time, the use of these 
models is insufficient for  the analysis of experimental 
situations in which an essential role is played by the 
laser-beam divergence. This, in one of the mostprom- 
ising applications, that of radiative cooling and dragging 
of atoms,3 i t  is expedient to use  light beams both with 
bounded c r o s s  section and with definite angle diver- 
gence.'*' The need for  analyzing such problems cal ls  
for knowledge of the laws of motion of atoms in rea l  
laser  beams. 

by a two-level scheme. Part icular  attention in the an- 
alysis is paid to the conditions under which the equation 
is valid. Velocity monochromatization of an atomic 
beam in a plane light wave ar,d the focusing of an atom- 
ic beam in a light wave with an inhomogeneous trans- 
verse  distribution of the field are considered by way of 
examples of the derived equation. 

2. INITIAL EQUATIONS 

To obtain the equation of motion of an ensemble of 
atoms in a l a se r  beam, we start from the equation 

.. - ̂  ia( ,  = (81-8".)j;- irp 

at (1 1 
For the density matrix b(r', r', t )  that describes the 
interaction of the atom with a classical  light field E. In 
this equation, the Hamiltonian of the interaction consists 
of three terms:  

A=Ba- (h2/2M) VZ+V. (2) 

The f i r s t  determines the internal s ta tes  of the atom, 
the second the translational s tate of the atom, and the 
third the dipole interaction of the atom with the field: 

f7=-h- * d ~ .  (3 
The relaxation operator f describes the change of the 
state of the atom on account of spontaneous decays. 

We specify the l a se r  radiation in the form of a funda- 
The present paper presents a derivation of a kinetic mental TEMOo, mode (Fig. 1). The corresponding field 

equation that describes the evolution of the distribution takes a cylindrical coordinate system with axis 
function of atoms interacting with diverging o r  converg- along the beam axis the fo rmlo  
ing laser  beams. The equation is derived for  laser  ra-  
diation of the fundamental TE.Wo0, mode and for  atoms ~ ( r ,  I) = e~ohelp (-5) coa [Cut - ( I <  +$-) z ]  , 
whose interaction with the laser  field can be described rl 

(4) 
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FIG. 1. Intersection of laser radiation of mode TEM by a 
plane passing through the E axis, and the components of the 
light-pressure force F acting on an atom with coordinates a and 
p: curve 1-line of constant intensity of the laser beam, curve 
2-wave front of the beam. 

where e is the unit vector of the wave polarization, the 
parameter q determines the scale of variation of the 
field over the beam cross  section: 

q = q . ( l + . i ~ , = / b ~ )  '", (5) 

zo  is the point of intersection of the wave front of the 
beam defined by the equation 

with the z axis. The parameter b, the so-called laser- 
radiation in variant, determines the beam divergence 
and the minimum dimension of the caustic. I ts  value 
depends on the geometry of the laser  cavity and on the 
parameters of the focusing elements (mirrors,  lenses, 
etc.). 

We assume below that the variation of the field along 
the E axis, due to the laser  beam divergence, takes 
place over a distance greatly exceeding the wavelength 
X = 2 ~ / k .  This condition corresponds formally to the 
relation 

b ~ a .  (8) 
In addition,. we consider only values of p that a r e  of 
practical importance, and a r e  not too large compared 
with the transverse scale of the field: 

PQ. (9) 
Under conditions (8) and (9) we then have 

pz/bq2<k. (1 0) 
Conditions (8)-(10) simplify greatly the final results. 
At the same time we cover the overwhelming majority 
of cases  of practical interest. 

