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A nonstandard perturbation theory (PT) is developed in many-dimensional quantum mechanics; in this theory 
knowledge of the entire spectrum of the unperturbed problem is not required, and only the characteristics of 
the level for which corrections are to be determined must be known, In the one-dimensional case this theory 
reduces to the PT proposed by Zel'dovich. It is shown that the problem of constructing the PT in the k- 
dimensional case is equivalent to that of k-dimensional electrostatics with a variable dielectric constant. The 
relation between the variational principle and PT is found, and it is shown that the PT developed here makes 
it possible to estimate the accuracy of variational calculations and to improve this accuracy by using an 
iteration method. A recipe is formulated for constructing an unperturbed problem so as to get converging PT 
series. A theorem on the uniqueness of PT series is proved. Examples considered are the ground states in the 
potentials x2" (n = 2, 3,4) and m2x2  +gx4; it is shown that the first two or three approximations are enough 
to calculate the energy to an accuracy of 10-'-lo-' (for arbitrary g). For the two-dimensional anharmonic 
oscillator calculations are made of the first several coefficients of the PT series in powers of the coupling 
constant. 

PACS numbers: 03.65.Db 

1. INTRODUCTION 

One of the problems most frequently encountered in 
quantum mechanics i s  that of finding the energies of 
bound states. I t  i s  analyzed in detail in practically al l  
books on quantum mechanics (cf., e.g., Ref. 1). I ts  
importance i s  due to the fact that many phenomena in 
various fields of physics can be described by means 
of potentials, s o  that frequently an  investigation re-  
duces to the solution of the SchrSdinger equation with 
some particular potential. The main difficulty in al- 
most a l l  cases is that the Schriidinger equation with a 
potential that describes an actual physical phenomenon 
i s  almost always incapable of exact integration. This 
makes necessary the use of various approximate meth- 
ods. Here it must be s t ressed that the present possi- 
bilities for numerical integration of the SchrSdinger 
equation a r e  rather limited: It can be used success- 
fully only for one-dimensional problems, and is  prac- 
tically helpless even in two-dimensional quantum- 
mechanical problems (see the discussion in Ref. 2). 
Fo r  this reason, in dealing with many-dimensional 
problems o r  studying the analytic properties of solu- 
tions of the Schrodinger equation one has to use approxi- 
mate methods. 

The most frequently used approximate methods a r e  
the Rayleigh-Schriidinger perturbation theory and the 
Rayleigh-Ritz variation principle. Let us examine each 
of them in more detail. To construct the Rayleigh- 
SchrSdinger perturbation theory (PT) it is necessary 

to know the entire spectrum of the unperturbed problem 
or,  equivalently, i ts  Green's function, since the cor-  
rections to the wave function and the energy a r e  ex- 
pressed a s  sums over intermediate states o r  integrals 
containing the Green's function. This means that the 
unperturbed problem must be exactly soluble. Up to 
now the number of exactly solved problems is  rather 
limited. A typical situation is that of a perturbation 
potential that i s  more singular than that of the unper- 
turbed problem, or,  in other words, is large compared 
with it. This i s  the main cause of the divergence of P T  
ser ies  in physically interesting cases. Consequences 
a r e  the difficulties with coupling constants of the o rde r  
of unity and with strong-coupling cases  (see the discus- 
sion in an  ear l ier  paper3). Besides this, the use of the 
SchrSdinger-Rayleigh P T  gives r i se  to technical diffi- 
culties with calculating matrix elements and finding 
multiple sums over intermediate states. These diffi- 
culties a r e  especially marked in attempts to deal with 
many -dimensional problems. 

The Rayleigh-Ritz variation method and other varia- 
tional methods of the Hartree-Fock type a r e  practically 
the only tool for investigating the spectra of many- 
dimensional problems. However, when this tool i s  used 
i t  is a very complicated problem to estimate the ac-  
curacy of the results (see, e.g., Ref. 4). There a r e  
other difficulties with variational calculations; in par- 
ticular it i s  rather complicated to construct a one- 
parameter family of test functions. All of these dif- 
ficulties of the two approaches, those of principle and 
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those less profound, often lead to great complications anharmonic oscillator. Moreover, Dolgov and PopovlS 
in finding the spectrum and frequently make it im- constructed a concrete example of a rapidly converging 
possible to carry  out any reasonable investigation of a iteration scheme for dealing with the anharmonic oscil- 
solvable problem. lator. It can be shown5 that this scheme reduces to the 

