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We study the superconducting transition in a system described by the Hubbard Hamiltonian with negative U -  
centers (attraction between electrons with opposite spins on one site). We derive and solve in the self- 
consistent field approximation equations for the modulus of the order parameter and the chemical potential. 
We show that the superconducting transition is the result of Bose condensation of electron pairs. The formula 
for the transition temperature is T, = W(l-2v)An(v-'-I), where Wis the band width and 2v is the number of 
electrons per site. We calculate the thermodynamic quantities and the current. We write down equations for a 
disordered model ("superconducting glass"). In the simplest case of two ideal sublattices their solution gives a 
steep decrease in T, when the single-site energy spread increases. 

PACS numbers: 61.40.Df, 74.10. + v 

1. INTRODUCTION 

The superconductivity transition in the delocalized- 
pair model is not very sensitive to structural disorder. 
For instance, superconducting alloys with electron 
mean free paths less than the BCS coherence length 
5 = 0. 2Eviv,/Tc have a critical temperature which differs 
little from the T, of an ideal single crystal. In i ts  
simplest form this statement is known a s  the Ander- 
son theorem. At the same time there exist super- 
conducting systems which a r e  sensitive to their struc- 
tural state s o  that the concept of a "superconducting 
g l a s ~ " ~ . ~  may have a non-trivial meaning. Finely dis- 
persed superconducting c o n d e n ~ a t e s , ~  superconducting 
compounds based upon transition metals (group A-15 
compounds, "quasi -zero-dimensional" superconduc - 
tors such as6 PbMo8,) and some other systems may 
belong directly or  indirectly to this kind of structure. 
Although for an explanation of the way Tc depends on 
the structural state in each of the above-mentioned 
systems one may propose concrete models (electro- 
static energy of the granules,' one-dimensional chains 
in A-15,' and s o  on), the possibility of an alternatuve 
explanation is not excluded. 

We shall analyze in the present paper a model of a 
superconducting transition which differs from the BCS 
model by the presence of localized electron pairs in 
the ground state and which leads to such a behavior. 
This model is  close to the ideas of Bose-condensa- 
tion of  pair^^.^.^.'^, but it differs from it quantitatively. 
We conclude that a superconducting transition may exist 
in structurally disordered systems (such a s  amorphous 
semiconductors) with covalent centers of electron coup- 
ling, although with a very low ordering temperature. 

As the basis of our model we take the Hubbard Hamil- 
tonian with negative U-centers: 

U.0 
Here U > 0 and we assume that ti, <<U,aL i s  the crea- 
tion operator for an electron with spin component u 
(=4 , + ) a t  the lattice site i and t , ,  in the matrix element 
for the transition between nearest-neighbor centers 
at the sites i,j . Negative values of U can be obtained 
if we take into account the interaction of an electron 
with local dispbcements of a given site. In complete 

analogy with the usual electron-phonon mechanism of 
superconductivity, this leads to an attraction of two 
electrons with opposite values of the spin component 
a t  a single site. 11.'2 We shall assume that the energy 
of such a coupling exceeds the usual Hubbard correla- 
tion energy, i. e. , that the resulting interaction in (1) 
is negative. The analysis by ~nderson"  showed that 
such a model can explain several properties of amor- 
phous semiconductors. 

At low temperatures the Hamiltonian (1) leads, as 
will hecome clear from what follows, to the occur- 
rence of a superconducting correlation between pairs. 
In terms of delocalized electrons the second term in 
the Hamiltonian (1) corresponds to the kinetic energy of 
the band motion (the width of the band a It,, I), and the 
first one to the interaction between electrons (interac- 
tion energy U). In the BCS model the band width is 
large and one can therefore consider the interaction to 
be a perturbation. The basic difference between the 
model studied here and the BCS model i s  that we shall 
assume the band width to be small compared to U, i. e . ,  
consider the second term to be a perturbation. In the 
superconducting glass modelsp4, i.e., in the case when 
U changes from site to si te (or when the energy E ,  of 
the single-electron states on the sites i s  random; vide 
infra), the disorder affects the superconducting prop- 
ert ies strongly, including Tc. 