We assume furthermore that the laser  radiation ex- 
cites atomic transitions only between two levels, the 
lower ground level Ig) and the upper le) that decays to 
the ground level with a total probability 2y. It must be 
immediately emphasized that, strictly speaking, the 
two-level scheme cnosen by us  for the interaction of the 
atom with the field contradicts the chosen form of the 
field (4). In fact, diverging laser  radiation is always 
elliptically polarized and excites, in the transition nS 
- nP of interest to us, a l l  three (m = 0, i 1 )  sublevels of 
the upper state nP. Under conditions (8)-(lo), however, 
the light field that intereacts with the atom does not dif- 
fer  greatly from a plane wave. In addition, practical 
interest usually attaches either to circular o r  to linear 
polarization of the laser  radiation. Confining ourselves 
to these two cases and bearing the conditions (8)-(10) in 

mind, we can assume with sufficient degree of accuracy 
that in the case of linearly polarized radiation there is 
excited only a state with m =0, and in the case of cir- 
cularly polarized radiation there is excited either a 
state with m =1,  o r  with m = - I .  

For  the chosen scheme of the interaction of the atom 
with the field, and for the two indicated types of wave 
polarization, the relaxation operators f were deter- 
mined in Refs. 11 and 12. Taking into account the re- 
sults of these references, we can immediately deduce 
from (1) the equations for the elements of the density 
matrix p,,(r', r", t). Without dwelling on the latter, we 
proceed to the equations for  the Wigner density matrix 
p(r, p, t). To this end we carry  out the following chain 
of transformations, which were previously used in Ref. 
13. We replace the coordinates r' and r" by the coor- 
dinates r and x: 

r'-r-x/2, r " -r+x/2, (1 1)  
We expand the field in plane waves 

V,j(r, t )  3J V,,(X, t)etnr d x  (1 2) 

and introduce the density matrix in the Wigner repre- 
sentation by the relation 

p,i(r--x/2, r+x/2, t )  - A-" pp(r, p, t )  e-'q'fu dq. (13) 

After these transformations, Eq. (1) reduces to a sys- 
tem of difference integro-differential equations for the 
elements of the Wigner density matrix 

where 

v = p / ~  i s  the velocity of the atom, ko = wa/c i s  the wave 
vector of the photon emitted by the atom in spontaneous 
decay from the state le) to the state Ig). The function 
@(n) determines the relative probability of spontaneous 
emission of a photon in the direction of the unit vector 
n. For linearly polarized radiation with a polarization 
vector along the x axis we have1' 

3 
OW=-- - [ I  -(nc.)?], 

1Bn (16) 
and for circularly polarized radiation'' 

A similar system of equations for the case of a plane 
traveling light wave was derived 

In (141, the order of magnitude of the wave vector x 
depends on i ts  direction. Along the propagation direc- 
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tion of the wave (4) the order of n is determined by the 
magnitude of the wave vector k =  ko of the light wave, in 
the transverse direction the order of n is determined 
by the reciprocal of the transverse scale of the field q,  
with l/q<< k by virtue of the condition (8). We assume 
that the width Ap of the momentum distribution of the 
atoms along any direction exceeds the photon momen- 
tum 

p = R k / A p t i .  
(1 8) 

Under this condition, and with (8) taken into account, 
the ratio of the transverse momentum of the field to 
the width Ap of the transverse momentum distribution 
will always be less  than the ratio (18): 

Using the conditions (18) and (Is), we can expand the 
elements of the density matrix p,,(r, p +pl,  t )  in Eqs. 
(14) in powers of p and q near the point p. Carrying 
out this procedure and writing down explicitly the terms 
of zeroth and first  order in p and q and only those 
second-order terms that a r e  important for the subse- 
quent analysis, we obtain for p, ,(r, p, t )  = p,, the equa- 
tions 

in which the tensor (1, determines the angular aniso- 
tropy of the spontaneous emission: 

aij = j dn 0 ( n )  %,n,. 

We substitute now the field (4) in (20), use the stand- 
ard rotating-wave approximation, and replace the off- 
diagonal elements of the density matrix: 

pcn=pcg' e s p [ - i Q t + i ( k +  p z / b q 2 ) z ] ,  (22) 
where D = w  - w0. After these transformations, Eqs. 
(20) go over into equations that do not contain rapidly 
oscillating factors. 