The present paper expounds a method which allows us 
to combine PT and the variation method in a single 
approach. This method is free of such essential diffi- 
culty a s  the necessity of knowing the entire spectrum 
of the unperturbed problem, and makes it possible to 
make estimates of the accuracy of variational calcula- 
tions. The essence of the method lies in a "nonlineari- 
zation" p r ~ c e d u r e , ~ "  which consists in changing from 
the SchrGdinger equation to a nonlinear equation and 
then developing a P T  for  the latter. Furthermore, the 
problem of constructing the P T  is linear and turns out 
to be equivalent to the problem of electrostatics with a 
variable dielectric constant. This approach does not 
require knowing the entire spectrum of the unperturbed 
problem; it is  enough to know the wave function of the 
unperturbed level for which one is seeking the correc- 
tion. This leads to a most powerful flexibility, that of 
freedom in choosing the potential of the unperturbed 
problem, and consequently it becomes possible to con- 
struct a converging P T  series.  This is  one of the main 
virtues of this method. It is worth emphasizing that for 
one-dimensional problems and some many-dimensional 
problems all of the corrections can be obtained in ex- 
plicit form, in terms of quadratures. In cases where 
the solution cannot be written out explicitly, it can be 
obtained by numerical methods, 

We give some attention to the history of the ques- 
tion," since this approach i s  nonstandard and not well 
known. A pioneering paper by Zel'dovich7 (see also 
Ref. 8, Secs. 4 and 5) gave the first  statement of the 
assertion that the construction of a P T  does not re- 
quire knowing the entire spectrum, o r  else the 
Green's function, of the unperturbed problem, and that 
it suffices to know merely the wave function of the state 
for which corrections a r e  sought. This paper was the 
first  to write out explicitly formulas for  the f i rs t  cor- 
rection to the wave function and the second correction 
to the energy and to show how to find subsequent cor- 
rections. The formulas derived did not contain sums 
over intermediate states, but were in the form of quad- 
r a t u r e ~ .  

Analogous equations were given independently by 
Kirzhnits: who by their use was able to find the cor- 
rection to the Hartree- Fock approximation in calcula- 
tions on two-electron atoms. One of the possible types 
of such PT's was constructed by Polikanov,l0 who used 
for this purpose a change from the Schrodinger equation 
to a Riccati equation. Another type of PT, closer to 
that considered in the present paper, was described in 
a paper by Pekar," and then repeatedly rediscovered 
in other All of these papers7"' on this ap- 
proach to P T  showed its superiority to the stand$rd 
method. For example, in a paper by Sakhnov~kii'~ 
a problem on diffusion of electrons was solved by such 
a method. In the framework of this method Dolgov and 
P o p ~ v , ~ ~  and also Hikami and ~ r 6 z i n , l ~  carried out 
studies of the PT series in the coupling constant for the 

new PT. A detailed study of this approach was also 
contained in Refs. 15 and 16, and in Ref. 16 a general 
recipe was formulated for securing convergence of the 
P T  series. As an example, rapidly convering P T  s e r -  
ies were constructed for the lowest states in potentials 
x2", which gave accuracies of the order of one percent 
by including only the f i rs t  two orders. The problem of 
the Stark effect of the hydrogen atom in arbitrary 
fields was solved in the framework of this approach in a 
paper by Dolgov and the writer.17 

A many-dimensional generalization of this approach 
was formulated in Ref. 5. The connection of P T  with 
the variation principle was described in Ref. 6. It was 
shows that the results of variational calculations com- 
prise the first  two coefficients of the P T  series,  and 
therefore the calculation of the subsequent coefficients 
(if the PT ser ies  converges) makes it possible in 
principle to estimate the accuracy of the variational 
calculation. Moreover, it was found in this paper that 
the recipe for securing the convergence of the P T  se r -  
ies formulated earlier5*" is nothing other than the 
usual requirements, on the basis of which one con- 
structs the class of comparison functions used in 
variational calculations. In particular, it should be 
mentioned that the recipe proposed by Dolgov and 
PopovLS is a special case of the general recipe; it is 
valid only for  nonnegative potentials that increase to 
infinity. 

The present paper is devoted to a detailed exposition 
of the method and its further development in the many- 
dimensional case. The main attention will be given to 
the treatment of the lowest state in various potentials. 
We shall try to demonstrate the superiority of our ap- 
proach over others. A separate paper will be devoted 
to the study of excited states. 

The organization of the paper is a s  follows, Section 2 
explains the essentials of the method; the procedure 
of linearization is described, the PT is constructed for 
the ground and excited states, and the connection with 
the usual Rayleigh-SchrGdinger PT is discussed. In 
Sec. 3 the connection of PT with the variation method is 
demonstrated and questions about the convergence of 
the P T  ser ies  a r e  discussed. A theorem on convergence 
is proved. The res t  of the paper is devoted to a de- 
tailed examination of various special cases: one-di- 
mensional problems a r e  discussed in Sec. 4, and many- 
dimensional problems a r e  studied in Sec. 5 with the ex- 
ample of the two-dimensional anharmonic oscillator. 
Conclusions and a discussion of the method a re  con- 
tained in Sec. 6. 

