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The diffusion problem is considered for a medium in which processes of disintegration and of reproduction of 
the diffusing substance are possible. The critical intensities of the fluctuations in the disintegration and 
reproduction rates, which lead to the occurrence of noise-induced explosive instability, are determined. The 
effects of suppression of such instability by nonlinear limitation mechanisms are analyzed. Fluctuation 
phenomena near the noise-induced phase-transition point are investigated. 
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The action of external noise can lead to a qualitative the concentration n suppresses reproduction o r  in- 
reorganization of the behavior of a dynamical system." creases the rate of disintegration of the diffusing com- 
In those cases in which such a reorganization is ob- ponent . 
served in a distributed system and i s  accompanied by In a closed system, reproduction cannot continue 
establishment of a new stationary mode, it is cus- 

without limit and must end upon exhaustion of the sub- 
tomary to speak of a noise-induced phase transition in strate required for this. We shall suppose, however, 
such a system. The study of noise-induced transitions that the medium is open and that the mean rate of r e -  
is One of the problems of the general of production is maintained constant by influx of 
ing and disordered media, in the construction of which from external sources. 
there a re  todav used a whole ser ies  of traditional 
methods of the of the theory of equilibrium phase tran- We assume that the reaction rates k, and k, fluctuate 
sitions. in a prescribed manner in space and in time (fluctua- 

tion; in the coefficient 6 may be disregarded, since 
In the present paper, we consider the problem of dif- the concentration n is small). Then we may distinguish 

fusion through a fluctuating medium, in which proces- in them the regular and the fluctuating components, 
s e s  of disintegration and reproduction of the diffusing 
substance are-possible. Inthe paper, the threshold of k , , z ( r ,  t)=Itl,2+6k,,z(r, t ) ,  It , ,2=(kI,z(t,  t ) )  (3) 
noise-induced explosive instability in such a system is and may finally rewrite the diffusion equation (1) in the 
determined, and a possible mechanism for i t s  suppres- 

form sion is considered. Fluctuation phenomena near the 
noise-induced phase-transition point a re  analyzed, and li=-an-pnz+DAn+f ( r ,  t )  n, (4 
the spatially inhomogeneous problem is investigated. a -  f ( r ,  t )  =6kz(r, t )  -6k,(r, t )  . (5) 

5 1. FORMULATION OF THE MODEL We shall hereafter assume that the coefficient o! is pos- 
itive; this corresponds to a situation in which the mean 

Let K,(r,t) be the rate of disintegration of the diffus- rate of disintegration exceeds the mean rate of repro- 
ing substance at the instant t at the point r of the me- duction. 
dium, and let K,(r,t) be i t s  reproduction rate a t  this The random field f ( r , t )  is external with respect to 
point, so  that the diffusion equation has the form the problem under consideration, since i t  does not de- 

li=- (K,-K,)n+DAn. (1) pend on the concentration distribution n(r,t). The 
mean value of this field is zero by definition, and we 

In general, the values of K, and K, depend on the lo- shall suppose that i ts  pair  correlators fall off exponen- 
cal concentration n(r , t )  of the diffusing substance. tially in space and in time: 
Limiting ourselves to consideration of small concentra- 
tions, we shall suppose.that this dependence is linear: ( f (r ,  t ) f ( r f ,  tf))=Sexp(-kolr-r'l-yIt-t'l). (6 

Kt-K2=k,-k2+$n, (2) We shall also assume that the random field flr, t )  is  
where the coefficient f i  is positive; that is, increase of Gaussian. 
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With allowance for fluctuations of the rates of repro- 
duction and disintegration, there is, in a medium de- 
scribed by equation (4), a randomly time-variable spa- 
tial structure of centers of reproduction, within which 
the condition f(r , t)  > (Y is satisfied locally at a given 
instant of time. A characteristic spatial dimension of 
an individual center of reproduction is the quantity ro 
= l/ko, and a characteristic time of existence of one 
such a center is r0 = l/y. In the limit rO- m, in parti- 
cular, equation (4) describes diffusion through a me- 
dium with a stationary random distribution of centers 
of reproduction. 

On increase of the noise intensity S, the concentration 
of centers of reproduction in the medium increases; 
and at a certain critical noise intensity So,, the total 
growth of the density n within the centers of reproduc- 
tion will begin to  compensate the falling off of the den- 
sity n outside such regions. This critical value deter- 
mines the noise -induced phase -transition point. 

