
=z P " ( N ~ , N , ) = =  S ~ P R =  Eijn. (A. 5)  
R, I 

Here Xj a r e  the eigenvalues of the matrix P. For 
large N (number of sites) it is necessary only to use 
the largest eigenvalue A,. 

For the further calculations it i s  necessary to intro- 
duce a unitary matrix S which diagonalizes P, i. e. , 

We now write down an equation for @,) and the cor- 
relator @,N~) (the number of si tes N- m )  

Here 

For the correlator we get (N>> k) 

(A. 8) 

We find from Eq. (A. 7) the matrix elements of the 
matrix S and substituting them into (A. 8) we find the 
correlator (N,N,,). Since we a r e  interested in cor- 

relations between neighboring sites we get a s  a result, 
putting k = 1, at v<< 1 the formula 

<N,N,+,>=V'~-~". 
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Parameters of an electron beam in a free-electron laser 
under strong saturation conditions 
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Bunching of the electron beam in a free-electron laser under strong saturation conditions is considered in the 
given-field approximation. The electron phase and the velocity distribution functions, and also the total 
energy transferred to the electromagnetic wave by the beam, are found. 

PACS numbers: 42.55. - f. 41.80.Dd 

1. The first  experiments on the amplification and amplifier o r  generator, known a s  a free-electron las- 
generation of light by means of a relativistic electron e r ,  was developed in a number of works (see, for 
beam passing through a region with a transverse mag- example, Refs. 4-6). Nonlinear phenomena in similar 
netic field that was varying periodically in space were apparatus a r e  due to the change in the parameters of 
carried out recently. A linear theory of such an the electron beam under the action of the electromag- 
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netic field (bunching of the electrons). At a sufficiently 
low density of the electrons in the beam, when the gain 
per pass is  low, the change in the amplitude of the elec- 
tromagnetic field in the process of electron bunching 
is insignificant (the given-field approximation). The 
nonlinear theory of the free-electron laser has been de- 
scribed in this approximation in a number of papers. 718 

In these researches, the dependences of the gain and 
the parameters of the electron beam on the frequency 
and amplitude of the electromagnetic wave were in- 
vestigated by means of numerical calculations. 

In the interaction of an electron beam, moving in a 
magnetic field that is spatially periodic, with an elec- 
tromagnetic wave, the electrons a r e  accelerated o r  
slowed, depending on the initial phase of the wave, and 
it i s  this which leads to their bunching. Significant 
bunching takes place over some characteristic distance 
which depends on the amplitude of the wave. However, 
in strong saturation, that is ,  at  distances that a r e  much 
greater than the bunching length, stationary modulation 
of the beam and stationary electron energy distribu- 
tion a r e  established. The exchange of energy between 
the beam and the wave ceases. The numerical calcula- 
t i o n ~ ~ . ~  apply to distances that a r e  smaller than or 
comparable with the bunching distance. 

In the present work, the parameters of the electron 
beam in the regime of strong saturation, and the total 
energy transferred by the beam to the electromagnetic 
wave, a r e  calculated in the given-field approximation. 

2. Let a monoenergetic relativistic electron beam 
with initial velocity v parallel to the z axis and energy 

- 
enter a region with a helical magnetic field 8: 

%,.=% cos qz, am"-== sin qz, (1) 

where q = 27r/a, and a i s  the period of change in the 
field. Further, let an electromagnetic wave with circu- 
lar polarization propagate along the z axis: 

&,=8 cos ( o t - k t )  , &,=a sin ( a t - k z )  ; 

%-=-a sin ( o t - k z )  , SW=.GP cos (a t -k z )  ; k-ole .  
(2) 