2. DESCRIPTION OF THE METHOD 

We proceed to describe the method. Its main point 
lies in a transformation procedure, which we shall 
call the nonlinearization procedure, applied to the 
Schrodinger equation, which is a homogeneous linear 
equation of the second order 
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to give a nonlinear first-order equation with an ex- 
plicitly known right-hand side, followed by the develop- 
ment of a PT applicable to this nonlinear equation. 
The transformation which realizes this procedure is of 
the form5*' 

y=-V$/*=-v in*, (2 ) 

where A and V a r e  the usual k-dimensional Laplace 
operator and gradient.2' Using Eqs. (1) and (2), we get 
the following nonlinear equation for the vector field y: 

div y-y'=E-V, (3 

which is equivalent to the original Schrodinger equation 
provided that y is a potential field, i.e., that 

(with cp a scalar function), or, in other words, the 
skew derivative must be equal to zero, 

Equation (3) with the condition (4) o r  (4') is the funda- 
mental equation of our work, on which the method to be 
developed is based. In the one-dimensional case it is 
the well known Riccati equation. We shall discuss the 
question of boundary conditions for Eq. (3) later. 

We shall now begin the construction of the PT, f i rs t  
making the following preliminary remark. It is obvious 
that the potential V in question can always be expressed 
a s  a sum V=V, +hV,, where A is a formal parameter 
introduced for convenience, such that the equation 

can be solved exactly. In other words, this can be 
stated thus: For any sufficiently smooth function 
$, E L2@) we can find a corresponding potential V,, 
and then the potential V, will be equal to the difference 
V - V,. It should be noted that 

After this remark we proceed to the construction of the 
P T  for the ground state. 

The ground state. It is well known that if the poten- 
tial considered is sufficiently smooth the wave function 
of the ground state is  nowhere equal to zero. This 
means that the vector function y [see the definition (2)] 
has no pole singularities for real valuess' of x. We now 
write the expansions of y and E in Taylor ser ies  in the 
parameter A: 

where E,  and yo a r e  given by Eqs. (5) and (5'), respec- 
tively. Substituting the expressions (6) and (7) in Eq. 
(3) and collecting the terms in An, we get the following 
equation for En and y,: 

This equation can also be written in a different form 
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where the vector field y, must also satisfy the condi- 
tion (4) o r  (4') for a vector with a potential. Here 

Equation (8), along with the condition (4) o r  (4') for the 
gradient character of the field y,, is the equation of 
ordinary k-dimensional electrostatics, in which $2, 
and y, play the respective roles of the dielectric con- 
stant and the field strength and (En - &,)#: is the charge 
density. 

Let us now go on to discuss the question of boundary 
conditions. Since we a r e  confining ourselves to the 
consideration of a discrete spectrum only, it is en- 
tirely natural to require that the vector field y not in- 
crease a t  large values of x more rapidly than a power 
of x. This requirement can be written in the form 

The condition (10) can be converted immediately into 
information about the corrections En. To do so we in- 
tegrate Eq. (8) over all space and transform the inte- 
gral  on the left-hand side into a surface with the 
theorem of Gauss and ~ s t r o ~ r a d s k i ? .  Then, using the 
condition (lo), we get5 

This expression gives the value of the n-th correction 
to the energy level of the ground state of the unper- 
turbed problem. We note that the first  correction E, 
is  identical with the standard correction of the Ray- 
leigh-Schrodinger PT,' and the second correction E ,  
is always negative, a s  it must be.' 

To calculate the various corrections En@> 1) it i s  
necessary to solve the electrostatic problem (8), which 
is equivalent to the solution of the general elliptic 
equation4' 

div (qo'Vq.) = (En-Q,)$oZ (12) 

with the boundary condition (lo), where y, = Vcp, and 
En is given by the expression (11). This problem is no 
longer an eigenvalue problem, since En and Q ,  a r e  
taken a s  known from the previous iterations [cf. Eqs. 
(9), (ll)]. For  this reason Eq. (12) is much simpler 
from the point of view of numerical calculation than 
the original Schrodinger equation.' 

Let us discuss the question of finding the corrections 
yn in more detail. In the general case the solution of 
the equation (8) with the supplementary condition (4) 
o r  (4') is of the following form: 

$:Y, = JG,(z, 2') (E,-Q,)*:(z')~~z', (1 3) 

where G,(x, x') is the Green's function of Eq. (8) with 
the supplementary condition (4) o r  (4'). In the general 
case, when $2, is  an arbitrary function which decreases 
exponentially a t  infinity, the solution is not known and 
it is evidently impossible to construct it. However, in 
some special cases this can be done. First, in the case 
of spherically symmetric $2, and Q ,  the Green's func- 
tion i s  

A. V. Turbiner 



where u, = 2 r k l Z / r ( k / 2 )  i s  the area  of a unit sphere in 
k dimensions. In this case the solution ( 1 3 )  becomes 

1 x-x' =-J- 
(11 lx-x'lk 

(En-Qn) $2 (x')&x'. 