If the coefficient 0 of nonlinear decay were zero, a 
stationary state of the system for S > So, would be im- 
possible; the observed effect would be an uexplosion,n 
typical of systems with chain reactionsS2 But i f  ,9# 0, 
then the explosive instability is suppressed, and there 
is established in the medium a stationary mean density 
(n) that increases with increase of S above S,, and that 
vanishes a t  S =So,. 

For investigation of the noise-induced phase transi- 
tion, we shall use standard methods of the theory of 
phase transitions. 

82. THE GINZBURG-LANDAU EQUATION 

Starting from the parameters (1, D, k,, and y that oc- 
cur in this problem, one can construct three character- 
istic combinations with the dimension length. 

a )  The characteristic dijj%swn distmce 

gives the mean depth of penetration from the boundary 
in the absence of fluctuations. 

b) The characteristic stationarity distmzce 

i s  the mean distance over which a particle can pass by 
diffusion during the time To= y" of existence of an in- 
dividual center of reproduction. 

c) The characteristic dimension of a center of 
reproduction is 

The three distances enumerated play the role of micro- 
scopic scales of our problem. 

We introduce a smoothed concentration q(r,  t), de- 
fining i t  by a spatial average over a small volume A V 
with linear dimensions (A v)"' large in comparison 
with the microscopic scales (7)-(9): 

To obtain an equation for q ,  we carry out a spatial 
smoothing in the original equation (4): 

4 = - a q - B q Z f  DAq+f  (r, t )  q - ~ < f ) ~ ~ + < f n " ) a v .  (11) 

Here the symbol ii has been introduced for the concen- 
tration component that fluctuates rapidly in space @ 
= n  -7); the random field f ( r , t )  i s  determined by 
smoothingy(r, t) over the volume AV, and f(r ,  t )  = f ( r ,  t )  
- j ( r ,  t )  i s  the rapidly fluctuating component of the field 
f(.,t). 

Subtraction of (11) from (4) gives the equation for E: 

k=-aii-j3[2qii- ( f ? - < f ? ) A V )  ] +DAii 
i f ~ + q f + ( f ~ - < f ~ ) ~ ~ ) .  (12) 

In order to obtain a closed equation for q ,  we must 
determine from (12) the correlators of the rapid quan- 
tities, (j;),, and In the calculation of these 
correlators, we may take into account that the averag- 
ing volume AV is large on a microscopic scale, and 
therefore averaging w e r  this volume may be replaced 
by taking of the statistical mean at the prescribed local 
values of the smoothed quantities q and? 

We may also note that under the condition 

linearization with respect to A is justified in equation 
(12); a s  a result, it takes the form2' 

By starting from the linearized equation (15), one can 
easily determine the required correlators in the usual 
manner. They a re  given by the integrals 

Here S(q) is the Fourier spectrum (q = k, w )  of the ran- 
dom field f(r ,  t). For various dimensionalities d of the 
medium, the expressions for S(q) are:  

The notation a,,* = (Y + 2,9q - f has also been used. 

The integration in (16) and (17) should be limited to  
wave vectors 1 k l>2r/(A V)"'. It can be shown, how- 
ever, that the main contribution to these integrals 
comes from values of the wave vectors corresponding 
to microscopic scales;.and therefore, neglecting small 
terms of the order L,,,/(Av)'~', where Lao,, a re  the 
characteristic microscopic scales (7)-(9), we may ex- 
tend the integration to the region I k I < 27r/(Av)'I' as 
well. 

The functions of 7 a n d 7  defined by the expressions 
(16) and (17) must then be substituted in equation (11) 
for q. Here i t  may be noted that if the condition (14) 
is satisfied, then the term p(E2), in (11) is always 
small in comparison with the term j3q2 in the same 
equation and may be neglected. Furthermore, since we 
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q and small intensities of the smoothed fluctuational 
field 7, we may expand (i?), in powers of q and 7, 
keeping only terms through the second order in q and 
terms linear in f. 

Taking into account that, a s  i ~ e v i d e n t  from the ex- 
pression (I?), the correlator (nf), is proportional to 
the noise intensity S, we may then write the resulting 
equation in the form 

Q = - a [ l - ( S / S , )  ]q-p(l+C,)q2+DAq+fq(i+C2); (19) 

In the derivation of equation (19), the assumption (14) 
was used. Since we have now obtained the explicit ex- 
pression (16) for the correlator (;'),, we can test the 
validity of this assumption. It must first  of all be noted 
that according to (16), the root-mean-square of the 
rapid component i is  proportional to the local value of 
q. Therefore, in contrast to the situation near an 
equilibrium second-order phase -transition point, satis  - 
faction of the criterion (14) does not impose limitations 
on the proximity to the noise -induced phase -transition 
point, and the calculation of the integral in (16) can be 
carried out directly a t  S=So,, q =  0. 