The equation of motion of the electron in the total 
field, 

can be reduced to a one-dimensional equation describing 
motion along the z axis. For this we must determine 
the transverse components of the velocity from (3) and 
substitute them in the expression for dp,/dt. If the 
relative change in the energy of the electron due to its 
interaction with the field i s  small, then this one-dimen- 
sional equation reduces to the pendulum e q ~ a t i o n ~ . ' * ~  

dzcpldta+Q2 sin rp=O, (4 

where 

'D= (k+q) z -o t ,  

B2-28% (e lymc)  '. 
(5) 

Formula (5) i s  valid if y >> 1. The condition of small- 
ness of the relative change of the energy of the electron, 

which was used for derivation of Eq. (41, is equivalent 
to the conditions vf/c2 << 1 - ZY/C, AVJC << 1 - V/C, where 
v, i s  the transverse velocity of the electron in the field 
and Av, i s  the change in its longitudinal velocity. This 
imposes the following limitation on the values of the 
fields $ and &P: 

In the condition (6) is  satisfied, the motion of the elec- 
tron in the set of coordinates moving with velocity v 
is  nonrelativistic. In practice, condition (6) is  satis- 
fied with a large margin. 

For an electron crossing the boundary of the region 
with the helical magnetic field (z= 0) at  the instant 
t =  to, the initial conditions to Eq. (4) have the form 

where w,= qv(1- u/c)-' i s  the resonant frequency of the 
electromagnetic wave. 

It is convenient to introduce in Eq. (4) the dimen- 
ionless variable T =  S2(t - to). We then obtain the equa- 
tion 

with initial conditions 

c~ (0) =TO, (dq ldz )  ,=~-Ao ,  (8) 

where A,= (w, - w)/2yZS2 is  the dimensionless detuning 
of the frequency. 

We note that since the relative change in the velocity 
of the electron is small, we have, accurate to terms of 
order S2/w << 1, ~ = z / l  where I =v/G is the character- 
istic length, over which electron bunching occurs, and 
z i s  the distance traversed by the electron in the inter- 
action region. Thus the quantity T i s  a saturation pa- 
rameter. 

3. The parameters of the electron beam a r e  char- 
acterized by the distribution function 

* 
d'D f (h A. r )  - I dp .  b b - p ( r .  vo. 4)  )6  ( A  - ~ ( r ,  rp., Ao) ), (9) 

where q = ( k + q ) z - w t , A = [ ( k + q ) i - w ] / 5 1 , r = z / l .  The 
dimensionless quantity A i s  connected with the change 
bE in the energy of the electron in the following fashion: 

A positive 6E means that the electron loses energy to 
the electromagnetic field. The distribution function f 
is  normalized so that 

-,, -- 
In what follows, we shall be interested in the distri- 

bution functions of the electrons in the phase n ( q )  and 
in the velocity g(A), and also in the mean value of the 
change FE in the energy of the electron at large values 
of the saturation parameter T. These quantities have 
been studied numerically in earlier papers at  T s 1. 7 , 8  

At T >> 1, the problem is  materially simplified, since 
the distribution function (9) becomes then independent 
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of T .  Actually, finding the distribution function of the 
electrons reduces to the following problem: There 
exists an ensemble of pendulums, the initial angular 
displacements of which a r e  uniformly distributed over 
the circle 0 <  cp,< 2n, while the initial angular velocity 
of all the pendulums, A, is the same. It is required to 
find the distribution of these pendulums with respect to  
the angular displacement cp and angular velocity A a t  a 
subsequent instant of time. This distribution i s  given 
by the formula (9). It i s  clear that after each pendulum 
has completed a large number of oscillations (T>> I ) ,  a 
certain stationary distribution i s  established. This 
stationary distribution function f(cp, A) can be obtained 
by averaging the integrand in formula (9) over T for a 
time T(c ), where E = Ag2 - coscp, i s  the energy of the 
pendulum with initial angular displacement cp,. 

