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It is well known that in dielectrics where the scattering of phonons by static defects dominates there the heat 
conductivity coefficient is infinite due to the "runaway" of low-frequency phonons. We show that in actual 
fact the heat conductivity in such a situation has a nonlocal character, i.e., the energy flux at a given point is 
determined by the temperature distribution in the whole of space. Physically, the nonlocal effect is connected 
with the fact that the energy is transported by low-frequency subthermal phonons which have a diffusion 
length of the order of macroscopic dimensions. 

PACS numbers: 66.70. + f, 63.20.Mt 

INTRODUCTION 

In most dielectrics and semiconductors the main 
source for the scattering of phonons a r e  static defects 
(isotopes, impurities). Therefore, if we exclude the 
case of very-low-frequency phonons for which the 
propagation proceeds ballistically, the phonon propa- 
gation mechanism is almost always diffusion. Howeve 
it is important to realize that phonon-phonon inter- 
actions can modify considerably the diffusion even if 
they occur more rarely than collisions with defects. 
 he fact i s  that the diffusion coefficient depends 
strongly on the frequency: D(w) - w - ~ ,  while the 
phonon-phonon processes can change the spectral com- 
position of the phonon distribution; they can thus affect 
also the effective diffusion coefficient. Of course, for 
such an affect to occur the duration of the process must 
be longer than the characteristic time of the phonon- 
phonon interactions. 

The propagation mechanism caused by the simul- 
taneous action of scattering by defects and three- 
phonon anharmonicity was considered in Refs. 1 to 3, 
where it was assumed that the occupation numbers of 
nonequilibrium phonons were small: n(w) << 1, and 
hence that, of all the three-phonon processes, only de- 
cay processes were important. Another situation is 
also possible when n(w) =l; in that case, besides the 
decay processes, the fusion processes a r e  important. 
The simultaneous action of decays and fusion leads to 
the phonon distribution in a small region becoming 
Planckian, i.e., a local temperature T(r, t )  is  estab- 
lished. The aim of the present paper is  to obtain an 
equation describing the propagation of the tem'perature. 
Such a problem i s  non-trivial and ar ises  because the 
usual heat conduction equation for T does not exist in 
the situation considered (it i s  well known4 that the 
thermal conductivity coefficient becomes infinite when 
the dominating scattering is by static defects). 

1. STATEMENT OF THE PROBLEM 

To elucidate the physical reasons why it is impossi- 
ble to write down a heat conduction equation when scat- 
tering by defects dominates it is instructive to try to 
derive this equation. 

The diffusion equation for the occupation numbers, 
taking anharmonic processes into account, has the form 

[a/&-D(o) Va]n(w, r, t)=S{n(o, r, t)}, (1 

where on the right-hand side we have the collisional 
term for anharmonic processes. We assume that the 
occupationnumbersn(w) of allphononbranches a r e  the 
same for a given frequency w, since not only the di- 
rections of the phonon motion but also their polariza- 
tions a r e  mixed in the scattering by defects. Corres- 
pondingly, D(w) i s  some average over directions and 
polarizations. 

It i s  natural to substitute into (1) the Planck distribu- 
t ion 

n(o ,  r, t) =n(T(r, t) 1 o), n(Tl a) = (e"'T-l)-', (2 ) 

and to set  up the energy balance, assuming 
$dwp(w)w. . . , where p(w) a w2 i s  the density of states 

(the total one, for three branches). The right-hand 
side then vanishes (since the total energy is conserved 
in phonon-phonon processes) and we get the equation 

where the energy density is 

and the energy flux 

q=Sp, p ( ~ ) = ~ d o p ( w ) u ~ ( m ) n ( ~ l w ) .  (5) 

Formally we have, indeed, obtained an equation for 
T. However, one sees  easily that if D(w) w the in- 
tegrand in the integral for y behaves a s  w-', i.e., 
the integral diverges. This means that, on the one 
hand, although almost a l l  the phonon energy is con- 
centrated in the region of frequencies w = T, the energy 
flux is transported by low-f requency phonons w << T; 
on the other hand, in the region of the low frequencies 
which transport the energy the distribution is non- 
Planckian. 