2. REGULAR MODEL 

At T =O and when there i s  no perturbation (p = 0) all 
electrons a r e  bound in pairs that a r e  localized on the 
lattice sites. We assume that the number of electrons 
(n) is smaller than twice the number of sites (N). When 
T # 0 the state of the system is a set  of empty s i tes  
( 1 O)), si tes occupied by a single electron (a,.+, 1 O), a:, #))I, 
and sites occupied by two electrons (a,?,a;,lO)). The 
number of si tes occupied by a single electron is pro- 
~ o r t i o n a l  to n e m ( - ~ / ~ ) .  At temperatures T<< U i t  i s  
small compared to the number of pairs. Since we shall 
be interested just in such temperatures, we shall neg- 
lect the presence of single electrons on sites. We note 
that the ground state of the system is degenerate, and 
its energy when there i s  no perturbation is 

Eo=-'/,nu. (2 
When the perturbation is turned on, there occur in 
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FIG. 1. Scheme of transition leading to the creation of single 
excitation (a) and scheme of transitions leading to the transfer 
of a pair from site to site (b) . 

the system different excitations which can be divided 
into single-particle and two-particle (pair) excitations. 
Single-particle excitations lead to the transition of one 
of the electrons to a neighboring site. As a result of the 
pair breaking the energy increases by an amount U ,  
i.e., a single-particle excited state is separated from 
the ground state by an energy gap (Fig. la). A two- 
particle excitation leads to the transition of a pair of 
electrons to a neighboring site without activation (Fig. 
lb). One sees easily3that thesekinds of transitions lead 
to a lowering of the energy of the ground state by an 
amount of the order of t2 /U .  

For further studies it i s  necessary to isolate from the 
Hamiltonian thus describes all the possible excitations 
the part (He") that describes the pair excitation. Since 
in our approximation there a r e  only electron pair-s in the 
ground state, while the kind of excitations which inter- 
est us  leads to the transition of pairs from site to  si te 
(i. e . ,  where one ground state goes over into another 
one), Haft must be a Hamiltonian operating in the space 
of the ground-state wave functions. Introducing the 
operator P which projects onto the sub-space of the 
d' ground" states a, = aAa;, . . . aGa& 10) with a given 
number of pairs, we get" when I t i j  I<< U 

Accurate to terms of order Itij 12/U, the Hamiltonian 
Hew has the same transition matrix elements between 
the states I and m as H. In terms of the electron 
second quantization operators, H9" has the form 

The second term in the interaction term corresponds 
to a transfer of a pair from site to si te,  while the first  
term corresponds to the "virtual" transitions of one of 
the electrons of a pair to a neighboring site. 

It will be more convenient in what follows to work not 
with the operators a: and a,, but with the pair creation 
and annihilation operators: A, =a,  ,a,, and A: = aAa;. 
The pair-number operator for a si te is  N, =A;A,. The 
operators introduced here have the following commuta- 
tion rules: 

ArAl~+-~n,Al,+At-Grrr, 
(5) 

i. e. , they a r e  "fermion-like" (q = -1) for one site, 

and "boson-like" (q= 1) for different si tes (1 + I f ) .  

Using the fact that in the sub-space of the "ground- 
state" wavefunctions %,,, in which there a r e  only pairs, 
the following identity holds: 

where G,, = a,',a,, we can rewrite the Hamiltonian Heff 
in t e rms  of the operators A, and A; (U >> f/u):  

We have already noted that the operators A, ,A,+ satisfy 
fermion commutation relations forbidding two pairs to 
be on one site. The presence of the term%:,,, in the 
Hamiltonian (6) is a consequence of this exclusion. For 
sufficiently high concentrations of pairs,  v=n/2N (n 
is the number of electrons, N is the number of lattice 
si tes) the role of this term is important, and a s  a r e -  
sult the quasi-momentum k of the pairs will be a poor 
quantum number. However, when the concentration 
drops the Pauli interaction $in, will play an ever smal- 
ler  role. Finally, when v<< l one may take the pairs to 
be almost ideal bosons and describe them by means of 
the delocalized wave functions3.* 

One should note that the Hamiltonian&P',,, is isomor- 
phic with the antiferromagnetic Ising Hamiltonian which 
describes a system of spins in an external field (h). 
One can easily check this by expressing &q:,, in terms 
of the spin variables si  = $ - N~ (N, = 0, l ) .  Up to a con- 
stant we get 

Here h = -Vz, where z i s  the coordination number 
(number of nearest neighbors). 