From the latter i t  is convenient to change over to 
equations for the Bloch variables 

In terms of these variables, the equations of interest to 
us take the form 

du. ds  a 
-= - f i k l . ' + h 1 ; 4  

dl  ~ P Z  51- "Pp 
I a i ( w - U )  

T t12k:y a,, - t..., - d p ,  ap, 
(24.1) 

1J 

- o w  c -2 f i vL~-+  
rll ' 1  / I r  q" bp,. 

. . . ,(24.4) 

where v, =P, /M and v, = p , / ~ .  

3. KINETIC EQUATION 

A distinguishing feature of the system (24) i s  the pres- 
ence of a characteristic time 

~ * ~ , = y - ' ,  (25) 

that determines the change of the internal state of the 
atom. This time, a s  seen from (24), characterizes di- 
rectly the variation of the functions u ,  c, and s. For  
the reasoning that follows we assume that there exists 
one more time rt, >> r h t ,  which characterizes the varia- 
tion of the function w =w(r, p, t). We shall call this the 
time of variation of the translational state of the atom. 
Under this assumption, we can distinguish between two 
time intervals within which the solutions (24) evolve in 
qualitatively different ways. 

At t S ria only the change of the internal state of the 
atom is important. Accordingly, in this time interval 
the function w varies little, and the functions u, c, and 
c undergo rapid oscillations with a characteristic time 
rht , and the values of these functions depend strongly 
on the initial conditions. At t >> rht, the translational 
state of the atom changes considerably. Therefore, 
over long times, the functions u, c, and s should under- 
go, besides rapid oscillations with characteristic time 
rh ,  also changes compatible with the variation of the 
distribution function w. 

Being interested in times t>> 7int, we assume that the 
functions h =u, c, s a re  in the case of long times func- 
t iona l~  of the distribution function" w : 

h ( r ,  P, 1)  =h(p; w ( r ,  P, t ) ) .  (26) 
Then relation (26) enables u s  to write down the time de- 
rivatives (15) in the left-handed sides of (24.2)-(24.4) in 
the form 

dh ah dw -= h=u, c, s. 
d t  d w d t '  (27) 

We consider now Eq. (2.4) and Eqs. (24.2)-(24.4) with 
left-hand sides in the form (27) in different orders  in  the 
small parameters p and q, with an aim at obtaining in 
closed form an equation for the distribution functionw(r, 
p, t )  in second order in p and q. In the zeroth approxi- 
mation in p and q, the equation for the distribution func- 
tion [ ~ q .  (24.1)] takes the form 

dwldt=O. (28) 
Equations (24.2)-(24.4) in the zeroth approximation 

should then be written in the form 

y ( w - a )  -Vs=O, - y c +  (kv,+2pzu,,/bq'-Q)s=O, (29) 
2Vu-7s- (ko,+2pzvp/l~q?-R)c=O 

Solving the latter, we can easily determine the depend- 
ences of u, c, and s on the zeroth-approximation func- 
tion w. 

To obtain an equation for the function w in first-order 
in p and 0,  we note that (24.1) already contains the 
functions s and c in f i rs t  order in p and q. It suffices 
therefore to use expressions in zero order for these 
functions in (24.1). Obtaining s and c from (29) and sub- 
stituting them in (24.1), we get an equation for w in 
f irst  order in p and q: 

Jw i )  d ( 1 1  - - ( w )  - -(fi', 1 0 ) .  -- 
dl dp. ~ P P  
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where F:" and F P )  a r e  the components of the light- 
pressure force along the axis z and p ,  determined in 
first  order in p and q: 

F,'"= hkyL. (31) 

We have introduced above the notation 

G=2v21~=. (33) 

From Eq. (30) we can determine the functions u,  c, 
and s in f i rs t  order in p and q. The latter, according 
to (24.2)-(24.4), (27), and (30) satisfy the equations 

where (dw/dt)"' is determined by relation (30), and the 
derivatives (ah/aw)"', where h=u ,  c, o r  s ,  should be 
determined from Eqs. (29). 