We must therefore evaluate the flux q differently. 
Let IZ be that limiting frequency above which (when 
w>> G) the distribution is quasi-equilibrium, i.e., 
Planckian. We assume that this distribution, i.e., in 
fact T(r, t), is  known and use i t  to find the distribution 
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n(w, r, t )  in the range w s G. Afterwards we use the dis- 
tribution thus found to evaluate the flux: 

* 
As a result we find the flux as a functional of the tem- 
perature: substituting q{~} into (3) we find an equation 
for T. However, we shall see  that the relation between 
q and T is nonlocal in character, i.e., the flux a t  a 
given point depends on the temperature in the whole 
region where T P 0. Therefore, in contrast to the usual 
heat conduction equation, which is  a differential equa- 
tion, the equation we get for T will be an  integro- 
differential equation. 

The situation described here is still more critical 
than in the nonlocal phonon hydrodynamics where both 
the energy and its flux a r e  determined by phonons with 
w = T and only the momentum flux, i.e., the viscosity, 
i s  determined by phonons with w<< T.5 

2. COLLlSlONAL TERM IN THE "SUB-THERMAL" 
REGION OF THE SPECTRUM 

To obtain the equation for the distribution function in 
the low-frequency region we consider f i rs t  the col- 
lisional term which, for normal three-phonon pro- 
cesses has the following form: 

S{n ( o ) } =  ' / 2 J  jdof do" p1p"6 (o-o f -o")A (o; o' ,  o") [-n (nl+n"+l) 

+n'nN]+ Jdo'Sdon p'p"8(o+o'-o")A(o"; w, o ' )  [nV(n+n'+ 4)  -nnl]. 

(7) 
We have written here for simplicity n =n(w),n1 =n(w'), 
and so  on. The factor A a r i ses  after averaging the 
square of the matrix element (together with the delta- 
functions expressing the momentum conservation law) 
over angles and polarizations. It is clear that 

For  frequencies below the Debye frequency w, we have 

which together with the conservation law w =w' +w" 
means that A depends only on the ratio w'/wn. 

In the situation of interest to us n(w) i s  the same as 
n(TI CU) for w >> G (while G<< T) and i s  small  in the reg- 
ion of phonons with w s G. In that case Eq. (7) simpli- 
fies considerably in the "sub-thermal" region w*c T. 
In the second term in (7) in the important region of 
integration the phonons w' and w" a r e  "thermal," i.e., 
w' - w" = T; a t  the same time, in the first  term the 
phonons w' and ww a r e  "subthermal," i.e., 
w' = w" = w<< T. The f i rs t  term i s  thus small  a s  far  a s  
phase volume is concerned and we can drop it. In the 
second term we replace n' and n" by the Planck oc- 
cupation numbers and expand in w" - w' = w. As a re- 
sult we get 

where 

and A, is the value of A(w; w', w") when w'/wn =O. For 
comparison we write down again the time for the spon- 
taneous decay of a phonon of frequency w: 

Here A, is  some average of A(w; w', w " )  in the region 
w'/wU =I .  Since usually A, and A, a r e  of the same 
order of magnitude, r(T) i s  of the order of the time 
for spontaneous decay for  c ~ :  = T. We can thus assume 
r(T) to be the time required to establish the Planck 
equilibrium a t  the level T. It i s  clear from (10) and 
( l l ) ,  (12) that the collisional term vanishes when we 
substitute the Planck distribution n(w) = T / q  and thus 
?(T, w) is the time required to establish quasi- 
equilibrium at the level w if a t  the level T quasi- 
equilibrium is already established. The lower the level 
o the slower quasi-equilibrium is established there. 

It is  expedient to elucidate for what follows how fast 
the energy is transferred from the level T to the lower 
levels. The rate of energy transfer to a level below w 
is 

In fact, the whole of the energy enters in a section of 
the spectrum w' = w, since frequencies w' u: e con- 
tribute little to the integral. The reciprocal time for 
transferring all  the energy from the level T to the 
level w is 

1 h(T+o) 4n' 
-=-=.- w(T)  (;)' - To1. 
T(T, o)  e ( T )  15 

It is  important to note that this time is longer than the 
time needed to establish quasi-equilibrium a t  the level 
w. 