The results of a calculation of the critical noise in- 
tensities So, and a test  of the fulfillment of the criterion 
(141, for various dimensionalities of the medium under 
study (d = 1,2,3) and for various relations between the 
characteristic distances (7)-(9), a re  given in the Ap- 
pendix. It is evident that the criterion (14) is far from 
being fulfilled in all cases. For i t s  validity, it is first 
of all necessary that the characteristic dimension Y, of 
a center of reproduction be much smaller than the 
characteristic diffusion distance rat, = ( ~ / c y ) ' l ~ .  Also 
important is the relation between the stationarity dis- 
tance 1 = ( ~ / y ) l "  and the value of r,,,, . When the life - 
time r0 = y'l of an individual center of reproduction is 
large, i.e., I >> rdi,, >> yo, the criterion (14) is satis- 
fied only in the three-dimensional case. 

In the present paper, we shall restrict  ourselves to 
consideration solely of those situations in which the 
criterion (14) is satisfied. If this i s  not so, the field 
n(r , t )  is a strongly fluctuating one; and in the analysis, 
complexities occur that a r e  typical of the fluctuation 
region near an equilibrium second-order phase transi- 
tion. Calculations also show that in all the cases of 
interest to us, the corrections Cl and C, [see (20)] a re  
small, and therefore the Ginzburg-Landau equation ( 19) 
for the smoothed concentration q, which plays the role 
of order parameter of the problem, can be rewritten in 
a simpler form: 

We recall that the random field 7 is obtained by spa- 
tial smoothing 

over a volume AV with linear dimensions much greater 
than the microscopic scales (7)-(9); and that since (f) 
= 0, the intensity of the field 7 approaches zero with in- 
crease of AV. 

$3. NOISE-INDUCED PHASE TRANSITION 

For an infinite medium, the averaging volume AV 
may become infinite, so  that the smoothed concentra- 
tion'q will be the mean value (n) a t  the instant of time 
under consideration, and the value of (n) will be gov- 
erned by the equation 

We assume that a t  the initial instant, there was in the 
medium some uniform concentration distribution (n(0)) 
=no. If the intensity of the fluctuations of the ra tes  of 
disintegration and reproduction is small (S <S,), then 
with passage of time (n(t)) -- 0, the characteristic time 
of extinction is 

But if S > S,,, then there is established in the medium 
a self-sustaining stationary distribution with mean con- 
centration (n) independent of the initial value no. Thus 
for the steady -state, stationary mode: 

Wc interpret the occupation of the medium when S > So, 
as a noise-induced phase transition. 

In order to treat  fluctuational phenomena near such a 
phase-transition point, we note first  of all that for an 
infinite medium, when AV - m, the criterion that we 
used in deriving equation (21) can be put into the form 

s o  that i t  takes the form of the condition for applica- 
bility of the self -consistent field approximation (the 
Ginzburg criterion) for the nonequilibrium phase tran- 
sition under study. AS follows from the expression 
(16) (see also the Appendix), the specific character of 
a noise-induced phase transition manifests itself in the 
fact $hat the root-mean-square fluctuation of the con- 
centration n turns out to be proportional to the mean 
concentration (n), and therefore the Ginzburg criterion 
(25) either is satisfied all  the way to the transition 
point itself, o r  is not satisfied at all, depending on the 
dimensionality d of the medium and on the relation be- 
tween the characteristic lengths (7)-(9). Such an un- 
usual fluctuational behavior is due to the fact that the 
order parameter in this problem is a positive definite 
quantity and that for S - S,,, the root -mean-square 
fluctuation of the order parameter disappears along 
with the order parameter itself, which vanishes at S 
=So,. Calculation of the single -tim e pair correlator 
(n(r)n(rl)) under the conditions for validity of the cri-  
terion (25) shows that the correlation radius deter- 
mined by this correlator remains finite at the transi- 
tion point and is determined by the microscopic scales 
(7)-(9). 
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Consideration of the percolation problem i s  also of 
interest. Let a medium described by equation (4) oc- 
cupy the half -space {x, y , z ;  x > 01, and let the concen- 
tration n on the boundary x =  0 be maintained constant 
by an external source. Although the mean rate of dis- 
integration of the substance n on the average exceeds 
the mean rate of reproduction of it, as a result of fluc- 
tuations of these rates there ar ises  in the medium a 
random structure of centers of reproduction, within 
which the diffusion current from the boundary x = 0 is 
capable of obtaining reinforcement. Because of this, 
the mean depth of diffusion penetration increases a s  
compared with the characteristic diffusion distance 
raft = (D/a )'I2 in the absence of fluctuations. For 
noise intensities S sufficiently close to So,, this char- 
acteristic distance can be determined from equation 
(21): 

Thus 6L becomes infinite when S=So,, s o  that for S 
>So, the medium becomes transparent for the diffusing 
substance n. 