We note that the general solution of an arbitrary one- 
dimensional problem is also given by Eq. (15) .  

Second, when the dielectric constant is ~ a u s s i a n ~ '  

the general solution of Eq. ( 8 )  is  given by the formula 

xexp(- (t'hx - (t+a)" x') ')  { t ' " ~  - ( t i -a)"  x'). (16)  

Excited states. We now proceed to the consideration 
of excited states. There a r e  several reasons that a 
separate treatment of excited states is necessary. 
First, in the integrals ( 1 1 )  nonintegrable singularities 
appear, since the zeroes of the wave function a r e  trans- 
formed into pole singularities of the vector function y, 
and the integrals (11)  depend on the Q,, which a r e  
quadratic forms in the yi. In the one-dimensional case 
it has been shown in papers by Polikanovl' that correct 
results can be obtained by shifting the path of integra- 
tion into the complex plane. We propose a somewhat 
different recipe. Second, the question of excited states 
in the many-dimensional case has not been studied very 
much, and we shall point out some difficulties. 

It is  quite obvious that if we consider a sufficiently 
smooth potential, the wave function of any excited 
state is  characterized by some set  S  on which it 
vanishes. I t  is entirely clear that such a wave function 
can be represented in the form 

where f  ( x )  and L ( x )  have no singularities for finite x, 
and f ( x )  does not increase faster than a power of x 
a s  x - ~ ,  while f ( x ) = O  and V f ( x ) # O  for6' x E  S.  We 
now introduce the following vector g, such that 

where g = VL. 

Thus we have separated off explicitly the part of the 
vector field y that contains singularities. Substituting 
Eq. (18)  in Eq. ( 3 )  and multiplying the resulting equa- 
tion by f, we arrive a t  the following result: 

Now set V  =Vo +AVl and let J,O be the solution of Eq. 
(5 ) ,  where the se t  So on which So vanishes is  given by 
the condition f ,(x) =O [see Eq. (17) j .  We now develop 
the perturbation theory in the parameter A, expanding 
in series not only E and g [see Eqs. ( 6 )  and ( 7 ) ]  but also 
the function f which characterizes the se t  of zeroes7' 

Collecting terms of order An and then doing simple 
mathemathical transformations, we get the equation 

The correction to the energy, En, takes the form, 
analogous to Eq. (11) :  

En = J Q.0: dhx / j I#: clkx. (2 3 )  

We note that just a s  in the case of the ground state 
the problem of finding the corrections reduces to the 
solution of an electrostatic problem. The role of elec- 
t r ic  field-strength vector is played here by the quan- 
tity 

Let us now discuss the connection between this P T  
and the standard Rayleigh-Schrodinger theory. This is 
easily traced if we compare the expansion of the wave 
function in the usual approach 

lp=~o+arpI+~z*, + . . . = 7 an+,, 
L-l 

with that described heres' 

where VL, = y,. 

Let us now recall the expressions for $, and En  in 
the usual approach (see, for example, Ref. 1 ,  Sec. 
38)  and compare it with the corresponding expressions 
in our present approach [for this we must expand the 
exponential function in Eq. ( 2 5 )  in series]. We then get 
two families of sum rules; for brevity we give one ex- 
ample of each: 

where the lower index i s  the number of the correction 
and the superscript is the number of the level. The fact 
that such sum rules appear has been noted in many 
paperS.5~10~13~15.18 In Refs. 5  and 15 they were con- 
structed explicitly for the one-dimensional case, and 
in particular, in Ref. 15 a direct proof of Eq. ( 2 7 )  was 
carried out. In conclusion we point out that the study 
of these rules gives information about the spectrum of 
the unperturbed problem. 

3. THE VARIATION PRINCIPLE AND 
PERTURBATION THEORY. CONDITIONS FOR 
CONVERGENCE OF THE METHOD 

In the preceding section we have constructed a pro- 
cedure for finding the eigenvalues of the Schrijdinger 
operator without needing to know the entire spectrum 
of the unperturbed problem. Accordingly we have 
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available to us a great deal of freedom in the choice of 
the potential in the unperturbed problem. This allows 
us to choose almost arbitrarily the way we represent 
the given potential V in the form of a sum V, +Vl, and 
consequently offers a possibility for obtaining con- 
verging P T  series.  However, before discussing ques- 
tions about the construction of converging P T  series,  
we shall establish the connection between perturbation 
theory and the variation principle. 