3. DISTRIBUTION IN  THE NON EQUILIBRIUM 
REGION OF THE SPECTRUM AND EVALUATION 
OF THE FLUX 

We now write Eq. (1) in the low-frequency region 
w *c T a s  follows: 

Here T is  a function of r and t with large characteristic 
variation scales F and € 

on the right-hand sides of the inequalities we have the 
time and length for establishing quasi-equilibrium a t  
the level T. Considering T to be a given function of r 
and t, we must find n(w, r, t). In the present paper we 
restrict  ourselves to a study of the initial temperature 
distribution in an infinite medium. In such a situation 
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we have in the low-frequency region 

n ( o ,  r, t )  = n ( T , l o )  when r+m,  t=O, (18) 

where To is the temperature of the heat bath. 

Unfortunately it is impossible to obtain from Eq. 
(16) a general expression f o r  n, because i depends 
(through T) on r. Therefore we limit ourselves to 
begin with to the linear case of a weak initial tempera- 
ture perturbation 

and we put 

Linearizing (16)with respect to 6T and 6n and limiting 
ourselves for the sake of simplicity to the one-di- 
mensional case we get 

Here 8=6T/To and the subscript 0 indicates that a 
quantity is evaluated for T = To. Changing the dimen- 
sionless variables 

we find the distribution 

s +- 
6 4 0 ,  E ,  S )  = j ds' j a# w e 1 ,  81) 

a -9 

~ ( b )  -"aZ(s-s') -" exp - (s-s') o - { (23) 

and we evaluate the flux 

Here 

qo=4ePo/lo, 

The kernel Q i s  odd in 5 and has the following asymp- 
totic behavior: 

Q (E, s )  =ES-"'~, o=s-' (s5>ca),  

Q ( f ,  s )  =C-'sign f ,  o=s"l f I-"' (s5<Ca). 
(27) 

We indicate also those o which a r e  important in the 
integral of (26) a t  the given s and 5. 

4. EQUATION FOR THE TEMPERATURE 

Noting that 6& =4&,8 and substituting (24) into (3) we 
find an equation for the temperature 

This equation can be further simplified. This i s  most 
easily accomplished through a Laplace transformation 
s-p and a Fourier transformation 5- k. The trans- 

form of the kernel is then Q-- iM where 

After the transformation, Eq. (28) can be solved. The 
transform of the solution is 

where the transform of the Green function of Eq. (28) 
is 

and 0(k )  i s  the Fourier transform of the initial dis- 
tribution 8(5, s =O). The characteristic values of k a r e  
small, since they a r e  of the order  of Z'', where Fis, 
for instance, the width L of the initial distribution of 
5T(z,  t =O), measured in units 1,. 

We now consider the singularities of G in P for fixed 
small  k. We note first  that 

M (k,' p) =#lsH (pk-"s) , (32) 

where 

The function H(w) is analytic in the w-plane with a cut 
(-a, --), where a =5 ~ 2 - ~  (see the Appendix). More- 
over 

H(0) =(3 /4nS)  cosecn/5-c=0.04115. . . , (34) 

Using these properties of Hand the fact that k is  
small, we can verify that the denominator of G vanishes 
only in the point P =- ckd, where G has  a first-order 
pole with residue 1. Furthermore, G has singularities 
a t  the cut (-akaL, --), but one can show (see the Ap- 
pendix) that the contribution from the cut i s  small  for  
small  k. We can thus assume that 

This is equivalent to replacing M(k,P) by M(~,O), i.e., 
the kernel Q (f, s )  by K(~)6(s),  where 

The flux can thus be written as follows: 
+- 

q(C,s)= qo j a' N S ' ,  s )K(S-SF) .  -- 
(38) 

The nonlocal nature of the connection between the flux 
and the temperature i s  now clear. The kernel K de- 
creases s o  slowly that i ts  second moment diverges and 
values of I g - 5'1 of the order  of 5 a r e  important in the 
integral (38). This means that the flux in each point 
depends on the temperature distribution in the whole 
diffusion region. At the same time the fact that there 
is no integration over time in (38) means that the flux 
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FIG. 1. 

is  established fast, i.e., the process i s  quasi- 
stationary. 