It is convenient to represent the distribution function 
in the form of a sum of two terms: f = fl + f,, s o  that 
f1 describes the distribution of the trapped electrons 
(E < 1) and f, the distribution of the untrapped electrons 
(c > 1). In terms of the problem of the pendulums, a 
trapped electron corresponds to an oscillating pendu- 
lum, and an untrapped one correspond to a pendulum 
which rotates vertically around the support. It i s  ob- 
vious that the trapped electrons exist only a t  A,,< 2. 

Averaging the integrand in (9) over 7 ,  a s  indicated 
above, it i s  not difficult to obtain the following asymp- 
totic expressions (at T>> L) for the functions fl and f,: 

Nt+l de 8 ( A  - ( 2  (e+cos cp) ) ") 
f=(cp,A)-2" j - T ( e )  [ (1 -(e-Ao'I2)') (el-cos c p )  1'"' (13) 

The lower limit of integration in (13) depends on the 
value of A,: &,=I at  A0<2; & , = ~ ~ / 2 - 1  a t  Ao>2. 

The period T(E) is  determined by the usual expres- 
sion 

1 

T ( e )  - 2" 1 d z [  (1-2') ( e f  X )  I-", =. 
wherex,=-&at  & < I  andx,=-1at & > I .  Wenote that 
the quantity T(c )  represents the actual period of motion 
a t  c >  1 and ha l f  the period of motion a t  c <  1. In for- 
mulas (12) and (131, we have change from integration 
over cp, to integration over the energy E =  Av2 - coscp,. 

The formulas (12) and (13) can also be obtained di- 
rectly from formula (9) by taking the limit a s  T - m. 

At arbitrary values of T the distribution function (9) 
can be represented in the form of a sum over the re -  
sidues of the 6 functions a t  the points cp,. ' At T - 0 0  

the sum can be replaced by an integral, and this also 
leads to the formulas (12) and (13). 

4. The distribution function ficp, A) found above en- 
ables us to determine all the characteristics of the 
electron beam in the regime of strong satnration. The 
character of the modulation of the electron beam i s  
determined by the phase distribution function n(cp), 
which can be obtained by integrating the distribution 

FIG. 1. Modulation of the electron beam in the strong satura- 
tion regime at different detunings: a-A, =0, b-A, =l; 
c--A0 =2; d-A, =3. 

functionflcp, A) over A. Using formulas (12) and (131, 
we obtain 

The lower limit of integration cl i s  determined by the 
condition that the radicand in the integral (15) be posi- 
tive: cl = - C O S ~  a t  coscp< 1 - Ag2 and E, = A72 - 1 
a t  coscp> 1 - Av2. 

Figure 1 shows the graphs of the function n(cp) a t  dif- 
ferent values of the detuning A,, obtained according to 
(15) by numerical integration. At A,= 0 (Fig. l a )  the 
function n(cp) has a t  the point cp=O a singularity of the 
form In I l / c p  I. Actually, if c =  -1 the integral (15) di- 
verges logarithmically a t  A,= 0 and cp= 0,  s o  that this 
singularity i s  caused by pendulums with initial phases 
close to zero. Moreover, a s  is  seen from Fig. l a ,  the 
function n(cp) vanishes a t  cp = * T .  Near these points 

this i s  connected with the increase in the period of the 
oscillations a s  E -  1: 

At 0 < l A, l < 2 (Fig. lb)  the distribution function n(cp) 
has a logarithmic singularity a t  values of cp such that 
coscp = 1 - Av2. At these values of cp the integral (15) 
diverges logarithmically on the lower limit a t  c =  A72 
- 1, also because of the contribution of pendulums with 
zero initial phase. 

The cause of the singularities of the function n(cp) can 
be explained in the following manner. We consider a 
group of pendulums with initial phases in the range 6q0,  
close to some value of cp,, and with initial angular velo- 
cities A,. The greatest contribution to the density n(q) 
of the group of pendulums i s  made near the turning 
points cp, such that coscp= coscp, - Av2, since the pen- 
dulums spend the greatest time near these points. The 
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interval 6cp of the turning points i s  generally speaking 
proportional to the initial interval bcp,: 

sin qbq-sin q08q1,. 