54. THE ROLE OF RARE FLUCTUATIONS 

The Ginzburg criterion (25) requires that on the 
average, the random variations of the density n must 
be small in comparison with i t s  mean value (n). Thus 
fulfillment of this criterion does not prohibit the occur- 
rence of strong fluctuations, for which 6n is larger 
than or  of the order of (n), but guarantees only their 
exponential rareness. The preceding treatment, based 
on development of a perturbation theory in the varia- 
tions of the density n, did not take into account possible 
effects caused by exponentially ra re  strong fluctuations. 
The present section of the paper is devoted to a discus- 
sion of such effects. 

Although the strong fluctuations a re  exponentially 
rare ,  the growth of the concentration n at them may 
reach extremely large values. As a result, against a 
macroscopically homogeneous background, due to typi- 
cal weak fluctuations, there ar ises  a structure of rare  
oases, each of which possesses i ts  own lifetime T. 

The greatest interest attaches to two questions: f irst ,  
whether there does not occur a self -sustaining popula- 
tion of rare  oases at lower noise intensities S, as com- 
pared with the above-found critical value So, at which 
population of the medium begins to occur because of 
typical, weak fluctuations; and second, what the con- 
tribution of the rare ,  populated oases is to the mean 
steady -state concentration. 

We note that in solution of the first  of these problems, 
i t  is sufficient to  consider an equation linear in the con- 
centration n, by disregarding the term @z2 in Eq. 
(4). In fact, w e  shall suppose that a t  the initial in- 
stant of time, there is prescribed a uniform concentra- 
tion distribution n(r,  t = 0) =no, and that the value of no 
is small. Then even if population occurs and the con- 
centration n begins to grow with time, in the f i rs t  
stage (which can be made as prolonged as one wishes 
by choosing a sufficiently small value of no) the term 
-@z2, which causes the limiting of the growth of the 

concentration, can be disregarded. Furthermore, i t  
is natural f irst  to carry out a renormalization of the 
coefficients of equation (4) because of typical weak fluc- 
tuations, obtaining 

li=-a.,,n+DAn+f (r, t)n, (27) 

where aefl = a(1 - S/S,,), and where f(r ,  t )  contains only 
the exponentially rare  fluctuations. 

The substitution 

reduces equation (27) to the form 

n'=f ( r ,  t )  n1+DAn'. (28) 

Below, we shall omit the primes in the notation for the 
new concentration. 

Because the strong fluctuations a re  exponentially 
rare ,  they may be treated independently. Let the vol- 
ume AV within the time interval At contain one such 
fluctuation, so  that the increase of the quantity of r e -  
producing substance in this fluctuation is 

We consider formally the eigenvalue problem 

where the linear operator E ( t )  has the form 

t ( t )  =DA+f ( r ,  t )  . (31) 

For each instant of time t equation (30) i s  equivalent to 
a stationary Schr'Cidinger equation, reduction to which is 
accomplished by the substitution 

D-+ (h2 /2m) ,  f t - ( r  t  h+-E. (32) 

If the field f did not change with time, the general 
solution of equation (28) for a single strong fluctuation 
would be given by the expansion 

where {A,) is the spectrum of the operator 2.. Then 
the fastest growing term in (33) would be that for which 
A = m a , .  In the language of the Schr'odinger equation, 
i t  would correspond to the deepest level in the well 
U(r) = -f(r). Actually, the field f changes with time, 
and therefore A, =A,@) and A, =v,(r; t) .  We also define 

h ( t )  = max hl ( t ) .  
1 

In order to characterize each fluctuation roughly, it 
is possible to indicate for it the mean (over time) value 
of and the lifetime of the fluctuation 7. If AT << 1, then 
this fluctuation is weak, since growth of concentration 
n in i t  i s  small and i t  can be taken into account by per- 
turbation theory. Thus strong fluctuations satisfy the 
condition AT 2 1. For such fluctuations, the potential 
f ( r , t )  in equation (28) is a slowly varying function of 
time; and in analogy with the nonstationary Schrzdinger 
equation, we may use the adiabatic approximation,' ob- 
taining for the total increase of the quantity of sub- 
stance the expression 
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By introducing a characteristic parameter 

describing each individual strong fluctuation (s 2 I), we 
can put the expression (34) into the form 

where n(0) is the mean value of the concentration in 
the medium at  the instant immediately preceding the 
occurrence of the given fluctuation. 