Turning to the coordinate-time representation we get 
from (36) the temperature distribution for an initial 
point perturbation 

where 

For  comparison we write down the function G for 
normal diffusion 

G (6, s )  -s-"Y (f s-") , Yo (b) = (4n)  (41 

The function * ( 5 )  i s  positive, decreases monotonically 
with increasing argument, and has the following prop- 
erties: 

a s  5 - *, we have 

The function Q(5) i s  inconvenient for numerical tabu- 
lation, a s  i t  contains the small numerical parameter c. 
Splitting it off we write 

*(t)=ct$(c'e) ,  c'=c-'/*=7.346.. . 

We give in Fig. 1 the function g5). 

5. DISCUSSION OF THE RESULTS 

A formal comparison of the nonlocal and the local 
diffusion, i.e., a comparison of (30) and (41), shows 
that when there is  nonlocal diffusion the scale of the 
spatial distribution varies like t5h instead of like t lh 
for normal diffusion. This difference i s  not very 
large; more important i s  that when the diffusion is 
nonlocal ahead of the front the temperature drops as 
a power, a s  z-lSh, instead of exponentially a s  in local 
diffusion. 

The temporal and spatial scales of nonlocal diffusion 
a r e  connected by the relation s = cBk. This means, 

for instance, that if the temperature distribution 
initially occupies a region of width 5, the time after 
which that region isappreciably broadened is s = 5&. 

To visualize a picture of the processes which take 
place in nonlocal diffusion we must ascertain the fre- 
quencies a t  which the phonons transfer the energy. 
When evaluating the integral (37) the important value 
is s =. g2k, as i s  readily checked by using the asymp- 
totic expression (27). Hence i t  follows that a = ~ " ~  is 
important in the integral (26). This means that the 
energy flux q i s  transferred by phonons of frequency 

One can check that this is  just the frequency below 
which the distribution (23) ceases to be in quasi- 
equilibrium, i.e., 6n + 6 T / w .  Equation (45) can be re- 
written a s  

i.e., the energy i s  transported by those phonons for 
which the diffusion length is of the order of macroscopic 
dimensions after a time needed for their absorption by 
thermal phonons. In other words, below G quasi- 
equilibrium is violated because the phonons diffuse 
away from the excited region. We note that a dif- 
ferent situation is also a priori possible, namely is 
io(G) - t, which would mean that quasi-equilibrium can- 
not be established during the time of the process. 

One sees  easily that the characteristic time for the 
process 

i s  of the order of the time needed to transfer energy 
from the level T to the level G: 

This time is longer than the time iO(G) needed to es -  
tablish equilibrium a t  the level G. This i s  just the 
reason why the process is  quasi-stationary. The range 
of the kernel Q(5, s) in s is of the order which in 
dimensional units i s  just T0(G). 

On the whole the spatial energy transport in nonlocal 
diffusion must be the following. Let some phonons be 
excited in some region of space. In the spectral region 
w >> G a quasi-equilibrium distribution i s  established, 
but phonons with w  5 G leave the spatial region of the 
excitation rapidly. In the excitation region there occurs 
thus a Planck distribution which i s  depleted a t  w 5 B 
Phonon-phonon processes tend to restore the complete 
Planck distribution, and a s  a result there occurs in 
the excitation region an energy flux downwards along 
the spectrum: from the level w = T  to the level w  = G. 
Phonons with w  5 ij transfer energy into the originally 
unexcited region of space where the spectral region 
w 5 G turns out to be, in contrast, enriched. Thanks to 
phonon-phonon processes there ar ises  here an energy 
flux upwards along the spectrum: from the level 
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w-Gto the level w=T. 

All this means that the temperature propagation pro- 
cess  from a point z, to a point z2 proceeds s o  to speak 
in three stages: 1) an energy transport downwards 
along the spectrum in the point z, from the level T to 
the level G; 2) spatial energy transport from the point 
z,  to the point z, through diffusion a t  the level G; 3) 
energy transport upwards along the spectrum in the 
point z2 from the level G to the level T. The diffusion 
time is L2/D(G) = io(G). It i s  shorter than the time for 
the spectral transfer T0(3. The bottleneck for the pro- 
cess  i s  thus the spectral transfer. 

