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The diffusion component of the thermoelectric power is investigated in the region of electron scattering by 
phonons. A value ( a l n S / a l ~ ) ~ , , ~  = - 1.5 is obtained. It is shown that this value can be attributed to 
topological singularities of the Fermi surface of tin. 

PACS numbers: 72.15.Jf, 72.10.Di, 71.25.H~ 

The  diffusion p a r t  of t h e  thermoelec t r ic  power of a In the  presen t  study w e  have attempted to resolve th i s  
meta l  is defined by the expressions1 contradiction in the  case of tin, using the  size effect 

n'kaT f o r  th i s  purpose. The  electron mean f r e e  path, which is 
a. = - g-aT, 

3ee, (1) governed by the finite dimensions of the sample,  is in- 

dlnA alnS dependent of energy, and th i s  makes  i t  possible  to  est i -  

(2) mate  t h e  contribution of both t e r m s  in the right-hand 
s i d e  of (2). 

where  o is the  conductivity of the  metal ,  A is the  elec- 
tron mean f r e e  path, and S is the  area of the  F e r m i  
sur face  (FS). We have shown in a preceding paper2 that 
in the case of electron sca t te r ing  by impuri t ies  the 
value of 5 is determined mainly by t h e  f i r s t  t e r m  of t h e  
right-hand s i d e  of (2) and depends on t h e  type of im- 
purity. For a p u r e  metal  (when electron-phonon sca t -  
tering predominates),  however, th i s  question has so 
f a r  remained unanswered. The  point i s  that the  experi- 
mental 5 f o r  a number of polyvalent meta l s  ( g a l l i ~ m , ~  
tin2) are essent ial ly  negative, and this  is difficult to  
reconcile with t h e  prevailing notions. In fact,  as shown 
by ~ l e m e n s ?  in the isotropic  case we have a lnr/a In& 
=O. The  physical reason  is that  t h e  energy relaxation 
is much f a s t e r  than the momentum relaxation. I t  can 
therefore b e  assumed that a l n ( r ) / a  lna will  b e  s m a l l  
also in a weakly anisotropic  case.  

On the o ther  hand, the  FS of tin, as well  as of most 
polyvalent metals ,  is in the  broadened-band s c h e m e  
close to a s p h e r e  of f r e e  electrons,  f o r  which a l n v ~ /  
8 In& =3/2. The  negative experimental  5 are there fore  
puzzling [5 =- (1 to  3) f o r  Sn]. 

Nielsen and ~ a ~ l o r ~  have shown recently that a l n r /  
a In& can have l a r g e  negative values on account of scat-  
ter ing p r o c e s s e s  i n  which vir tual  phonons participate. 
According to Ref. 2, however, t h e  contribution they ob- 
tained f o r  t h e  p u r e  meta l  cannot be significant a t  low 
temperatures .  

T h e  theory of the s i z e  effect f o r  e lec t r ic  conductivity 
w a s  developed by ~ i n g l e . ~  I t  i s  known that in this  theory 
a distinction is made  between two limiting cases. For 
cylindrical s a m p l e s  a t  d<< A,, where  d is the  sample  
d i a m e t e r  and A is the electron mean f r e e  path in the 
bulk sample,  

pd/p,=h,/d. (3 

Substituting p, f r o m  (3) in  (2), we  readi ly obtain 

F o r  cyl inders  with d>> A, 

F r o m  (5), (2), and (1) w e  have 

where  

a l n S  
A ,  - =- 

d l n e  d l n e  a l n e  

It  is s e e n  f r o m  the  presented relat ions that by mea- 
sur ing  p and a as functions of the sample  d iameters  we 
can de te rmine  3 l n ~ , / a  lna and 3 l n ~ / a  lns. 

EXPERIMENT 

We investigated s ingle  c rys ta l s  of ul t rapure tin with 
p,,, K/poz 6 -  lo5. The  sample  d iameter  ranged f r o m  4 to 
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0.2 mm. The electron mean free path (determined from 
the residual resistivity of the bulk sample) was about 
0.7 mm and three times larger than the diameter of the 
thinnest sample. 