Let p =p(s) be the probability that unit volume within 
unit time contains a strong fluctuation with parameter 
s. Then the mean increase of concentration a t  strong 
fluctuations per unit time is 

Since strong fluctuations a re  exponentially rare ,  p(s) 
-exp(-@(s)), where @(s)>> 1. Therefore by use of (35) 
and (36) we get - - 

~ n - i i  exp (s-@ (s) )ds-Qii. (37) 

Thus the growth of the volume-average concentration 
TZ because of strong fluctuations occurs according to the 
law A = @ ;  or ,  after return to the old concentration n 
by the substitution TZ= Ti' exp(-cu,,,t), 

Thus we must estimate the value of 

The order of magnitude of this quantity is determined 
by competition of two factors: the exponential rareness 
of strong fluctuations, and the exponential growth of 
concentration at each of them. If F(s)  < 0 for all s, 
then the value of Q is exponentially small; but if ~ ( s )  
> 0 within some interval of values of s, then the coef- 
ficient Q will be exponentially large. 

We note that Q = Q(S), where S is the noise intensity. 
It is important to know what the value of Q,= Q(S,,) is. 
If Q, is exponentially small, then strong fluctuations 
cause only an exponentially small shift of the threshold 
for population calculated earlier (a,,, = 0); while if the 
value of Q, is exponentially large, then population at 
strong fluctuations is sustained even a t  much lower 
noise intensities than S=So,. 

A typical fluctuation contains a deepest level 5; (if 
there a re  any levels a t  all in it; see the three-dimen- 
sional case), whose lifetime is of order ro,  where r0 
is the correlation time for Gaussian noise f(r, t); for 
such a typical fluctuation, the condition AT,<< 1 is sat-  
isfied if the Ginzburg criterion is fulfilled. The ap- 
pearance of strong fluctuations with s 2 1 is an expo- 
nentially rare  event and may be achieved for two rea- 
sons. First, i t  may occur because of a fluctuation with 
a level A of very great depth (h >> x). Since the occur - 
rence of such a fluctuation is already an exponentially 
ra re  event, one must expect that i ts  lifetime will be 
typical (T -7,). Second, some one of the fluctuations 

with a typical depth A -K may turn out to be exception- 
ally long-lived, s o  that T >> T, and hr 2 1. 

We shall begin such a treatment with the three-di- 
mensional case (d= 3) under the condition Y,,,, I>> yo, 

when, a s  is evident from the Appendix, the Ginzburg 
criterion is satisfied. Then the threshold noise inten- 
sity S,, is 

By considering the equivalent eigenvalue problem (30) 
of a stationary Schrijdinger equation with the substitu- 
tion D- Ii2/2m, f -- -U, A -- -E, we see that near the 
threshold for population a t  weak fluctuations, a typical 
well, having depth Uo -S,, and width a -yo, contains no 
levels a t  all. Consequently, the very appearance of a 
discrete level i s  already an exponentially ra re  event; 
and if it occurs, the level will exist for a time of about 
rO. Therefore in making estimates, we may set 

Q - j .XP (AT.-@ (U IR (41) 
1/r. 

where w k )  -exp(-@(A)) is the probability of occurrence 
of the level A. 

The function @(X) must be calculated on the basis of 
equation (30), which a t  each instant of time reduces, 
by the substitution (32), to a stationary Schr"odinger 
equation. Therefore we may use the known calcula- 
tions4 of the density of states in the fluctuation region 
for the Schrijdinger equation in the case of a Gaussian 
random potential with intensity S and correlation ra -  
dius ro. Under the condition S<< p/~:, the expres- 
sions presented for the three-dimensional case in the 
review of Liftshitz, Gredeskul, and Pastur4 given 

where the coefficient 5 is of order unity. 

It is then easy to demonstrate that the maximum of 
the function F(x) = AT, -@(A) is attained in the range 
A - D / Y ~ ;  and because of the condition I >.> Y,, we have 
1 /rO << D/Y i. Since 

max F ( h )  <D2/Sr;-Dzo/r,', (43) 

the condition max F(A) < 0,  which insures an exponen- 
tially small coefficient Q, is satisfied a t  noise intensi- 
t ies S <S,, where 

Thus self-sustaining population of oases-rate strong 
fluctuations-occurs in this case at noise intensities 
S > S,. On comparing the value of S, with the value of 
the threshold So, for population of the medium because 
of typical weak fluctuations, not containing levels with- 
in them, we find that S,<< So, when I >> rat, (that is, 7, 

>> l/a), and that S >>So, when I<< rdU, (that is, r,<< I /  
ao). 