6. NONLINEAR CASE 

It is  important to emphasize that all qualitative con- 
clusions and order-of-magnitude estimates a re  valid 
for  any geometry also forthe nonlinear case, for in- 
stance, when in some region of the crystal  there is an 
initial temperature T much higher than the bath tem- 
perature To, which we can take to be To =O in such a 
situation. 

To verify this we estimate first  the phonon occupa- 
tion numbers. The condition for quasi-equilibrium is 
clearly 

;(T, o )  amin {t,  L 2 /  D ( o ) ) .  (49) 

The solution of this inequality gives w<< G where G is 
the level a t  which the quasi-equilibrium i s  established. 
We introduce the dimensionless variables 

The resultant expressions for G can be different, de- 
pending on the relation between s5 and g2. In the quasi- 
uniform case (s5 << g2) we have 

i.e., it is  not possible to establish equilibrium below 
6 during the time of the process. In the quasi- 
stationary case (s5 >> g2) we have 

i.e., equilibrium below G i s  prevented from being 
established by the diffusive departure from the excited 
region. 

Thus, for w >> G we have n =n(Tl w). For  w 2 G, a s  
to order of magnitude, 

n ( o ) = w ( T )  min {t, L a / D ( o ) } .  (53) 

Hence we get 

As w- 0 we have n(w)= w4 s o  that the flux (6) is  finite. 

We now estimate the flux, writing q = q, +q2, where q, 
and q2 a r e  the fluxes transported by phonons with 
w< G and w > G, respectively. To estimate q2 we can 
assume the occupation numbers to be quasi-equilibrium 
ones, so that 

For  q, the following estimate holds 

where the occupation numbers n(w) must be taken from 
(54) and (55). Let the situation be quasi-stationary. 
In that case sg-2 >> C and n(w) is given by Eq. (54), and 
G by Eq. (52). Estimating the integral (57) and ex- 
pression (56) we find 

where q(T) is  obtained from go by the substitution 
To- T. Substituting the flux (58) in the energy conser- 
vation law (3) written in the form 

we find s =gab which agrees with our quasi-stationarity 
assumption. If we assume that the situation i s  quasi- 
uniform, we have s5-2 << 8 and in the n(w) distribution 
there a r e  below G two regions corresponding to (54) 
and (55). The contribution to the integral (57) comes 
from the high-frequency range and 

Substituting G from (51) into (56) we have 

q+q ( T )  st - 'Kq, .  (61 

We now get from (59) s = ~ ( l n g ) - ' ~  which, however, 
does not agree with our assumption about quasi-uni- 
formity. 

In the nonlinear case, a s  in the linear one, the non- 
local temperature transfer i s  thus quasi-stationary. 
The energy flux 

is transported by phonons of frequency 
G = T [ L / L ( T ) ] ~ ~ ,  for which the diffusion length during 
the time to establish quasi-equilibrium p(G)i(T, G)]lh 
is of the order of the characteristic dimensions L. 
The duration of the process 

One sees easily that these occupation numbers a re  
much smaller than the quasi-equilibrium ones n =@-I. 

is of the order of the time for energy transfer from the 
level of frequencies w = T to the level w = G, i.e., of 
the order of ?(T, G). 
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The conside,rations given here allow us to answer 
semi-quantitatively a number of questions which ar ise  
in processes of strongly nonlinear phonon energy 
transport in crystals a t  low bath temperatures. We 
consider, for instance, a conducting film on the sur- 
face of a dielectric (or a doped surface layer of a high- 
resistance semiconductor), heated by a current pulse 
to a temperature T much higher than the bath tem- 
perature. What is the time t needed for the film to cool 
off? We write down the energy balance 

where E(T) is  the energy of the film per cma (due to 
phonons and electrons). Substituting here q from (62) 
and using (63) to eliminate L we find 

The meaning of L in this problem becomes clear if we 
multiply (62) and (63) and substitute into (64). We then 
get 

E ( T )  =Le (T), (66) 

i.e., L is the thickness of the substrate, which is  
heated until the time the film cools off. 