We begin the discussion with an obvious statement: 
Any sufficiently smooth function $,E L2(Rk) is an 
eigenfunction in a potential Vo given by 

where E, is the energy of the state. We now suppose 
that we wish to find the position of some level in a po- 
tential V by means of the Rayleigh-Ritz variation prin- 
ciple and have constructed for this purpose a class of 
normalized comparison functions $,. By means of Eq. 
(26) we can see  what the potentials V, a r e  to which the 
comparison functions $, correspond. 

And now let us look a t  the variational calculation 
from the point of view of PT: 

where 

El i s  the first  correction to the energy level when the 
perturbation potential V, is equal to V- V,. Thus we 
have found that the variational calculations give the 
f i rs t  two terms of the PT ser ies  [cf. Eq. (7)], in which 
the perturbation potential is equal to the deviation of 
the original potential from that which corresponds to 
the function $, [see Eq. (28)]. Calculating the next 
terms in the PT ser ies  (7), i.e., E,, E,, . . . , we get a 
way to estimate the accuracy of the variational calcu- 
lations. Besides this, by comparing the potentials V 
and V, we can see  how reasonably the class of com- 
parison functions has been constructed. What we have 
in mind here will be explained presently. 

We now go on to discuss the question of when the pro- 
cedure we have described will be convergent, i.e., 
when the series (6) and (7) will converge. Before do- 
ing so we shall explain why P T  ser ies  usually di- 
verge.g' As an example we consider the anharmonic 
oscillator V=x2  +Ax4(V0 =x2, Vl =x4). When A>O 
there a r e  an infinite number of bound states in the po- 
tential, but for A<O (by no matter how little) a tun- 
nelling effect appears; that is, the energy E(A) of the 
level i s  no longer real, and acquires an imaginary 
part. This means that for A = O  the function E(A) has 
a singularity, and since the P T  ser ies  is  an expansion 
E(A)=CakAk near this singularity it has zero radius of 
convergence, i.e., it diverges. A rigorous treatment 
of this phenomenon in the case of the anharmonic oscil- 
lator was first  carried out by ~a insh te in , '~  who showed 
that a cut begins a t  the point A =0, and calculated the 
discontinuity across this cut for A--0. 

It follows from all of this that the PT ser ies  becomes 

divergent when the perturbation potential is  more singu- 
l a r  than the unperturbed potential. In this case there is  
a radical restructuring of the spectrum a s  the perturba- 
tion parameter is  varied. The level can become quasi- 
stationary, a s  in the example just now discussed; it 
can pass into a continuous spectrum. Therefore the 
general recipe for choosing a zeroth approximation to 
obtain a convergent P T  ser ies  runs a s   follow^.^"^ 

Recipe. We shall construct the zeroth-order wave 
function in such a way that the corresponding potential 
V, [see Eq. (27)] will reproduce a s  much a s  possible 
of the characteristic features a s  the potential V to be 
studied. In particular, it is especially important that 
it should reproduce all of the singularities of the 
original potential and also i ts  asymptotic behavior.lO) 

In the language of wave functions this means that $, 
must include as many a s  possible of the properties of 
the true wave function: Its behavior a t  infinity, a t  
zero, near singularities of the potential, information 
about its zeroes, 'and s o  on. It is easy to see  that this 
recipe is practically identical with the procedure used 
in constructing the class of comparison functions in the 
Rayleigh-Ritz variational method. 

We now return to the discussion of the question of 
convergence and prove the following theorem about 
convergence."' 

Theorem. If the first  correction y, is a bounded vec- 
tor function, i.e., if 1 )  1 yll a,, and also 

with 3) alA < 1/8, then the ser ies  (6) and (7) converge. 

Proof. The proof will consist of the construction of a 
majorizing sequence. To begin with, let us verify that 
the corrections yn a r e  also bounded vector functions. 
Using the method of induction and the conditions 1) and 
2), we see  a t  once that 

together with 

I - *  

To find the region of convergence of the ser ies  (6) and 
(7), we use the following approach12': We calculate the 
value of the sum 

s = C a , .  (32) 
I-, 

By means of Eq. (30) it is easy to show that 

The solution of Eq. (33) that we need is 

Accordingly, we have succeeded in constructing a 
majorizing series for y, and En  that converges for 

8AaI< l ,  (35) 
and the theorem is proved. It is completely clear that 
this theorem i s  rather weak and can be considerably 
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strengthened. It seems almost obvious that the validity 
of the conditions 1 )  and 2) is sufficient for the con- 
vergence of the series (6) and (7). It may be mentioned 
that a similar theorem can be proved also for the gen- 
era l  case of excited states. 

4. THE ONE-DIMENSIONAL CASE 

We now proceed to the consideration of one-dimen- 
sional problems (and those reducible to one-dimensional 
cases). As examples we shall find the ground states 
in the potentials V(x) =xan, n =2,3,4(A), and 
V(x) =m2x2 +gx4(B). 