We shall consider further a situation likewise in the 
three-dimensional case, but with a different relation 
of the characteristic lengths, r,,, >> Y, >> 1, when, a s  
follows from the Appendix, the Ginzburg criterion is, 
as before, fulfilled. In this case, the expression for 
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So, may be written in the form 

and therefore if r, ~ ( Y ~ , , , I ) ' / ~ ,  we have giZ2 D/Y& and 
a typical well contains levels within it. 

The condition yo>> 1 means I/?,>> D/r:; and therefore 
when A > 1/7,, the expression for @(A) is given by for- 
mula (42a). For S =  S,, we have 

F (h )  =hro- (zoh2/2a) ,  (46) 

and since the relation F(A) = -1//2arO<< -1 is already 
valid at A = 1/7,, the condition F(A) < 0 i s  certainly sat- 
isfied for all h > r,', and therefore the contribution to 
the coefficient Q from deep levels (A > 7:') is exponen- 
tially small. 

But now we must take into account the possibility that 
one of the levels with a typical depth A -z turns out to 
be long-lived. We shall f irst  estimate the probability 
that a given level with a typical value <will survive a 
time 7 >> 7,. The probability functional of Gaussian 
noise f(r ,  t )  is 

where the function g(r, t )  is determined by the condition 

g(r-r', t - t f )o(r ' -r , ,  t'-t,)drl d t f=S(r-r , )  6 ( t - t , )  

and according to the expression (6) 

o ( I ,  t )  =S exp (- I r  1 Ir,) exp (- It 1 1 ~ ) .  

If the given fluctuation is long-lived (7 >> T,), then i ts  
potential f(r, t )  varies smoothly in time as compared 
with the correlation t ime rO, and therefore a t  such a 
fluctuation the functional (47) takes the same value a s  
does the corresponding functional for temporally white 
noise: 

Plf (r ,  t )  I - exp{-%.;' j l I ( . , - r 2 ) f  ( r l ,  t ) f  (rat t )dr l  d r zd t )  (48) 

g(r - rT)S  e~p(-r~-~Ir-r,l)dr~=8(r-r,). 

We take for an estimate the function 

f ( r ,  t )  = ~ ( r )  at O<t<z, 

f ( r ,  t ) = 0  at t<O or t>z .  

The functional P takes on i t  the value 

If the fluctuation (apart from its 'longevity") is typical, 
this means that 

j j i+(r t -r2)x ( r , )x ( r2 )dr i  d r2Gi .  (51) 

Therefore the probability p =p( r )  of the appearance of 
levels typical as regards depth, but long-lived, is 

P ( T )  -exp (-cp(z) 1, cp(z) -t/ro at 7 ) ~ .  (52) 

The contribution to the coefficient Q from such fluc- 
tuations may then be estimated as 

Q - j e x p  ( x ~ - ~  (T) I dz.  (53) 

It is evident that, since under the Ginzburg condition 
z<< l/ro, the contribution (53) is exponentially small. 

Thus when d =  3, for relations between the character- 
istic distances r,,,, 1, and r, that insure satisfaction of 
the Ginzburg criterion, population a t  r a r e  fluctuations 
can occur below the population threshold S,, found in 
Sec. 3 only for sufficiently large correlation times 7, 

>> l/a (and, in particular, for stationary random 
media). 

We shall further consider the situation in the two- 
dimensional case (d= 2), when the Ginzburg criterion, 
as is evident from the Appendix, is satisfied for Y,,, 

>> yo, 1. Since an arbitrarily shallow two-dimensional 
well contains levels within i t ,  we must take into account 
the contribution to the coefficient Q both from levels 
that a r e  deep (A > 7;') but of average lifetime (7 - 7,) 

and from levels that a r e  typical in depth (A -z) but 
long-lived. The latter contribution can be estimated by 
a method completely analogous to that used above for 
the three-dimensional case, and i t  is found to be expo- 
nentially small. The contribution from the deep levels 
is 

We first  analyze the case in which r,,,, >> I >> yo. In 
this case 

and therefore near the threshold S = S,,, values X > 7;' 
belong to the fluctuation region (A% S r i / ~ ) .  After ap- 
propriate changes of notation, the expression for @(A) 
given in Ref. 4 takes the form 

Q ( h )  =h2/2S at hrO2/D> I ,  (56a) 
Q (h)  - (D21Sr,') (hr,tlD) at Sr:/D2<hr2/D<i. (56b) 

Since for S -So, the relation 

holds, and since we a re  considering the case r,,,, >> 1 
>> ro (that is, rO<< a"), the value of F(X) is negative for 
all A > T;', and consequently the coefficient Q for S S , ,  
is exponentially small. 