The technique of sample preparation and thermoelec- 
tric-power measurement was described b e f ~ r e . ~ * ~  The 
thinnest samples were obtained by electrically etching 
a sample with initial diameter 0.6 mm. The sample 
used a s  the cathode was secured along the axis of the 
tin anode cylinder. The etching was in a continuous flow 
of electroyte consisting of four parts of glacial acetic 
acid and one part of 30% hydrochloric acid (the density 
of the latter was 1.207 g/cm3). (The solution i s  explo- 
sive when dehydrated and heated!) The etching current 
was 1-2 A. The total etching time needed to decrease 
the diameter from 0.6 to 0.19 mm was - 50 hours. The 
measurements of a, were made without dismounting 
the sample from the etching setup. 

MEASUREMENT RESULTS 

The measurements were made at temperatures 3.7- 
7.2 K. In this region, the phonon dragging i s  substan- 
tial, s o  that the total thermoelectric power i s  

Just as in Ref. 2, a, was separated from a,, by using 
the dependence of Q/T on T '. For dirty samples this 
dependence is linear with good accuracy,2 but substan- 
tial deviations from linearity a r e  possible in extreme- 
ly pure samples. A typical plot of this dependence i s  
shown in Fig. 1. At T >  = 5  K the linearity i s  good, 
but at T < Ti the slope changes. The temperature T* 
is, with good accuracy, that at which the phonon part 
and remaining parts of the electric resistance become 
equal. It is  clear that electron scattering by residual 
impurities in the sample and by lattice defects come into 
play at T < T*. To determine the thermoelectric power 
of the pure metal, however, it is  necessary to investi- 
gate the part of the curve above T*. The value obtained 
in this manner for a pure sample i s  5 =- 1.8. In our 
preceding paper2 we did not take these factors into ac- 
count using all the data in the reduction of the results. 
The value obtained for the same sample was then 5 
=- 3.6 and was in fact listed in the "pure ~ n "  column of 
Table I there. 

Simultaneously with the thermoelectric power we mea- 
sured the resistivity of each sample. By plotting pa 

FIG. 2. Plot of o! /T against T for pure tin samples of differ- 
ent diameters: .) d = 0 . 2  mrn, m) d = 2 mm. 

against l/d we obtained p,(0) = 1.6 x lo-" %cm and 
A = 1.3 x lo-" SZ- cm2, in agreement with the results 
of Aleksandrov et a1.** It turned out that whereas the 
resistivities of the samples with d = l  mm and d =0.19 
mm differ by almost seven times, the coefficients a, 
differ only by a factor of two (Fig. 2). The experimen- 
tal results a r e  shown in Fig. 3a. Figure 3b shows a 
plot of a,p, against l/d, which agrees well (at d r A) 
with relation (6). As a result we get 

a ln S/a ln E=-1.5*0.3, a ln A,la ln e=0.4*0.3. 

The value of a InA, /a lnz does not contradict Klemen's 
conclusion4 that a l n ~ / a  In& = 0. 

These estimates a r e  based on the Dingle theory which 
presupposes, strictly speaking, an isotropic model. It 
may appear at f irst  glance that the experimental result 
contradicts this premise, since a negative sign of as/ 
a& means that the FS i s  substantially nonspherical. Let 
us imagine, however, a FS in the form of a finely and 
uniformly grooved sphere. Such a surface i s  on the 
average isotropic (so long as d/A, exceeds the charac- 
teristic angular dimension of the grooves), but can have 
arbitrary values of S and as/a&. This means that the 
isotropy of the FS and the negative sign of as /& a r e  in 
principle not contradictory. We note that the free-elec- 
tron sphere of tin i s  strongly cut up by the Bragg planes 
(Fig. 4). 

AS d / ~ , -  0 the indicated quasi-isotropy vanishes and 
Dingle's theory does not hold. This is manifest, in par- 
ticular, by the fact that reduction by formula (4) yields 
a value of a l n ~ / a  ln& that pertains not to the total sur- 

FIG. 1. Plot of ff /T against T~ for one of the pure tin sam- 
ples ( p  = 1.8 x 10- lo  n - cm). The straight line was drawn 
through the points at T < T = 5 K. 

FIG. 3. a) Ekpelimental dependence of 41 on l/d (the solid 
line characterizes the mean value in bulky samples), b) re- 
duction of the experimental data incoordinates ad p,, vs. l/d. 
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FIG. 4. Fermi surface of tin in the broadened-band scheme 
(conical equal-angle projection). The principal topological 
changes that distinguish it from the FS of free electrons are 
shown (according to the data of Ref. 10): filled-neck in fourth 
zone; cross-hatched vanishing of parts of the cigars in the 
fifth and sixth bands; dashed-striking to corner in third and 
fifth bands. The upper boundaries are drawn arbitrarily. 
The dashed sections of the sphere are missing from the real 
FS. Sections missing from the initial sphere but present on 
the real FS (they correspond to the electron " cube" of the 
sixth band) are not shown. 

face, but to its local section in the direction of the sam- 
ple axis. It is probable that this limit was not reached 
in the thickness interval investigated by us, a s  seen 
from Fig. 3a. 