In the one-dimensional case the equation (3) reduces 
to the well known Riccati equation, and the condition 
(4) or  (4') is satisfied identically. It i s  easy to show 
that the solution of Eq. (8) i s  given by Eq. (15), which 
can be reduced to the form7 -91n*13.15.1a (cf. Ref. 10) 

X 

Y. ( 2 )  = lpo-'(s) (E.-Q.)$o'(e')dz'. 
-c+ 

(36) 

where Qn is given by Eq. (9). The corrections En  to 
the energy a r e  given a s  before by Eq. (11). 

In the case of excited states the solution of Eq. (21) 
can be converted to the following form 

while the deformationf,, of the se t  of the zeroes is 
given by 

'1. 

f. (zi0) = (En-&) lpp2 dx'/f08 (2,') exp[2Lo (I?) I ; x , ~ Y o ,  i-i, 2 , .  . . , l ,  
-- 

(38) 
where 1 is the number of the level considered. Ac- 
cordingly, the problem reduces to the determination of 
the coefficients of a polynomial P:(x) of degree 1, which 
is given a t  the points13' xPLP',(x?) =fn(xP)I. 

We note that gn(x) has no singularities on the real 
axis. We emphasize that when the first  excited level 
i s  considered, Eqs. (36)-(38) a r e  actually identical 
with those given in Ref. 15. When a many-dimensional 
spherically symmetric problem i s  to be solved, Eqs. 
(36)-(38) a r e  modified in an obvious way. In the case 
of the ground state they a r e  given in a number of 
papers.7 -9.13.14 

Let us now consider the examples A and B. One of 
the simplest ground-state wave functions satisfying 
the requirements of Sec. 3 is 

This comparison function is the wave function of the 
ground state in the potential 

Here a is a parameter; superscripts give the number 
of the level, subscripts, the number of the approxima- 
tion. 

A. The potential V(x) =xan, In Eqs. (39) and (40) we 
s e t  the parameter g equal to 1 and emphasize the im- 

*Eex,,, was obtained by M. S. Marinov and V. E. Shestopal by 
numerical integration of the Schriidinger equations. 

TABLE I. Ground-state energies in various potentials. - 

portant fact that the potential (40) with g = 1 reproduces 
the behavior of the given potential a t  infinity. The 
perturbation potential is  

Approximation 

Now, substituting Eqs. (39) and (41) in Eqs. (11) and 
(36), we calculate the corrections yn and En. Table I 
shows the values of E ,  calculated in this way for the 
case a = I  and n =2,3,4 (see Refs. 5 and 16). We see  
that the convergence of the method i s  rather good, 
especially for  the potentials x e  and x8, and use of the 
corrections to and including the third order gives ac- 
curacies better than o r  of the order of 1 percent a s  
compared with the exact values. 

V(I )  =r. I T ,  I V(Z) =x5 

And now we carry  out the minimization of the ex- 
pression Eo +E, (see Sec. 3) with respect to the pa- 
rameter 3. The result i s  the variational value of the 
ground-state energy with the comparison function 
(39). After calculating E, we find that we have suc- 
ceeded in getting the energies correct to four places 
to the right of the decimal point. 

B. The anharmonic oscillator V(x) =m2x2 +gx4. The 
problem of the anharmonic oscillator (AO) is one of the 
oldest problems in quantum mechanics; it has been 
studied by many authors even in recent times (see, 
for example, Refs. 2,5,6,13,14,19-25). The most 
complete and detailed study of the one-dimensional 
A0 has been made by Bender and Wu.'O One of the 
reasons for the increased present interest in this prob- 
lem i s  that the A0 is a one-dimensional field theorfO 
which contains many problems essential for relativistic 
many-dimensional field-theoretic models. Therefore 
it is interesting to study these problems with this 
simple model a s  an example. The A0 also has im- 
portant applications in various branches of physics, 
in atomic, molecular, and solid-state physics. 

In a number of  paper^^@-^^ quasiclassical methods 
have been used to study in detail the structure of the 
PT series in terms of the coupling constant g for 
various types of AO, and also the analytic structure of 
the ground-state energy a s  a function of the coupling 
constant g. Besides this, in Ref. 20 computed values 
of the coefficients of 75 terms of the P T  series, in 
powers of g, were found. It was shown in Refs. 13, 
14, and 23 that the change from the SchrGdinger equa- 
tion to the Riccati equation simplifies the calculation 
of these coefficients and the study of the structure of 
the PT series. In particular, in Ref. 13 a convergent 
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TABLE 11. Ground-state energies of the anharmonic os- 
cillator. 

- .  

*ELxact taken from Ref. 2.  Standardization of E and g 
as  in Ref. 2.  ( E ' = E /  2 ,  g 1 = g / 2 ) .  

iteration procedure was proposed which, as can be 
proved: i s  a special case of the approach developed in 
the latter paper, when the unperturbed potential i s  taken 
in the form V, = V - v'v-'~, s o  that the perturbing 
potential is Vl = $ v'V-lh. Other kinds of converging P T  
ser ies  have been proposed in Refs. 5 and 24. We shall 
discuss the A0 in the frpmework of the formalism 
developed above (cf. Ref. 5). 