The case d =  2 and rat, >> yo>> 1, when So, = a /7 ,, 
must be treated separately. In this case 7;' % D/Y :, 
and @(A) is given by the expression (56a). Then the 
condition F(A) < O  for A > 7,' is satisfied if 

With allowance for the expression given above for So, 
in this case, this means a?, << 1, and therefore the re-  
quirement (58) is satisfied. 

Thus when the dimensionality of the medium i s  two, 
in all the cases examined in which the Ginzburg criter-  
ion is satisfied, population a t  r a r e  fluctuations for S 
<So, does not occur. 

We finally consider the one-dimensional case (d= l), 
when the Ginzburg criterion is satisfied if r,,,, >> r,, I. 
An arbitrarily shallow one-dimensional well contains 
levels within it; but the contribution to  the coefficient Q 
from levels that a r e  typical in depth but long-lived i s  
again small, for the same reasons as in the three-di- 
mensional case, when r,,, >>yo>> 1. The value X = 7;' 
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again falls in the fluctuation region, where now (see 
Ref. 4) 

m ( A )  = A ~ / Z S  at A~,'/DB 1, (594 
0 (A) - (Dz/Sr,') (hr,'lD)" at Sr2 /D1<Ar~/D<i .  (59b) 

It is easy to show that when S -Sar, the value of F(X) 
 AT^ -@(A) is negative for all A > T,", and therefore the 
coefficient Q for S -So, i s  exponentially small; this 
means absence of population of oases for  S cS,,. 

Thus population because of r a r e  fluctuations is sus- 
tained a t  noise intensities S less  than s,, only in a 
three-dimensional medium, under the conditions I 
>> r,, , * >> Yo. 

We shall now discuss the contribution to the steady - 
state concentration ( n )  from population of oases-ex- 
ponentially ra re  strong fluctuations. For this purpose 
(in contrast to the problem of the population threshold) 
we must take account, in the original equation (4), of 
the nonlinear term @z2, which limits the growth of con- 
centration at an individual oasis. Appropriate esti-  
mates may be made a s  follows. 

With allowance for the nonlinear limiting, the total 
quantity of reproducing substance a t  an individual 
oasis-a rare  fluctuation with level A-is approximate 
ly 

where V(A) is the characteristic volume over 
which the effect of a strong fluctuation spreads. The 
contribution of strong fluctuations to the mean concen- 
tration i s  then 

Since strong fluctuations a re  exponentially rare,  a 
leading role in the integral (61) is played by the factor 
exp[-@(A)], in which @(A)>> 1; @(A) increases with in- 
crease of A. Therefore the contribution Ti under con- 
sideration i s  exponentially small; and apart from a 
preexponential factor, we may write that 

In view of the exponential smallness of ?I, this con- 
tribution can certainly be neglected for S > s,,, when 
the principal contribution (24) to the mean concentra- 
tion i s  that due to population by typical weak fluctua- 
tions. Only in one case-for a three-dimensional 
medium with I >> Y,,,, >> r,, when population at r a re  
fluctuations i s  sustained far below the value S = S,, -is 
allowance for this warranted. In this case, on the 
mean concentration (24) calculated above is superposed 
an exponentially small tail, 7i -exp(-p/Sr :), self - 
sustaining below S,, down to noise intensity S -S, [see 
(44)l. 

85. CONCLUSION 

The basic role in the occurrence of the noise-induced 
phase transition considered in this paper i s  played by 
diffusion. As is evident from the Appendix, the cri ter-  
ion for weakness of typical fluctuations (the Ginzburg 
criterion) is violated when the characteristic diffusion 

distance r,,,, = ( ~ / c u ) l ' '  is much smaller than the typi- 
cal dimension ro of a center of reproduction. It is easy 
to  show that in this limiting case (r,, >> Y,,,, ), noise - 
induced explosive instability does not occur, and there- 
fore the nonequilibrium phase transition that we are  
studying is possible. 

In fact, i f  the diffusion coefficient approaches zero, 
then different regions of space a re  not connected with 
each other, and for p= 0 we actually have the equation 

ti--an+f ( t )  n. (63) 

Simple integration gives the solution of this equation: 

Since the mean value of the random function f(t) is 
zero, the relation 

I 

t - ~  Jf (z )dz-+<f>=~,  t+w (65) 
0 

is valid; and consequently, independently of the noise 
intensity f(t), the concentration n approaches zero a s  
time goes on, and therefore there is no explosive in- 
stability. 