In a system described by such a Hamiltonian, a 
phase transition is possible only if the term describing 
the field h vanishes. For this it i s  necessary that 
zi si = 0, i. e., that the band be half-full (v = i). Since 
we a re  interested here mainly in small concentrations 
(or concentrations close to unity) we can conclude that 
there i s  no phase transition in the temperature range 
T-t2/U in a system with Hamiltonian&c;,,,. 

The t e r m y ~ ,  in the Hamiltonian (6) has another 
meaning. It corresponds to delocalization of pairs, 
i.e., to preference of plane-wave states such a s  (7) 
over states localized on sites A,f 10). At low tempera- 
tures T6 f / U  such states have a tendency to Bose- 
condensation at k =  0. We shall trace in what follows 
in more detail the assumption that the self-consistent 
field model is applicable. 

We introduce the quantity (quasi-average) 
ar=(Ac>, (9) 

which has the meaning of an order parameter vanishing 
a t  the transition point T,. In the limit of low concen- 
trations we can neglect correlations between particles 
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at neighboring sites and, using the self-consistent field 
approximation, make the following decoupling in the 
Hamiltonian 

Using this the Hamiltonian (6) can be written in the 
form 

Here p i s  the chemical potential of the pairs. 

According to (10) the problemwas reduced to a single- 
center one, while in the uniform case the order param- 
eter i s  independent of the site number (%'=g,$i). The 
quantity a, i s  found from the self-consistency condi- 
tion 

In the single-site representation the ~ a m i l t o n i a n g ~  
is  a (2 x 2) matrix in the basis of states realized on the 
site, IO),A; 10): 

We have introduced here the notation W =2zt2/U. The 
quantity W has the meaning of a delocalization energy. 
It i s  assumed ot be much smaller than the binding ener- 
gy U of the pairs. 

Diagonalization of (12) leads to the energy eigenvalues 

el;=%{-(U+p)sign(U+IL) fR), R=[ (U+p)'+4WElal'lY, (13) 

corresponding to the eigenfunctions 

{ I  A ~ I O  wa' , = -  0 A , (14) 
" 1 ( ;a I 

c i s  the normalization constant. 

Knowing the eigenfunctions (14) and the eigenvalues 
(13) of the ~ami l ton iang ,  we easily get from (11) a 
self-consistency equation for the order parameter 

Apart from the trivial solution la I =  0 this equation 
also has a solution I (Y I + O  (when T < T,, where T, is  
the transition temperature, vide infra). The equation 
for the chemical potential p a s  function of the pair con- 
centration (v) and the temperature ( p =  1/T) can he found 
in two equivalent ways. The first one consists in using 
the well known thermodynamic equation 

V - - ~ Q I ~ ~ ;  P=-T ln Z. 

Here 51 i s  the thermodynamic potential per site and Z 
the single-site partition function which has the form 

The second method is  a direct evaluation of the aver - 
age 

In both cases we a r e  led to the relation 

The set  of two Eqs. (15) and (17) determines the mod- 
ulus of the order parameter I CY I and the chemical po- 

FIG. 2. Temperature dependence of the pair chemical poten- 
tial : for a low electron concentration, v <<l(a) and for a low 
hole concentration 1- v<< 1 (b). 

tential p a s  functions of the temperature. 

We turn to an analysis of the equations obtained. 
Putting in (17) I (Y I = O  we get an equation for the chem- 
ical potential when T > T,. Its solution is (T << U) 

p=-U+~ln--:. 
i-v 

Moreover, solving the set  of Eqs. (15), (17) for T< T, 
we get 

The chemical potential i s  thus independent of the temp- 
erature below the transition temperature. This fact is 
a confirmation of the Bose-condensation assumption. 