The case cpo=O is an exception; here the turning points 
of the chosen group of pendulums a r e  bunched together: 
brp-(6cp0)'. Thus, a t  coscp=l-A72 thevalueof the  
density n(p) will be greatest because of the pendulums 
with initial phases close to zero. 

At the separation boundary A,= 2 (Fig. l c )  the sin- 
gularities of the function n(cp) turn out to occur a t  
values cp = *n and have a weaker character: 

n(q)-lnlln (n-lol)l. 

Of course, the indicated singularities of the function 
n(q) take place only a t  r=oo .  At large but finite values 
of the saturation parameter 7 the function (cp) will have 
a maximum -1nr at the corresponding points. The value 
of n(q) calculated from formula (15) at a distance x 
from the singular point i s  actually achieved a t  7-x-'. 

At A,> 1 (Fig. Id) all the pendulums rotate vertically 
about their support points and the function n(cp) has no 
singularities. At large values of the detuning A,, it 
follows from formula (15) that n(q) = 1 - coscp. 

5. We get the velocity distribution function from for 
mulas (12) and (131, averaging them over the phase q.  
The function g(A) obtained in this way and normalized 
to unity can be conveniently divided into parts g, (A) 
and g,(A), which describe the trapped and untrapped 
electrons, respectively. It is  evident that the function 
g,(A) differs from zero at I A, I < 2 and I A I < 2, and i s  an 
even function of A. The function g,(A) differs from zero 
if the signs of the quantities A and A, a r e  the same. 

In the following, we set  A,> 0 for definiteness. In the 
opposite case in the formulas below for g,(A) it is  nec- 
essary to replace A by -A. We obtain the following ex- 
pressions for the distribution functions g,,, from for- 
mulas (12) and (13): 

The limits of integration A, ,, and B,, ,  a r e  different 
for the functions g, and g,, and depend on the relation 
of A and A,. They a r e  determined by the requirement 
that both radicands in formula (16) be positive, and also 
by the conditions E <  1 for g, and E >  1 for g,: thus, the 
range of variation of the quantity A i s  divided into in- 
tervals that depend on A,. The limits of integration in 
formula (16) for each of the intervals a r e  shown in the 
Table. 

TABLE I. Limits of integration in formula (16) as functions 
of A and A,. 
- 

FIG. 2. Electron velocitydistribution function in the strong 
saturation regime at different detunings: a-A. = 0; b--Ao= 1; 
c-A0=2; d-AoZ3. 

Figure 2 gives the graphs of the function g(A)=g, 
+g, a t  various values of the detuning A,, obtained by 
numerical integration from formula (16). As follows 
from formula (161, the function g,(A) has a logarithmic 
singularity a t  A=*A, while the function g,(A) has one a t  
A =  A,. These singularities a r e  analogous to those con- 
sidered above for the function n(q) and a r e  due to the 
contribution of pendulums with initial phases that a r e  
close to zero. 

6. The energy balance between the electron beam and 
the electromagnetic field is  determined by the mean 
value ?% of the energy supplied to the wave by the elec- 
tron. According to formula ( lo) ,  this quantity i s  pro- 
portional to the difference - A,. Thus, finding the 
total energy furnished to  the wave by the electron in 
the strong saturation regime reduces to averaging of 
the quantity A with the help of the distribution function 
g(A). 

It is  obvious that a = 0 for the trapped electrons, SO 

that the quantity a i s  determined by the distribution 
function g,(A) of the untrapped electrons. However, it 
is  more convenient to use the distribution function (13) 
directly, with the help of which it i s  not difficult to ob- 
tain 

where, just a s  in (131, &,=I at A,< 2,~,=A:/2 -1 at 
A,> 2 ,  and the sign in formula (17) must be chosen 
to be the same as the sign of the quantity A,. 