The same result is valid also if the spatial correla- 
tion radius Y, of the noise becomes infinite, since then 
the fluctuations a re  homogeneous in space and diffusion 
is unimportant. 

It is evident from the Appendix that the Ginzburg cri-  
terion is violated for two- and one-dimensional media 
in the case I >> Y,,,, '.> r,, when the correlation time r0 
of the noise i s  the largest time scale of the problem. 
In these cases typical fluctuations a re  strong, and 
therefore the treatment presented in this paper is in- 
applicable. 

It must also be noted that in the immediate vicinity 
of the nonequilibrium phase -transition point, where 
( n )  - 0, the very description in terms of the diffusion 
equation (1) becomes inapplicable, and i t  is necessary 
to  take account of the discrete (atomistic) character of 
the diffusion. Furthermore, in the paper no attention 
was paid to characteristic (for example hydrodynamic) 
fluctuations in the concentration of the reproducing sub- 
stance, but only fluctuations in i t s  rates of disintegra- 
tion and reproduction were taken into account. Inves- 
tigations of these questions will be the subject of sepa- 
rate communications. 

The problem studied was formulated by us as a prob- 
lem on diffusion of some reproducing substance through 
a medium where processes for i t s  disintegration a re  
also possible. It must be emphasized, however, that 
the original equation can also describe other situations 
in various physical, biological, and ecological systems, 
and therefore the results obtained have a broader 
range of applicability. A number of analogous effects 
for biophysical systems were discussed earlier.' 

The authors a re  deeply grateful to I. M. Liftshitz for 
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APPENDIX 

The value of the critical noise intensity So, = (f '),, 
and values of the parameter G = [(~)~/v2]s~,or, which 
characterizes satisfaction of the criterion for weak 
fluctuations, for media of various dimensionalities 
(d= 1,2,3) for  various relations between r,,,,, I ,  and 
Yo: 

I. d=l .  a )  rd,tlBroBl (a<Dk:<y), 

c)  r0)rdillr (Dk.lay, a ) ,  G T i .  
d) lwrdi~t, ro (yaa ,  Dk.'), G 2 1 .  
111. d-3. a) rdill)r.Bl (a<Dk.'<y), 

 he best known example of such an effect i s  parametric ex- 
citation of a classical  oscillator (see  Ref. 1). 

2 ) ~ h i s  procedure i s  exactly equivalent to the self-consistent 
field approximation in the theory of equilibrium phase trans- 
ition. 
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Transmission of sound across a boundary between liquid 
helium and a metal 

K. N. Zinov'eva 
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A description of the experimental procedure is followed by a report of the results of investigations of the 
angular dependence of the transmission of a plane monochromatic acoustic wave incident from liquid 4He on 
the surfaces of tungsten and gold. The energy of 10-30 MHz sound was deduced from measurements of the 
Kapitza temperature jump at the liquid helium-metal boundary at temperatures 0.1-0.4 OK. A resonance 
energy transmission peak was observed experimentally outside the critical cone when sound was incident at 
the Rayleigh angle. This effect was considered using the generalized acoustic theory and the theory of 
Andreev. The contribution of the energy associated with the Rayleigh peak was approximately equal to the 
energy in the subcritical angle. A comparison was made of the attenuation of surface waves on tungsten with 
the known theoretical and experimental coefficients representing the bulk absorption of sound due to an 
electron mechanism. 

PACS numbers: 68.25. + j, 43.35.Lq, 43.35.Pt 

INTRODUCTION The idea of measuring w(8,  w) has been put forward in 

The present author reported earlier' the observations 
of resonance absorption of sound by the surface of a 
metal. The effect was predicted theoretically by An- 
dreevZ and it  was due to dissipation of the energy of a 
Rayleigh wave excited in the metal by the incident 
sound. The present paper describes an investigation of ' 

the angular and frequency dependences of the transmis- 
sion coefficient w(0,  w) of the acoustic energy crossing 

several laboratories some years ago after numerous 
attempts to explain fully the Kapitza temperature jump3 
which appears a t  an interface when heat is transferred 
from a solid body to liquid helium. Kapitza showed that 
this temperaFre jump A T  is proportional to the heat 
flux density Q/S and to the thermal resistance of the 
boundary (contact resistance) R,, which varies with 
temperature a s  T ~ .  

the boundary between liquid * ~ e  and a metal. A theoretical explanation of the Kapitza jump was giv- 
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