We solve now Eqs. (35) and substitute in (24.1) the 
functions s and c in f i rs t  order in p and q, and the func- 
tion u in zeroth order, since the latter is already con- 
tained in (24.1) in second order in p and 11. As a result 
we obtain for the distribution function w(r,  p, t )  an e- 
quation of the Fokker-Planck type, which i s  exact to 
second order in p and q. 

Without writing down the resultant equation, we note 
immediately that by virtue of conditions (8) and (19) it 
suffices to retain in this equation terms of second order 
only in the parameter p .  Then, neglecting the terms 
proportional to pq and q2, we write down finally a Fok- 
ker-Planck equation that is accurate in second order in 
p and first  order in q: 

where the longitudinal component of the light-pressure 
force in second order in p and in first  order in q is 

bq' 

The transverse component of the force F:" i s  deter- 
mined by relation (32), while the components Dl, deter- 
mine the diffusion tensor 

We have introduced above the symbol 

where v, = t i k / ~  is the recoil velocity and R = t i 2 k 2 / 2 ~  is 
the recoil energy. 

For linearly (n) and circularly (u) polarized radiation, 
only the diagonal elements of the tensor 2 differ from 
zero. The values of the diagonal elements L ~ ,  xyY, and 
x.., calculated from (39) and (21), a re  a s  follows: 

0: I '/lo 'Is+d 
n: '1; % ' ls+d 

4. CONFIRMATION OF ASSUMPTIONS AND 
DISCUSSION OF THE EQUATION . 

The foregoing derivation of the kinetic equation makes 
i t  possible to determine immediately the conditions of 
i ts  applicability. We stipulate that the second-approxi- 
mation forces be close to those of the f i rs t  approxima- 
tion. Then, comparing (37) with (31), we find that the 
necessary condition for the proximity of the first and 
second approximation is 

e=R/fiy<l. (42) 
Thus, Eq. (36) is valid for atomic transitions whose 
natural line width greatly exceeds the recoil energy. 

We recall  now that the main assumption made in the 
derivation of (36) is that there exists a time T, >> y4 that 
characterizes the kinetic stage of the evolution of the 
distribution function. Taking the condition (42) into ac- 
count, we easily find from (36) that this time actually 
exists and i ts  order of magnitude is 

~,,=ttlR>y-'. (43) 

Thus, the assumption of condition (42) automatically 
justifies the procedure used in Sec. 3 to derive Eq. (36). 

We point out finally that in the derivation of (36) we 
have assumed that the width of the momentum distribu- 
tion exceeds the photon momentum [see (18)]. Interest 
attaches therefore to the question of the minimum width 
of the momentum distribution. This problem was solved 
in Ref. 16, where i t  was shown that the narrowing of the 
velocity distribution is limited in principle to the width 

Therefore the maximum value of the parameter under 
the condition (42) is Limited to ha,= cl/' <c 1, SO that the 
assumption (1 8) is likewise always justified. 

We conclude finally that, subject to the only condition 
(42), al l  the assumptions made in the derivation of (36) 
a re  satisfied, and the coefficients in (36) should be 
those given by expressions (31), (32), and (38)-(40), 
i.e., the components of the light-pressure force should 
be taken in f i rs t  orders in p and q, while the diffusion 
tensors should be taken in second order in p. 

We discuss now the form of the diffusion tensor. One 
part of the diffusion tensor, a s  i s  well known, i s  con- 
nected with the change of the velocity of the atom on ac- 
count of the recoil of the spontaneous decays. As a re- 
sult of these processes the velocity of the atom varies 
in an ellipsoid with axes a,,: v', =vOl +atinit),. This 
continuous diffusion has already been considered in 
Refs. 11 and 12. In addition to the continuous variation 
of the atom velocity, the scattering of the photons from 
a directional light beam causes a discrete change in the 
atom velocity by *v, along the z axis. This process is 
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responsible for the discrete diffusion, the existence of 
which was indicated in Ref. 14. On the whole, the pre- 
viously employed appro ache^"^'^*^^ made i t  possible to 
determine the f i r s t  two terms of (39), i.e., the continu- 
ous diffusion (a,,) and the f i r s t  part (ti3, 63,) of the dis- 
crete diffusion. 