It is clear from Eqs. (18),(19) that the behavior of the 
chemical potential differs for v < i and v > i (Fig. 2). 
This is  explained by the fact that the roles of holes 
(empty sites) and electron pairs change places when we 
pass through the point v=  $, while for v>> 1 - v we can 
talk about a hole condensate in contrast to a condensate 
of electron pairs when v << 1. 

We must note that a condensation of pairs (holes) dif- 
fers  from the condensation of an ideal Bose gas. This 
difference i s  connected with the appearance of a gap in 
the pair energy spectrum14 whereas the spectrum of the 
elementary excitations of ideal bosons is continuous. 
The appearance of a gap [like the presence of the term 
%lnt in the Hamiltonian (611 is  due to the existence of 
Pauli exclusion for electron pairs.' 

From the expressions (13) for the single-site ener- 
gies of the effective Hamiltonian it follows that the 
quantity E ,  plays the role of an energy gap ( E ,  = A). 
Substituting into the expression for A the values (181, 
(19) of the chemical potential we get for v << 1 (v>> 1 
- v) 

Matching the values of the chemical potential above 
and below the transition point we find an ezcpression for 

Tc 

We thus found that the transition temperature is of the 
the order of the bandwidth W. This result i s  explained 
by the fact that in the given model pairs exist when 
there is no interaction (W = 0), but their correlation 
appears a s  a result of taking into account the transi- 
tion of pairs to neighboring sites (W #O). In that sense 
all pairs a r e  superconducting a t  T = 0 (in contrast to 
the BCS model in which a small part of the electrons, 

744 Sov. Phys. JETP 52(4). Oct. 1980 1.0. Kulik and A. G. Pedan 744 



FIG. 3. Concentration dependence of T, . Dashed line: 
assumed change in T, when pair correlation are taken into 
account [term H #' in (6)l. 

situated near the Fermi surface, i s  superconducting) . 
It is  clear from Eq. (21) that, in the self-consistent 

field approximation, the plot of T, a s  a function of the 
concentration has a maximum at  v = $ and goes through 
zero when v = 0 and when v = 1 (Fig. 3). 

However, taking the correlation of pairs on neighbor- 
ing sites into account (going beyond the limits of the 
self-consistent field theory in the term K,,) changes 
this picture. This change will be especially important 
near the value v= $ when the term with the effective 
field h in (8) vanishes. The justification for assuming 
that is  that strong correlations will suppress the super- 
conducting transition and in the case of a half-filled 
band (v = $) lead to T, = 0. This i s  connected with the 
fact that, as we discussed earlier,  the term xn, in the 
Hamiltonian (6) by itself leads to a phase transition (dif- 
ferent from the phase transition caused by s!,,) if v= $. 

The dependence of the order parameter on the temp- 
erature and concentration in the self-consistent field 
approximation i s  given by the equations 

Solving (22) we can draw the graph l o! I = I o!(T) I (Fig. 
4) and analytically continue the behavior of I o! I near 
T=T,and T=O. When v<<1 we get 

Comparing (20) and (21) we see  that when v<< 1 the 
ratio of the gap a t  T=O to the quantity T, i s  equal to 

i. e., small compared to unity. 

FIG. 4. Temperature dependence of the order parameter. 

It is clear from (23) that the quantity i a(0) I = v112 

when v << 1. This result corresponds to the picture of 
Bose condensation. Indeed, the Bose condensation 
phenomenon presupposes the occupation by a macro- 
scopic number of particles (No)  of a single quantum 
state. We can then neglect the fact that the creation 
and annihilation operators of particles in that state do 
not commute and consider them a s  c-numbers (equal 
to ~ : / ~ e * ' ~ ,  where x i s  a phase). Indeed, if the pairs 
condense at v << 1 into the level k =  0, we must a t  T = 0 
find (A(k= 0)) = (n/2)'I2 (n i s  the number of electrons). 

Averaging A(0) we have in the uniform case 

Substituting here I a(0) I = v1I2 we get, a s  required, 
(A(0) )  = (n/2)'l2. 