As our zeroth-order comparison function we take the 
function (39) with n =2 (cf. Ref. 5), a s  in the case of ex- 
ample A. Then the perturbation potential is 

We now develop the PT series,  substituting (39) and 
(42) in Eqs. (36) and (11). We then get 

- 
2g" -1 x {j exp [-d- x'] d x }  +. . . . (43) 

0 

It is  easy to see  that Eq. (43) contains a cut in the g 
plane that goes from 0 to --, and that for g-- 0 the 
discontinuity across this cut is exponentially small, 
but is not the same as the semiclassical v a l ~ e . ' ~ - ~  
This situation is evidently typical of this approach and 
is not a disadvantage. One possible explanation of this 
phenomenon has been given by Dolgov and Popov.15 
If we now carry out a minimization with respect to the 
parameter a, calculate E,, and compare with the re- 
sults from numerical integration of the Schradinger 
equation, it is  found that our method gives such good 
accuracy that even with a very simple comparison 
function like (39) one can get several decimal places 
correct, both for large and for small values of the 
coupling constant g (see Table I1 and cf. Ref. 5). With 
this we conclude our discussion of one-dimensional 
problems. 

5. SOME WORDS ABOUT THE MANY-DIMENSIONAL 
CASE 

In this section we shall briefly discuss many- 
dimensional problems. It was shown in Sec. 3 that the 
realization of PT in the many-dimensional case is 
equivalent to the solution of an electrostatic problem 
with a variable dielectric constant. At present the 

analytic solution of the problem i s  known for the case 
of a Gaussian dielectric constant, and in all other cases 
one must resort  to numerical solution of the equations. 
However, in cases where it is possible to approximate 
a given potential with a spherically symmetric function 
in such a way that the deviations from sphericity a r e  
small, we may hope that the use of the Green's function 
(14) is justified and that the e r r o r s  a r e  small. We 
shall show how to construct the P T  for a two-dimen- 
sional anharmonic oscillator in the case when the zeroth 
approximation i s  the harmonic oscillator. 

Let us consider the ground state of a two-dimensional 
nonsymmetrical oscillator 

where m, g, and c a r e  parameters. This is  a com- 
plicated problem, which was f i rs t  studied only re- 
~ e n t l y . ~ . ~ ~  It i s  quite obvious that finding the coefficients 
of the Rayleigh-Schradinger P T  ser ies  

is a rather complicated problem. In the framework of 
our approach this is done rather simply and reduces 
either to an algebraic problem o r  to the calculation of 
integrals of Gaussian type. We shall show how this can 
be done. 

The zeroth approximation V, =m2(x2 + y ,) is  given by 

where JI, is the zeroth-order wave function. To de- 
velop the PT we use Eq. (8'), not forgetting the 
gradient condition (4'), i.e., that y, =Vqn .  It is easily 
shown that the functions qn(x, y) that a r e  solutions of 
Eq. (8') depend only on x 2  and y and a r e  invariant 
under the exchange x-  y. Their general form i s  

with 

am, h, !=an, 
a., ,, ,=0 for k+l>n+l. 

Substituting (47) in Eq. (8'), we get a sequence of re- 
currence relations for  the a,,,., (see Ref. 25), from 
which there follows the important relation 

This equation enables us to find the energy correc- 
tions in terms of the coefficients in the representation 
(47). 

We write out the f i rs t  few corrections explicitly: 

Equations (49) and (50) can be obtained in a different 
way, by means of Eqs. (11)-(13) and the use of the 
Green's function (16). We note that in particular cases 
when the variables can be separated, Eq. (50) agrees 
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with ear l ier  results: For  c = O  with those of Bender 
and Wu,2O and fo r  c =1 with those of Refs. 13 and 14, 
when the notations a r e  matched. It i s  also worth 
pointing out that for  some coefficients in the ex- 
pansion (47) one can write closed expressions by using 
formulas derived in Ref. 13 fo r  the one-dimensional 
case; in particular 

In conclusion we emphasize that many-dimensional 
PT can be obtained in a s imi lar  way in the case  when 
the perturbation is  in the form of a polynomial. Con- 
vergent P T  for  these cases,  in particular for the po- 
tential (44), will be discussed soon in another paper. 

6. CONCLUSION 

In this paper we have expounded a point of view based 
on a nonstandard approach to perturbation theory. Its 
unusual features a r e  a s  follows: 

1. The construction of this P T  does not require 
knowledge of the entire spectrum of the unperturbed 
problem; it is sufficient to know the characteristics 
of only the level for which corrections a r e  sought. 
Thus it is possible to investigate one given level, with- 
out being concerned about what happens to the whole 
spectrum. This saves us from the problems associated 
with the degeneracy of levels. 