A rigorous derivation of the equation shows that the 
exact expression (39) for the diffusion tensor contains 
one more term 63, 63jd. In contrast to the f i rs t  two, the 
value of this te rm depends substantially on the intensity 
of the light wave, on the deviation of the light frequency 
from the frequency of the atomic transition, and on the 
velocity of the atom. The maximum value of d is reach- 
ed under the condition 

and is equal to 

&=GI4 ( 4+G)  <'I,. (45) 
The minimum value is assumed by d under the condition 

Q-ku,-2pzu,lbqz=0. 

I t  is equal to 
&,,~,,~-3G/(i+G)'>-'I~. 

On the whole, the minimum value of the discrete diffu- 
sion (1 +d) is limited to 0.25 [this value is reached un- 
der condition (46) and G =I], while the maximum of (1 
+d)  is limited to 1.25, which is reached under condition 
(44) and a t  G =OD. 

We indicate finally that the description of the motion 
of one atom o r  of an ensemble of atoms by a distribu- 
tion function w ( r ,  p, t )  is subject to a number of quan- 
tum-mechanical limitations. They can be obtained by 
starting from the fact that the function w(r, p, t )  is not 
sensitive to a change of time by an amount y'' and to a 
change of momentum by an amount Ti&. The uncertainty 
in the translational energy lies in the region 

~ ' x ~ ~ < t l y .  (48) 
The uncertainty in the momentum satisfies the relation 

hk'xAp<hk(fiylR)". (49) 
The limit of the spatial localization of the atoms, de- 
scribed by Eq. (36), is Az: 

X (Rltly)" <Az<X. (50) 
In practice these uncertainties never limit the solutions 
of (36), since they a r e  always less  than the minimum 
possible energy f f y  and the minimum momentum f fk@y/  
~ ) 1 / 2 . 1 6  

5. EVOLUTION OF ATOMIC BEAM IN A LASER FIELD 

We shall use Eq. (36) to analyze the influence of the 
light-pressure force and of velocity diffusion on an a- 
tomic beam propagating along a laser  beam. The most 
interesting physical features of such a problem a r e  the 
monochromatization of the longitudinal velocities and 
the focusing (defocusing) of the beam. 

Velocity rnonochromatization. When considering the 
evolution of the longitudinal velocity distribution of the 
atoms, we shall assume the wave to be plane and disre- 
gard the insignificant variation of the distribution func- 
tion along the z axis and the diffusion of the transverse 

FIG. 2. Deceleration of beam of cad' atoms and narrowing of 
its velocity distribution by an opposing light wave resonant to 
the transition 4s-4P. The dimensionless detuning is  6= n/ 
Y = -70, and the saturation parameter i s  G = 10. The solidcurves 
represent the solutions of Eq. ( 51 ) , and the dashed curves the 
solutions of ( 51 ) without the diffusion term. 

velocities. Under these simplifications, Eq. (36) re-  
duces to the one-dimensional diffusion equation 

aw a 
-=-- 

a= 
( L w )  + e(l+cr.,+d)-(Lw). 

a t  au 3  uz 

We write down the latter in terms of dimensionless var- 
iables, choosing the units of time and velocity to be 
(kv,)" and y / k .  

The solution (51) has different qualitative behavior a t  
short and long times. During the initial stage of the 
evolution, besides the change of i t s  average rate, the 
distribution becomes narrower,16 owing to the monotonic 
decrease of the force when the atomic velocity deviates 
from the resonant velocity v, = 6 (6 This feature 
is clearly seen in Fig. 2, which shows the time evolu- 
tion of w for an atomic beam irradiated by an opposing 
light wave. During this stage of the evolution, the diffu- 
sion exerts  a weak influence on the width of the distribu- 
tion (see the solid and dashed curves in Fig. 2). 