We examine now whether the obtained value I; = a l n ~ /  
a lnc can be reconciled with present-day notions con- 
cerning the FS of tin (Fig. 4). The possibility of I; 
having an arbitrary sign is usually connected with the 
presence of electron or  hole surfaces. This explanation, 
however, calls for a major revision. It is known that 
according to Harrison's scheme the electron and hole 
surface a r e  the results combining in one zone different 
sections of the free-electron sphere for which [= + 1. 
This process cannot change the value of I;; the negative 
sign for the hole surfaces i s  offset by an increase of I; 
of the electron section, so that the net value of I; re- 
mains + 1 as  before. It is clear that the measurement 
of I; can be explained only by taking into account the 
deviations of the real Fermi surfaces from the free- 
electron model. 

It is known that near the boundaries of the Brillouin 
zone the FS is rounded off in such a way that it crosses 
the zone boundaries at a right angle. The size of the 
roundoff is determined by the parameter q = ( Vc 
where Vc is the Fourier component of the lattice pseudo- 
potential; for most metals we have q 5 0.1 (for tini0 we 
have qzoo =0.091, qioi =0.052, qzzo =0.043, q21i = 0.047). 
The rounding-off leads to changes of S and as/&, 
which a r e  proportional to q and a re  usually small. In 
fact, using the weak-coupling approximation formu- 
l a ~ , ' " ' ~  let us calculate the area of the rounded-off FS 
that crosses one Bragg plane. Then, assuming 

k,-g/2 
4a1, 4K- 

k ,  
(7) 

we obtain 

where E(q)  and K(q)  a re  complete elliptic integral, g is 
the reciprocal-lattice vector, and So is the area of the 
Fermi surface. It is easy to verify that at any g/k, the 
value of S decreases but increases, i.e., I; in- 
creases compared with + 1. If the interference between 
the different Bragg planes is negligible, then the total 
change of S and a ~ / a &  reduces to a sum over all the 
planes that cross the FS; it is clear that the value of I; 
for such a metal cannot be negative." 

The interference between the planes is significant 
when the pseudopotential is large enough to permit a 
"topological change" of the FS compared with the free 
electrons. The "topological change" of the FS, ac- 
cording to Ref. 13, is defined a s  the change of its con- 
nectivity, viz., the vanishing o r  appearance of a pocket, 
or  the breaking or formation of a neck. This definition 
implies the use of the reduced- zones scheme. In the 
broadened-bands scheme, the topological changes mani- 
fest themselves as  the vanishing of individual sections 
of the sphere, as  formation of contacts between the FS 
and the band boundaries, and others. 

The topological-change process i s  called a phase tran- 
sition of order 2 $.I4 This transition, as  will be shown 
below, is accompanied by a jump of as/ac in the case 
when a pocket vanishes, and by a jump with a logarith- 
mic singularity of the In Ic - c, I type when a neck is 
broken (c, is the energy at which the transition takes 
place). 

The simplest topological change is shown in Fig. 5a. 
The Bragg planes cross the Fermi sphere at the very 
edge, and the sections cut off by the planes drop out by 
virtue of violation of the second condition of (7). It is 
easy to show that the associated change of aS/ac is 
given by 

as as, I 
6z/x=-- +O(n), 

i.e., it is of zero order in the pseudopotential. In fact, 
the when two planes cross the sphere and the end pieces 
a r e  made to vanish, we get a spherical segment whose 
logarithmic derivative is 3, i.e., I; is  decreased by - & ; 
on the other hand the decrease of S and the roundoff pro- 
duce a small effect -q [since (k, - g/2)/k, -v]. If the 

FIG. 5. Topological changes of Fermi surface (a-d) (dashed- 
vanished parts of the FS): a-vanishing of the segment cut off 
by the Bragg plane; b-vanishing of the section between two 
planes; c-sticking of FS to corner made up of two planes (2nd 
projection); d-onset of a neck; e-example of electron surface 
with negative aS/ac (dash-dot-surface at higher energy). 
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neck is not very thin, the manner in which it was 
broken does not matter-by vanishing of the cut-off 
sections ( g  <2k,) o r  by "sticking" to the plane ( g  
> 2k,). 