2. The discovery of a connection with the variation 
principle makes it possible to estimate the accuracy of 
variational calculations and use an  iteration method to 
improve the variational results. Furthermore, owing 
to the possibility of selecting the unperturbed problem, 
the P T  can be made convergent. 

3. This approach does not depend critically on the 
dimensionality of the space in which we a r e  to deal with 
the Schriidinger equation. The problem of constructing 
the P T  is equivalent to the solution of a problem in 
electrostatics with variable dielectric constant. 

On the basis of al l  of these properties it can be as-  
serted that there i s  a rea l  possibility of investigating 
the strong-coupling region in quantum mechanics. This 
has been demonstrated with one-dimensional examples. 
In this paper we have dealt only briefly with many- 
dimensional problems, since the main purpose h e r e  
was only to show how the method is constructed for 
the many-dimensional Schrodinger equation. 

In conclusion we shall t ry  to answer the question: 
Why i s  knowledge of the whole spectrum not required 
for the construction of P T ?  In the one-dimensional 
case the answer to this question is actually contained 
in the f i rs t  papers on this subject,'-lo and is  a s  fol- 
lows. If one solution of an ordinary second-order 
equation is known, a second linearly independent solu- 
tion can be constructed by quadratures. Then, knowing 
two linearly independent solutions, one can construct 
the Green's function of the equation. When the Green's 
function is known, perturbation theory can be developed 
and all  of the corrections can be expressed in quad- 
ratures, a s  shown in a number of  paper^.^-"^'^^'^^'^ 

Unfortunately, with this method we can find the Green's 
function for only one fixed value of the energy of the 
unperturbed problem; otherwise, we would know the 
entire spectrum of the unperturbed problem, which is 
usually not the case  (in the method we have developed, 
of course). In the many-dimensional case  I do not 
know the answer to our question, but it seems that 
there must exist a procedure for  obtaining the Green's 
function for a given energy in the many-dimensional 
case, analogous to the one just described for the one- 
dimensional case. 

With great  pleasure I wis! to express my gratitude to 
K. G. Borevskov, A. B. Kaidalov, V. E. Korepin, 
L. B. Okun', V. A. Fateev, and M. A. Shifman, and es -  
pecially to B. L. Ioffe and K. A. Ter-Martirosyan for 
many helpful discussions and for their support. I a m  
grateful to Yu. A. Simonov for valuable comments, and 
a lso  to A. D. Dolgov, V. L. ~ l e t s k i i ,  and V. S. Popov 
for  their interest in this work. 

') It must be particularly emphasized that all such papers now 
known to me are devoted to the examination of one-dimen- 
sional problems or problems which can be reduced to the 
one-dimensional case. 
A s  applied to the ground state this sort of transformation 
was proposed independently in a paper which appeared 
recently.26 

'1 From now on we write k for brevity, meaning a point In the 
space R, with coordinates Gi ,xz , .  . . , x k ) .  

"We note that the operator on the left side of Eq. (12) is the 
Laplace operator in a curved space with a conformally flat 
metric, with *: playing the role of the determinant of the 
metric tensor. Accordingly, the problem reduces to finding 
the Green's function of the Laplace operato: in a curved 
space. I am grateful to Ya. A. Smorodinskii for calling 
my attention to this fact. 
This means that the zeroth-approximation potential is 
quadratic, i.e., the unperturbed problem is a harmonic 
oscillator. 

"At points of self-intersection, where branching occurs, 
g-= 0. 

') In the one-dimensional case, as a consequence of the oscil- 
lation theorem, the set S is a finite point set, and f is a 
polynomial: 

where m is the number of zeroes. Therefore we can expand 
the positions ai of the zeroes directly in series in A, i, e., 
write ck'i = Z ~ * A ~ ,  as was proposed'in Refs. 10 and 15. How- 
ever, this method cannot be extended to the many-dimension- 
a1 case (see the further discussion), and therfore we proceed 
somewhat differently, as suggested in Ref. 6. 
For simplicity we shall not give attention to the modifications 
that appear when we are to deal with excited states. 

 he ensuing discussion is usually called the "Dyson instabil- 
ity argument."" 

lo) We note that in a paper by Dolgov and Popov, IS devoted to 
the study of the one-dimensional harmonic oscillator, a 
convergent PT was constructed in which the zeroth-approxi- 
mation wave function chosen was one having the correct be- 
havior at infinity and at zero (see the further discussion). 

"1 We confine ourselves to the case of the gound state and of 
excited states subject to the condition thatf, = 0. 

12) I am grateful to A. D. Dolgov, who suggested this device. 
'') I. e., the problem reduces to the solution of I linear equa- 
tions with 1 unkowns. 
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