Over long times, allowance for diffusion is essential, 
and the question of fundamental interest  is that of the 
asymptotic form of the distribution w(v ). To obtain the 
answer, we recognize that in this case one should take a 
long time to mean one in which the average velocity vo 
of the distribution is far  from the resonant one (v - 6) 
>> (1 + G ) " ~ .  Then, assuming the distribution to be nar- 
row enough, we expand L(v) in powers of u =v - v o  about 
the mean velocity vo. Confining ourselves further in (51) 
to those expansion terms that take into account the 
change of the average velocity and of the distribution 
width, we write down an asymptotic form of (51): 

aw a w  
- + L , - - - = E ( I + c ( , . ) L ~  at au (52) 

and the equations for the f irst  two moments of the dis- 
tribution (v, = (v) ,  T = (u2)): 
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where 

Recognizing now that the time dependence of w i s  func- 
tional: 

W ( U ,  t )=w(u;  uo(t)), 
(55) 

we calculate the derivative with respect to time in (52) 

and proceed to solve (52) by successive approximations. 
The latter allows u s  to represent a solution in the form 
of a ser ies  

,"=w'~'+w"'+ . . . , (57) 
whose terms take successively into account the change 
of the average velocity vo with time. 

To obtain the zeroth-approximation function, we se t  
the left-hand side of (52) equal to zero  and, solving 
(52), obtain 

w'"' = (2nTo) -'" exp (-u2/2TO). (58) 
We now substitute (58) in the left-hand side of (52) and 
retain the normalization of the function w relative to the 
function wtO'. Then, solving (521, we determine w" ': 

w ' ~ ' - ~ / ~ w ' ~ '  (1-uZ/TO) . (59) 
Continuing the calculations, we can successively deter- 
mine the next terms of the expansion (57). 

Thus, the exact asymptotic distribution w(v) is deter- 
mined by the se r i e s  (57). We indicate in connectionwith 
this conclusion that in Ref. 16 the function w"' was sug- 
gested a s  the asymptotic form of w(v). It i s  easily seen, 
however, that cutting off the se r i e s  (57) after the f i r s t  
term leads to the equality T =To  and contradicts (54). 
To determine the true asymptotic temperature i t  is nec- 
essary to recognize that, according to (57), T is pro- 
portional to To. We then find from (54) that in the case 
of long times we have T = ( 4 / 5 ) ~ ~ .  The last  result  
makes i t  also possible to indicate that formally (57) is a 
ser ies  expansion in powers of the parameter I T  - To I/?o 
=1/5. 

Focusing of the beam. To analyze the evolution of the 
transverse distribution of the atomic beam, we shall 
disregard the variation of the width of i t s  longitudinal 
velocity distribution, assuming the latter to be a 6 func- 
tion. In addition, by virtue of the cylindrical symmetry 
of the problem, we consider only the one-dimensional 
transverse motion of the atoms, e.g., along the x axis. 
The corresponding equation for w is obtained from (36). 
In dimensionless variables, i t  takes the form 

where u denotes the transverse velocity along the x ax- 
is, and s =2qk  i s  the dimensionless radius of the light 
beam. 

We note immediately that in (60) the oscillations of 
the transverse velocity (and coordinate) distribution a r e  
due only to the action of the harmonic force, and a r e  
smoothed out by diffusion in the course of time. In this 
connection, from the point of view of focusing of a 
beam, principal interest attaches to sho.rt times, for 

FIG. 3. Oscillations of transverse dimensions of atomic beam 
in the field of laser radiation of fundamental mode TEMoh. 

which the width of the velocity distribution Au exceeds 
the diffusion broadening. We therefore drop the right- 
hand side of (60) and write down the characteristics of 
the obtained linear equation 

The solution of the nonlinear system (61) entails a 
number of serious difficulties. We therefore simplify 
the problem, but bear nevertheless in mind the situa- 
tion of practical importance. We assume that Ix I << q ,  
and then L becomes a function of the longitudinal veloc- 
ity only. We assume the velocity v to be limited by the 
conditions (1 + G)'"<< v - 6<< 6. After these simplifca- 
tions, Eqs. (61) can be solved by the method of slowly 
varying amplitudes. Under the initial conditions 

z (0)  =o, u(0) =u,, x (0)  -x,, u (0)  =o, 
which correspond to an unfocused beam, the dependence 
of the transverse coordinate x on the longitudinal z is 
represented in parametric form 