In conclusion we indicate exactly in which region the 
nonlocal heat conduction mechanism which we have 
discussed operates. We recall f irst  that by assumption 
the crystal i s  governed by defects rather than by an- 
harmonicity, i.e., 

where ~ ~ ( 0 )  is the time for scattering by defects, in 
terms of which we can express the diffusion coefficient 

v is some average sound velocity. Moreover, since the 
energy flux transported by subthermal phonons with 
frequency G was evaluated using the diffusion Eq. (6), 
we must require that the diffusion equation (1) be valid 
in the region of frequencies G, i.e., that we have 

vzl(a) CL. (69) 

Using (46) we see easily that (69) is equivalent to the 
inequality 

i.e., a phonon G is scattered many times by defects 
before it is absorbed by quasi-equilibrium phonons. 
Substituting into (69) the frequency G from (45) we 
find an upper bound for L; a lower bound follows from 
(17b). We can write these limitations a s  follows: 

<<L/W(T) <<S1l' (71) 

It is very instructive to consider the location of the 

FIG. 2. Regions i n  which different mechanisms for phonon 
non-equil ibrium transfer are realized. 

region (71) on a plot where the abscissa is  the defect 
content 6 and the ordinate the length L measured in 
mean free path lengths vr(T): see Fig. 2. Above the 
thick line the duration t of the processes is  longer than 
T ( T )  and here it i s  possible to establish a local tem- 
perature T(r, t )  so that one can speak of "heat" trans- 
fer. This includes the second sound (SS) region, the 
local heat conduction (LHC1) region determined by 
defects, the (shaded) region of nonlocal heat conduction, 
discussed by us, and the region (LHC2) to be discussed 
below. Under the thick line the anharmonic processes 
a r e  unimportant, there is no local temperature, and 
phonons of different frequencies propagate indepen- 
dently. This includes the regions of ballistic propaga- 
tion (B) and of diffusive propagation (D). 

Inequality (70) is violated in region LHCZ, i.e., the 
phonons which transport the energy do not manage to 
be scattered by defects and therefore the diffusion ap- 
proximation is not valid for those phonons. In the reg- 
ion LHC2 the phonons transporting the energy propagate 
ballistically. A detailed analysis, which will be pub- 
lished separately, shows that there occurs then a local 
thermal conductivity with a heat conduction coefficient 
which is  determined not only by scattering by defects, 
but also by anharmonic processes. 

Nonlocal heat conduction can be realized in InSb 
for T =10 K in specimens of a few mm size. We shall 
assume first that the only defects a r e  isotopes. In that 
case 

l / ?,(a) =1.9- tot0 sec-'-zl, X=O/ OD, 

where the Debye frequency w, =2.63 x l V S  sec-' =ZOO K. 
To estimate the anharmonic times we use the relaxation 
times found from the heat conductione substituting in 
them Aw/2.8 for kT. We then find 

1 / T(O) =7.4-iOs sec-'.z"TA-phonons), 
1 / .c(o)=2.2.10° sec-'.z5 (LA-phonons). 

One can show that the averaging over the polarization 
is with a weight u - ~ ,  where v is the sound speed of the 
appropriate branch. This gives for the average over 
the branches (v,=1.8x105 cm/sec; v, =3.1 x105 cm/ 
sec) 

For  thermal phonons with w =28 K we have r l ( ~ )  = 1.4 
x l o q  sec, T ( T ) = ~ . ? x ~ o "  sec a t  T=lO K, i.e., 
6 = 19. Using the average velocity v = 2 X lo5 cm/sec 
we find the limits of L which for a given 6 bound the 
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regions of the nonlocal heat conduction: L,, =1.4 cm 
and L,, =0.12 cm. It is clear that if we take other 
defects into account the region where nonlocal heat 
conduction occurs widens. The scattering of phonons 
by free electrons is negligible under the conditions 
considered for pure samples with n S 1015 cm-'. 