3. THERMODYNAMICS OF THE REGULAR 
MODEL. CURRENT 

We consider the problem of the behavior of the basic 
thermodynamic quantities in the present model. We 
use the formula for the derivative of the thermodynamic 
potential with respect to the interaction constant:15 

Integrating this relation we get an expression for the 
difference of the thermodynamic potential in the nor- 
mal and the superconducting phases 

Hence, by using well known thermodynamic formula we 
can obtain the analogous differences for other thermo- 
dynamic quantities. In particular, the temperature 
dependence of the specific heat for v<< 1 i s  given by 
the following formula: 

Hence we get the asymptotic behavior 

ZN(W/T)=e-w'r, TcT. 
C- 

T.-T T W  ($)' -8Nv-- T.-TtT. 
T. T." 

It is clear from (27) that the specific heat undergoes 
a jump (Fig. 5) in the phase transition point. The 
magnitude of this jump differs, however, from the 
value given by the BCS theory. IS 

The specific heat of the normal state in the framework 
of the approximations made turned out to be equal to 
zero. This i s  connected with the above-mentioned neg- 

FIG. 5. Temperature dependence of the specific heat (full- 
drawn curve). Dashed line: qualitative behavior of the 
specific heat of the normal state. 
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lect of pair correlations in neighboring sites. Taking 
the corrections into account lifts the degeneracy (2) and 
leads to a finite value of C. Using the formula 

C=a(H)IaT, (28) 

we get for T > T, 

In the one-dimensional case (2 = 2) the correlator 
(NiN,) can be calculated exactly (see the Appendix). 
For v << 1 we have 

Hence, we get for the specific heat the following ex- 
pression: 

We show in Fig. 5 by a dashed line the dependence of 
C on T for I a I =O.  As there i s  no phase transition in 
the system with Hamiltonian go+&";,, (when v + i) for 
any spatial dimensionality; this curve gives qualita- 
tively the behavior also of the specific heat of the nor- 
mal phase in the three-dimensional case. 

It i s  easy to obtain the value of the critical magnetic 
field which destroys the superconductivity. In the case 
of a cylinder with its axis along H 

H.(O) (1-T/2TC),  T a T ,  
H ' ( T ) = ~  H.(O) (W/T.) ' [  (T . -T ) /Tc ] ,  T.-T<T. ' 

(31) 

Here Hc(0)= (8n~vW)"~.  

An important characteristic of the superconducting 
phase is the presence of a dissipationless current I .  
The current operator in the model with Hamiltonian (4) 
has in the one-dimensional case the form (W=4t2/U) 

The average of the operator i inthe self-consistent field 
approximation in the case where the phase of the order 
parameter grows uniformly along the chain i s  equal to 

Here k is the difference of the phases a t  neighboring 
sites. 

We find k-dependence of the modulus of the order 
parameter by substituting the quantity an = I (Y leikn into 
the Hamiltonian (10). As a result we get the equation 

Equations (331, (34) thus determine the k-dependence 
of the dissipationless current. In particular, the mag- 
nitude of the critical current a t  temperatures close 
to  T, equals 

4. DISORDERED LATTICE 

We now turn to a study of a disordered system (i.e., 
a "glass"). We shall produce the disorder by including 
in the Hamiltonian random independent single-site ener- 

gies E, << U (in the model studied the introduction of the 
E, i s  equivalent to the introduction of random correla- 
tion energies U ,I: 

We can now write Eqs. (15),(17) in the form (for sim- 
plicity we assume that t ,)  = t )  

Here Ei = +{-pi signpi + Ri}, Pi = U + P - E, + Wxi, Nt 
i s  the pair occupation number of the i-th site. The 
quantities zi and xi a r e  defined as averages over the 
nearest neighbors of the i-th site, i.e., 

We must look for a solution of Eqs. (36) by first 
specifying the distribution function of the single-site 
energies c , .  These equations a r e  rather complicated. 
However, some conclusions can be drawn without solv- 
ing them. For instance, it is  clear from (36) that the 
order parameter on a given site i s  essentially deter- 
mined by the order parameters on neighboring sites 
and if zi = 0, then a, also vanishes automatically. 