At large values of detuning, I A, I >>I, using the ex- 
pression T(E) = 2 1 7 ( 2 ~ ) - ~ ~ ~ ( 1  + 3/16c2), which is valid a t  
E>> 1, we find the following from formula (17): 

In the opposite limiting case of small detunings, lAol 
<< 1, the principal contribution to the integral is made 
by the region s - 1 << 1; here T(E) = -In I E - 1 I .  In this 
case, we get from formula (17): 
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FIG. 3. Dependence of the mean energy ;WE (in units of 
y 2 f Z / ~ )  t r a n d r r e d  by the electron to the field on the detuning , 
calculated from formulas (10) and (17). 

Formula  (19) re f lec t s  the  fact  that in the  case of small 
detunings, a large part of t h e  e lec t rons  ;\re trapped . 
by the wave and  a small fract ion (of the o r d e r  of A,) of 
the untrapped electrons have a s m a l l  [of t h e  o r d e r  of 
l / ln  (1/ 1 A, I I] mean  velocity relative to the  wave. 

Figure 3 shows a g r a p h o f  the dependence of t h e  mean  
energy bE t r a n s f e r r e d  to the electromagnet ic  field on 
t h e  detuning A,. The  maximum in t h e  g r a p h  cor responds  - 
to A,= 1.4 with A, - A ~ 0 . 6 ,  so that the  maximum rela- 
tive change in the energy of t h e  electron in the s t rong  
saturat ion r e g i m e  is 

85%f~-0.6~'s)/o. (20) 

We note that at small values of t h e  saturat ion param-  
eter T =  z/l<< 1, the  width of the  amplification band i s  

decreased  with increase  in z: bw/w -a/z (a i s  the  pi tch 
of the  helical magnetic field). 57 In t h e  strong saturation 
reg ime,  the length z in th i s  relat ion is replaced by the  
bunching length 1 (in our notation, th i s  cor responds  to 
Ao- 1). 

T h e  given-field approximation that we have u s e d  is 
valid under the  condition that the relative change in t h e  
energy of t h e  electromagnetic wave is small: nm<< g2, 
where  n is the  concentration of electrons in the  beam. 
Using formulas  (5) and (201, we can rewrite th i s  con- 
dition in the  f o r m  1 >>%'   e en^)^ ". If t h i s  inequality 
is sat isf ied,  the bunching length 1 is small in compari- 
son with the  amplification length that enters into t h e  
linear theory. ' 
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Angular distributions of resonant gamma-ray scattering by 
57Fe nuclei in hydrated sulfates of iron 
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The angular distributions of the resonant scattering of 14.4 keV gamma rays by "Fe nuclei in the 
polycrystalline iron compounds (FeSO, . H,O and FeSO, .7H,O) were measured for the individual 
components of the quadrupole doublets of the hypertine structure. The gamma quanta scattered with and 
without recoil were separated by using the method of the "black absorber placed between the scatterer and 
the detector. The measured angular distributions of the resonant scattering differ from the "hard core" 
distribution, a fact attributed to the anisotropy of the Mossbauer-effect probability. The values of the 
anisotropy E are - 0.20*0.05 and 0.10*0.06 for FeSO, . H,O and FeSO, .7H,, respectively, at positive 
values of the electric field gradient. 

PACS numbers: 76.80. + y 

INTRODUCTION bauer-effect probability f '  is isotropic. If,  however, 
f '  depends on the angle between t h e  direct ions of the 

It is known1 that  t h e  q u a d r u p l e  doublets of the Mass-  c r y s t a l  axis and of the  emiss ion  of the  gamma quan- 

bauer  transitions $ - g5'Fe, llgSn) are symmetr ica l ,  tum,  f '  = f '(Of), then an asymmetry  of t h e  intensi t ies  - 
i.e., both l ines  have t h e  s a m e  intensity, if the MGss- can  appear  i n  p l y c r y s t a l l i n e  samples (the Gol'danskii- 
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