Finally, the divergence of the integral p in (5) could 
be removed by taking umklapp processes into account. 
In umklapp processes, apart  from the low-frequency 
phonon w, two phonons w' and wH which lie near the 
Brillouin-zone boundary take part: w + w' - wX . The 
relaxation time rU(w), when umklapp processes a r e  
taken into account, depends on a number of factors, 
on whether the temperature of the phonons w' and wn 
is T o r  To, whether the condition r(w)>> T,(w) is satis- 
fied for  these phonons, o r  whether the energy of w' 
small o r  large compared to To. One can show, how- 
ever, that in a l l  those cases the time rU(w) increases 
not faster than w-I as w-0. Therefore, a t  sufficiently 
low frequencies just that time will determine the dif- 
fusion coefficient, and the integral p will be finite. 
Neglecting umklapp processes we assume that 
rrr(w3>> r , ( a  which, of course, imposes some upper 
bound on L. However, this limitation i s  not very 
stringent because a s  r,(w) contains a t  low temperatures 
a n  exponentially large factor exp(wb/T), where wb is of 
the order of the Debye frequency. 

The author expresses his gratitude to V. L. Gurevich, 
R. N. Gurzhi, and L. P. ~ i t a e v s k c  for fruitful dis- 
cussions of the results of this paper. 

APPENDIX 

1. The asymptotic behavior of H(w) a t  large w can 
be found by splitting the integral with respect to x into 
two integrals: from 0 to 1 and from 1 to -. In the f i rs t  
integral the value x e  1 is  important and we can put 
cp(x) = x4, in the second x 1 i s  important and we can 
put q(x) =x. Singularities of H(w) occur a t  those w 
for which the equation w +cp(x) =0  has a solution x>O. 
I t  is  clear that such solutions exist only if w <O and 
I w l >  mincp(x)s a. Therefore H(w ) is defined in the 
w -plane with the cut ( -a,  -a). 

2. To evaluate the contribution to G(k, s) from the cut 
we change from integration with respect to P to integra- 
tion with respect to w =pk"b. This contribution i s  then 

where the values on the edges of the cut a r e  

One sees easily that 

where 

X(u)-~zl(u)-4zl(u)-'I-1+lz,(u)-~,(u)-'I-', (7 5) 

FIG. 3. Complex z-plane. We have shaded the regions where 
R e v  (2) > 0. The dots indicate the cut. The angles of the asym- 
ptotes (the dashed lines) are  +n/2a and i3r/2a.  

and xl,,(u) a r e  the roots of the equation cp(z) +u =O. We 
now get 

where 

Since ~ ( u )  =tlul-' a s  U - - 0 3 ,  the function @ ( q )  is 
bounded by a constant @(O) of order unity and the con- 
tribution from the cut is small like ksb. 

3. To evaluate the asymptotic behavior of *(5) a s  
5 - - we make the substitution y = ([/cFhx After this 
we find the integral - 

I ,  (A) = j dz eos h ~ e - ~  
# 

a=s/O, ~=c- ' ' : ' s ' ! '+~ .  
(78) 

This integral is the real  part of the integral 

where the contour C is the real semi-axis x>O, while 
the function q ( z )  is defined in the z-plane with a cut 
(0, -00). One can easily check that in the stationary 
points zo of the function ~ ( z )  we have Recp(zo)<O 
(when 3/2 < a< 2). The main contribution to the in- 
tegral therefore comes from the point z =0, where 
Recp(0) =O. The steepest descent in the point z = O  
goes along the imaginary y-axis in the direction of 
y>O. Deforming the contour to C' (see Fig. 3) and ex- 
panding 

we find (Aoa)  

Using these results we get the asymptotic behavior of 
*(<) given in (43). 
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Parametric amplified echo 
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Amplification of a nuclear induction signal was obtained by exciting a spin system with a parametric pumping 
pulse. The experiments were performed on Md5 nuclei in CsMnF, under conditions of coupled nuclear- 
electron precession. A theory is constructed for the formation of the parametric amplified echo excited by a 
high-power parametric pumping pulse. 