If we consider the case of a uniform distribution (in 
a n  interval w) of the single-site energies E ,  all states 
a re ,  according to ~nderson,"  localized for values of 
w/W larger than some critical value. In that case 
there will not be a transition to a superconducting 
state. When the critical value (w,) i s  reached delocal- 
i zed states appear, f irst  in the center of the band, 
i. e. , a superconducting transition becomes possible. 
When the parameter w/N decreases further the region 
of delocalized states broadens until it occupies almost 
the whole band. One must assume that then in the for- 
mula for Tc not the total concentration v but the concen- 
tration of delocalized pairs should occur. 

If we leave the problem of the localization alone Eqs. 
(36) allow us to find a solution for the simplest models 
which, however, may be helpful for explaining the 
superconducting transition in completely disordered 
substances. We consider, for instance, a one-dimen- 
sional system consisting of two ideal sublattices with a 
difference between single-site energies equal to & 

(E = W )  (Fig. 6). The solution of Eq. (36) in this case 
gives the transition temperature 

Here v, i s  the electron concentration in the sublattice 
with the larger single-site energy a t  T =  T,. 

FIG. 6 .  Model describing qualitatively the effect of disorder 
on To. 
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When E>> W we get easily from (37) 

T e = V / e  Inv. 

Thus, T, decreases with increasing w already in a 
model consisting of two sublattices. One must appar- 
ently expect that in a completely disordered model T, 
will also depend strongly on the degree the single-site 
energies a r e  spread. 

It is  well known that the presence of non-magnetic 
impurities (structural disorder) has in the BCS model 
no great effect on the critical temperature.lq2. This 
is  explained by the fact that in a dirty metal Cooper 
pairing occurs not between electrons with opposite 
spins and quasi-momenta k (since k i s  no longer a good 
quantum number) but between electrons described by 
wavefunctions of states which change into one another 
under time reversal. When there a r e  nonmagnetic 
impurities present, these functions correspond to the 
same energy of the paired electrons and the BCS cal- 
culation i s  not altered. 

The situation is different in the super conducting glass 
model. Here the electron pairing i s  not directly con- 
nected with the superconducting transition. Generally 
speaking, pairs exist a t  any temperature a s  the pairing 
process i s  determined by the interaction of two elec- 
trons with opposite spins on one site. The phase tran- 
sition occurs as the result of the Bose condensation of 
pairs. The Bose condensation i s  very sensitive to 
structural disorder and this explains the steep decrease 
in Tc when the disorder increases. 

5. CONCLUSION 

We have shown in the present paper that in a system 
described by the Hubbard Hamiltonian with negative 
U-centers a phase transition to a superconducting state 
must take place. We obtained the transition tempera- 
ture T,, derived equations for the order parameter, 
and constructed the thermodynamics of the model. 
However, a l l  calculations were performed in the frame- 
work of the self-consistent-field approximation so that 
the theory contains the defects inherent in that approxi- 
mation. In particular, we neglected the interaction be- 
tween electron pairs on neighboring sites (both the Pauli 
and the Coulomb interaction). The next step should be 
a consistent account of such correlations. Preliminary 
calculations show that the correlations will suppress 
the phase transition and lead to i ts  disappearance a t  
v =  $, i. e. ,  at a pair concentration equal to half the 
lattice si te concentration. For small v and for v close 
to  unity the role played by such correlations is ap- 
parently unimportant. 

Another deficiency of the self-consistent field ap- 
proximation is the fact that the results a re  independent 
of the spatial dimensionality n. However, it is well 
known that Bose condensation is very sensitive to  the 
dimensionality. In this connection it is  of interest to 
study such a system by other, more rigorous methods, 
for instance, the renormalization group method. 

In this paper we considered also a disordered model 
(a superconducting glass). We concluded that the tran- 
sition temperature in such a model is very sensitive to 

the magnitude of the single-site energy spread. The 
superconducting glass model can thus be adduced for an 
explanation of the steep decrease in T, in some super- 
conductors when the disorder increases. 