We note that vanishing of arbitrarily small sections 
suffices to produce a finite change of 5. The reason is 
that at  the instant of tangency a substantial change takes 
place in the energy dependence of the FS, and in place 
of S a c  for a sphere we get Sac1/ '  for a spherical seg- 
ment. It is clear that when the sphere is intersected by 
several planes with g = 2k, it is possible to have also 
b <O. This example shows that the negative sign of 5 
is not necessarily connected with the existence of hole 
surfaces. Moreover, one can visualize an essentially 
electronic surface (Fig. 5a) whose area  decreases with 
increasing energy, whereas the volume increases. 
Such a surface has electron properties in the Hall and 
Nerst- Ettingshausen effects and hole properties in the 
thermoelectric power." 

On the basis of the foregoing considerations, one 
should expect negative values of 5 for noble metals 
(Cu, Ag, Au). This result was deduced from numerical 
calculations by Abarenkov and vedernikov.15 The pos- 
sibility of decreasing 5 of noble metals was discussed 
earlier by 2iman.16 

In polyvalent metals, topological changes of the type 
shown in Fig. 5a a r e  not typical and a r e  rarely en- 
counters (e.g., in Hg); the condition (7) is usually well 
satisfied for all  Bragg planes with g <2k,. Even in this 
case, however, topological changes a r e  possible of the 
line of intersection of two Bragg planes l ies near the 
Fermi sphere, i.e., 

where d is the shortest distance from the plane-inter- 
section line to the center of the Fermi sphere. At k, 
> d the topological change manifests itself in a vanish- 
ing of the section of the sphere between the planes (Fig. 
5b), whereas a t  k, <d it appears a s  a "sticking" of the 
FS to the corner (Fig. 5c). Calculating the area  of the 
section of the sphere between the planes, we obtain for 
small 9 (Fig. 5b) 

Since the section can vanish at  8-q, the corresponding 
changes of S and aS/ac a r e  of the order of q3/2 and 
ql/'. Consequently, in this case, too, considerable 
changes of the logarithmic derivative of S can accom- 
pany very small changes of the area. In the FS of tin1' 
there a r e  no sections in the intersections of planes 
(200) and (020), (121) and (211), (200) and (101), o r  
(110) and (211) (Fig. 4). The sections between (200) 
and (020) and their like made up the "cigar" of the fifth 
band in the FS of the free electrons; the remaining sec- 
tions made up the cigars of the sixth band. At a total 
a rea  of all  the cigars =O.lSo, their vanishing makes a 
contribution of - 3.0 to the change of (aS/ac)/(a~, /a&). 

To estimate the contribution of the sticking to the 
corner (Fig. 5c) we use the expression obtained for L 

from the three-wave approximation" 
L= (p'-6-2mLo)H, 

where &, is the negative root of the equation 
As- (VaZ+VfiV,l)L-2VaVzVs=O, 

V1, V,, and V3 a r e  the Fourier components of the 
pseudopotentials corresponds to the wave vectors g,, 
g,, and gi - g,, respectively. Approximating the pro- 
duced rounded regions by flat sections, we obtain 

as as, 1 tgcp,+tgq, L l t l m  

6 ~ / ~ = 3 ~ t g T ~ t g c p *  {K-zI- 
Since L -171/2p, and X-qc,, the contribution to as /& is 
of the order of q1/2, i.e., the same a s  in the preceding 
case; the contribution is usually positive. In Sn, stick- 
ing to a corner take place in the intersections of the 
planes (011) and (220), (110) and (iol) ,  (121) and (i21), 
and (200) and (121). The first  two correspond to 
breaks of the hole necks in the third band, and the 
remainder to vanishing of the gaps between the 'bears" 
and the "double pancakes" in the fifth band.I0 An esti- 
mate by formula (11) shows that their total contribution 
does not exceed + 2. 

Topological changes can exist also in intersections 
of three and more planes (examples a r e  the electron 
"cube" in the sixth band and the neck in the fourth band 
of Sn). It is difficult to estimate their contribution with 
the aid of the weak-coupling approximation, since this 
calls for allowance for a large number of plane waves. 
It is more convenient to go over in this case to the re- 
duced-band scheme and use the general properties of 
the spectrum near the singular points." 