PACS numbers: 76.60.L~ 

The spin-echo method makes it possible in a number of second order a s  in the Hahn o r  in the FM echo). 
of cases to obtain an echo signal of higher intensity 
than one of the exciting radiofrequency (RF) pulses. 
One can then speak of an RF amplifier of sorts, which 
produces also a time delay. This effect has been named 
"amplified" echo and was f i rs t  observed in a ferromag- 
net for a system of long-wave spin waves.' It was ob- 
served for the same system2 that replacement of the 
second resonant rf pulse by an R F  pulse a t  double the 
frequency greatly enhances the amplification effect. 
The dynamics of the oscillations of the long-wave spin 
waves and their interaction with RF fields have a num- 
ber of nonlinear features that hinder both the use of the 
effect and the development of a quantitative theory. 
The amplif ied-echo effect can be obtained in principle 
in systems with dynamic frequency shift, in which the 
spin echo i s  formed with the aid of a frequency-modula- 
tion (FM) mechanism (concerning the FM echo mechan- 
ism see, e.g., the review3). So far,  however, this ef- 
fect has not been obtained experimentally via the FM 
signal-formation mechanism. 

Another echo-formation mechanism, in which echo 
amplification is possible, i s  parametric echo. We re-  
port here experimental observation of the amplified- 
echo effect via the parametric-echo mechanism. The 
parametric echo is produced in systems of oscillators 
on which it i s  possible to act  directly both in resonant 
and in parametric fashions. Among the spin systems, 
these include electron spin systems in many magneti- 
cally ordered substances, a s  well as a system of nu- 
clear spins under conditions of coupled nuclear-elec- 
tron precession. 

Parametric echo was f i rs t  observed on MnS5 nuclei 
in a number of ant i ferr~magnets .~  To produce this 
echo, an RF pulse was applied to the spin'system and 
was followed, after a time delay t,,, by an RF pulse 
having double the frequency and a magnetic field po- 
larized along the constant magnetic field. This pulse 
excited the spin system parametrically. The specific na- 

One of us and Gladkov4t5 investigated theoretically and 
experimentally the mechanism of parametric echo for- 
mation at low amplitudes of the exciting pulses. With 
increasing amplitude of the amplitude of the RF para- 
metric pumping pulse, we succeeded in observing the 
amplified echo effect. Experiments aimed a t  observing 
parametrically amplified echo were carried out on the 
system of MnS5 nuclei in the antiferrmagnet CsMnF, a t  
1.5 K and an NMR frequency 500 MHz. The experiments 
were performed with the parametric-echo spectrometer 
described in Ref. 5. To increase the parametric pump- 
ing power, a pulsed voltage up to 2 kV was applied to 
the oscillator and amplifier tubes of the double-fre- 
quency oscillator (G4-37A), so that the pulse RF power 
could be raised to 10 W. 

The direct effect of the amplified echo is that the per- 
pendicular magnetization of the sample, which forms 
the spin-echo signal, turns out to be larger than the 
perpendicular magnetization induced by the first  pulse. 
In the experiment this reduces to a higher intensity of 
the echo signal than the intensity of the induction signal 
after the first  pulse. The possibility of obtaining an 
echo signal exceeding in intensity the R F  field of the 
resonant pulse is  determined by the coupling between 
the RF field and the spin system. In the case of nuclear 
spin systems with low susceptibility, this i s  an ex- 
tremely difficult task and is not considered in the pres- 
ent article. 

Unfortunately, direct observation of the induction 
signal intensity following the resonant RF pulse i s  
strongly hindered by the "dead" time of the receiving 
system, which amounts to 5 psec. Therefore the in- 
tensity of the induction signal was estimated by the 
three-pulse procedure described in Chapter 5 of Ref. 
5. At a maximum parametric buildup pulse, we suc- 
ceeded in obtaining a parametric-echo signal of inten- 
sity four times higher than that of the induction signal. 

ture of the direct parametric excitation of spin system For a quantitative investigation of the effect of the 
makes the signal echo produced a t  the instant 2t,, an amplified parametric echo, we used a s  the amplified 
effect of first  order in the R F  pulse amplitude (and not signal a spin-echo FM signal produced by two resonant 
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