It follows from the results of Sec. 4 that a very large 
spread in the single-site energies ( E  ) leads to the cri- 
tical temperature Tc decreasing, but a l l  the same re-  
maining finite, having a magnitude of order Tc - ed& 
[ ~ q .  (3811. If we take Tc,- 10 K and E - 10' K- 10 eV, 
we get Tc - K. Such low temperatures for a super- 
conducting transition could, in principle, be found for 
amorphous semiconductors; Anderson12 has discussed 
the applicability of the model of negative U-centers to 
them. However, one cannot consider this conclusion 
to be rigorous a s  we neglected many effects such as 
the Coulomb correlations of electrons on neighboring 
sites. 

The basic conclusion of the study made here must 
be regarded to be the conclusion that it is  possible to 
construct an alternative model for a superconducting 
transition in which pairs do not appear at the transi- 
tion point, but exist already for T >  Tc. At high temp- 
eratures we a re ,  in fact, dealing with a semi-conduct- 
o r  rather than with a metal and, in particular, the con- 
ductivity has a n  activation character. We assume that 
qualitatively this corresponds to the semiconductor - 
superconductor transition observed by McLean et al. 

The present paper arose a s  a continuation of a study 
performed by one of the authors with E . Abrahams. 
As several ideas and conclusions of the present paper 
a re  connected with the earlier study we feel it a plea- 
sant duty to express our gratitude to E. Abrahams 
for many discussions. We a r e  also grateful to W. L. 
McLean for sending us a preprint of Ref. 5 prior to 
publication. 

APPENDIX 

We evaluate the correlator (N N ) in a one-dimension- 
i. ' 

a1 system described by the Hamiltonian 

(A. 1) 

To do this we use the transfer matrix method. ",18 
We impose periodic boundary conditions 

N.v+i=N, (A. 2) 
and determine the (2 x 2) matrix P by its matrix ele- 
ments 

P ( 4 ,  N,+I)=~~~{$['/,U(N~+N,+,)-VN,N,+II), (A. 3) 

where N, and N, +, independently can take the values 
(0,l). The matrix elements of P a r e  equal to 

Hence, we can write the matrix P in the form 

(A. 4)  

On the basis of these definitions we can write down the 
partition function 2, corresponding to the Hamiltonian 
(A. 1) in the form 
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=z P " ( N ~ , N , ) = =  S ~ P R =  Eijn. (A. 5)  
R, I 

Here Xj a r e  the eigenvalues of the matrix P. For 
large N (number of sites) it is necessary only to use 
the largest eigenvalue A,. 

For the further calculations it i s  necessary to intro- 
duce a unitary matrix S which diagonalizes P, i. e. , 

We now write down an equation for @,) and the cor- 
relator @,N~) (the number of si tes N- m )  

Here 

For the correlator we get (N>> k) 

(A. 8) 

We find from Eq. (A. 7) the matrix elements of the 
matrix S and substituting them into (A. 8) we find the 
correlator (N,N,,). Since we a r e  interested in cor- 

relations between neighboring sites we get a s  a result, 
putting k = 1, at v<< 1 the formula 

<N,N,+,>=V'~-~". 
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Parameters of an electron beam in a free-electron laser 
under strong saturation conditions 

M. I. D'yakonov and M. E. RaTkh 

A. F. Iofle Physicotechnical Institute, Academy of Sciences USSR 
(Submitted 9 April 1980) 
Zh. Eksp. Teor. Fiz. 79, 1483-1490 (October 1980) 

Bunching of the electron beam in a free-electron laser under strong saturation conditions is considered in the 
given-field approximation. The electron phase and the velocity distribution functions, and also the total 
energy transferred to the electromagnetic wave by the beam, are found. 

PACS numbers: 42.55. - f. 41.80.Dd 

1. The first  experiments on the amplification and amplifier o r  generator, known a s  a free-electron las- 
generation of light by means of a relativistic electron e r ,  was developed in a number of works (see, for 
beam passing through a region with a transverse mag- example, Refs. 4-6). Nonlinear phenomena in similar 
netic field that was varying periodically in space were apparatus a r e  due to the change in the parameters of 
carried out recently. A linear theory of such an the electron beam under the action of the electromag- 
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