We consider now the formation of a small neck be- 
tween two large parts of the FS (Fig. 5d). In view of the 
proximity to a conical singular point, the spectrum 
should take the form1' 

(the z axis is along the neck axis, and the origin is at 
its center). The parameters m,, my, m, and A = c, - c ,  
can be estimated from the geometric dimensions of the 
neck, recognizing that a t  large P, the neck should be- 
come joined to the large pear (Fig. 5d): 

(Po is the radius of curvature of the large pear). The 
change of aS/ac which occurs when the neck appears is 

3.9 as, 1 p, 1 L r ------ ln-. 
2 P, 2 p, Po 

For short necks (L << R) only the first  term is impor- 
tant, and agrees with (9) at  Po =P, (its exact value is 
m, /2m). For the two necks in the fourth zone of Sn we 
have L << R and Po -p,, and their contribution to (as/ 
ac)/(aS0/ac) is approximately - 1. 

In the case of long necks (L >> R) the second term of 
(13) is important. For example, sticking of a corner 
(Fig. 5c) in the reduced-band scheme looks like a break 
of a long hole neck (R -qpp << L -q1/'pp). In view of (13) 
its contribution to is -ql/' and is positive in ac- 
cord with the estimate above. 
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We can s imi la r ly  estimate the  onset  (or vanishing) 
of a small electron pocket. The  f o r m  of the  s p e c t r u m  
near t h e  minimum point is 

e-eC-.p1/2m., (14) 

hence 

where  a is the dimension of the pocket and A =c, - c,. 
Usually a pocket produced n e a r  the intersect ion of a 
l a r g e  number of planes h a s  dimensions -@, in all di- 
rections; s ince  A - F,, the  corresponding contribution 
to aS/av is -71. For example, f o r  t h e  electron cube in 
t h e  s ix th  band, according to da ta  of Ref. 10, a /p ,  = 1/15, 
and A/cp = 1/20, whence 

as as, 
8z/x='/t0. 

Gathering together all the contributions -1 and v1/2, 
w e  obtain f o r  Sn the  value a lnS/a,lnc = - 2 [with allow- 
a n c e  f o r  the  fact  that according to a n  estimate by formu- 
la (8) we  have S =0.4S0]. Within the  l imi t s  of the  cal- 
culation accuracy  th i s  value a g r e e s  with that est imated 
f r o m  the experiment. 

The anisotropy of A can influence the resu l t s  in s o m e  
way. In fact ,  l e t  u s  take the  mos t  e x t r e m e  case: A = 0  
f o r  the electron sect ions,  and is of the usual  o r d e r  of 
magnitude f o r  the  hole sect ions.  Then all the  kinetic 
coefficients are determined only by the  hole sur faces ,  
and aS/ac t u r n s  out to  b e  negative in  the  thermoelec- 
t r i c  power and in the s i z e  effect. This  a r t i f i c ia l  as- 
sumption, however, is in d i rec t  contradiction with the 
da ta  on the s i z e  effect. Thus, res i s tance  measure-  
ments  yielded S =0.43So, which a g r e e s  with the  value 
obtained f o r  the  total area of the F S  of t in  by theoreti- 
cal es t imates  [(0.4-0.5)So, Ref. 121 and f r o m  o ther  
measurements  [0.43S0 in Ref. 17,  (0.50-0.55)So in Ref. 
121. 

We note that in Refs. 15  and 1 6  it w a s  assumed that 
the thermoelectr ic  power is given by 

and not by a lnS/a lnc. T h e  difference between these  
quantities corresponds t o  the  assumption of constant T 

or of constant A. The  presence  of v under  t h e  integral  
sign does 'not affect the estimates significantly, s i n c e  

t h e  main contributions t o  5 are connected with the 
vanishing of the  sec t ions  of the initial sphere.  

Thus,  with tin as a n  example, it h a s  been shown that 
in polyvalent m e t a l s  small topological changes of the 
real F e r m i  sur face ,  compared with the F e r m i  sur face  

of the  almost-free-elect  ron  model, can lead to substan- 
tial changes of a lnS/alnc.  

' ~ x c e ~ t i o n s  a r e  possible in the case of a strong energy de- 
pendence of the pseudopotential. For Sn, however, the 
corresponding corrections a re  small and also lead to an in- 
crease of g (a calculation of the energy dependence of the 
pseudopotentials is described in Ref. 2). 

pse he authors thank M. I. Kaganov for pointing out this cir- 
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