The obtained solution shows that in the course of prop- 
agation the transverse dimension of the atomic beam 
oscillates with decreasing frequency, and the envelope 
of the amplitude of the oscillations increases nonlinear- 
ly (Fig. 3). Under the condition of practical importance 

( V , - ~ ) " ~ ~ ' / , X  (G/2e)"'s, 

which means that during the focusing time the longitud- 
inal velocity of the beam changes little (v - vO<< vo- 6), 
we can obtain from (62) the position of the f i rs t  focus 

For the beam of ca40 atoms considered above, a t  a 
transverse light-beam dimension q = lom2 cm, an initial 
velocity vo = 7 x 1 0 ~  cm/sec, and a detuning 6 =50, the 
focusing length is zf = 30 cm. 

The author thanks V. S. Letokhov for help during all 
stages of the work. I am grateful to V. M. Agranovich 
and the participants .of the seminar under h i s  direction 
for a critical discussion of the considered questions. 
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Propagation of an electromagnetic field in noninertially 
moving optically active media 
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The propagation of electromagnetic waves in an optically active medium at rest in a rotating coordinate frame 
is investigated on the basis af the method of local Lorentz transformations. The results are used to determine 
the splitting of the naturd frequencies of a ring resonator rotating together with the medium. The theoretical- 
analysis data agree welt with the results of the performed experiment. 

PACS numbers: 41.10.Hv, 78.20.L~ 

1. To determine the character of propagation of 
electromagnetic waves in an arbitrary medium that is 
a t  r e s t  in a noninertial reference frame, i t  is neces- 
sary  to solve Maxwell's equations, which in covariant 
form a r e  given by1 

where fld and F,, a r e  bivectors of the electromagnetic 
field, V, i s  the covariant derivative, and a correspondence 
is established between the components of the tensors I f f ia ,  
F,, and the three-dimensional vectors in accordance 
with the rule 

H*,= (H0'; H"") = ((-g) "D; (-g) '"H), 

F,= ( F w ;  Fmn) = (E; B), 

which transforms (1) to the usual three-dimensional 
form.' 

the framework of special relativity theory, to include 
the case of general relativity theory, has led to dis- 
crepancies in the main  result^.^-^ It has been shown6" 
that these discrepancies a r e  due to the erroneous as- 
sumptions5 made in the construction of the material 
tensor that determines the coupling equations. 
This was confirmed in an experimental determination8 
of the influence of the refractive index n of an isotropic 
medium on the splitting Av of two opposing waves of a 
rotating laser  with a ring resonator (RR). Volkov and 
~ i se l ev ' ,  within the framework of a method developed 
by them,' determined the splitting AV for the case when, 
in the proper system of the rotating resonator, the per- 
mittivity and the permeability of the medium a r e  spec- 
ified by gyrotensors 2 and ;. The result in Ref. 9 dif- 
f e r s  from an analogous result obtained in their own pa- 
per'' with qualitative account taken of the gyrotropy of 
the medium. 

The system (1) must be supplemented by the equations 
Thus, the available theoretical data do not make i t  

that connect the bivectors Pa and E,,-the material possible to determine rigorously the character of the 
equations. To establish the covariant form of this con- propagation of the electromagnetic field in rotating op- 
nection in noninertially moving media one used custom- tically active media, and the solution of this problem 
arily generalizations of various schemes for the con- calls for  a detailed theoretical and experimental study. 
struction of the material equations of inertially moving - 
media.' However, even in the f irst  few theoretical pa- In the present paper we construct the material equa- 
pers the use of different versions of generalizations of tions and solve subsequently the propagation problem on 
the electrodynamics of moving isotropic media, within the basis of the method of local Lorentz transforma- 
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