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We construct the statistical thermodynamics of a polymer molecule in an exactly soluble one-dimensional 
model, which takes into account the rigidity of the macromolecule. We analyze the equation of state of the 
macromolecule under the action of external pressure. We show that at a fixed pressure the temperature 
dependence of the size of the region where the molecule is localized is nonmonotonic. 

PACS numbers: 36.20. - r, 05.70.Ce 

1. INTRODUCTION. THE MODEL The description of the state of a macromolecule is 

An important problem in the theory of polymer macro- 
molecules is that of spatial structure of long molecular 
chains of the protein o r  nucleic acid type. If the rigid- 
ity against bending of such a molecule is sufficiently 
small, the usual theoretical model to describe i ts  stat- 
istical thermodynamical properties reduces to replac- 
ing the macromolecule by a chain with freely linked 
units (monomers). Confined to a closed volume o r  put 
in a sufficiently deep potential well, such a flexible and 
sufficiently long chain forms a t  a finite temperature a 
globule with a maximum monomer density at i ts  ten- 

t e r . ' ~ ~  Of course, the structure of the globule must 
strongly depend on the rigidity of the  macromolecule. 

then similar to the description of the one-dimensional 
wandering of a point, where the probability for the di- 
rection of the next step depends on the direction of the 
preceding step. The system, of the type of a folding 
rule, is arranged along a straight line which we choose 
for our x-axis. The macromolecule consists of mono- 
mers  of equal length a ,  their joints a r e  positioned on 
si tes with discrete coordinates x, =an (n = 0, i1, t2, . . . ). It is convenient for us to describe the configura- 
tion of a chain in terms of the joints; therefore we in- 
troduce a numbering of the joints on the chain, starting 
at i ts  beginning (i =0, 1, 2, . . . ), and we define a pa- 
rameter a, that specifies the state of the i-th joint. This 
parameter takes the values a, =il and indicates the rel- 

In the present paper we consider the effect of the h i v e  position of the preceding joint with respect to the 
rigidity of the macromolecule on the structure of the given one: xi =xi,, +aa,. It is clear that the configura- 
globule in an extremely simple model which allows only tion of the chain i s  uniquely determined by the se t  {a,). 
two configurations for the disposition of neighboring Indeed, if the s t a r t  of the chain is a t  the point x =0, we 
monomers. They can form only a zero angle (being di- have 
rected to the same side) o r  an angle n between them. k 

These two configurations have different coupling ener- .,=a z o . .  

gies, and this is the manifestation of the rigidity of the I - ,  

chain. In the presence of an external field that acts upon the 
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elements of the chain, we ascribe to each joint a poten- 
tial energy V(xi). The interaction of neighboring mono- 
mers,  which determines the rigidity of the chain, is in 
the present case described by the Ising scheme, and the 
interaction energy is equal to 

N 

U = - J ~  ala,+,. 
2 - L  

(1) 

If J >  0 a straightening (and not a folding) of the chain is 
energetically more advantageous and one can, indeed, 
connect this property with the idea of the rigidity of the 
macromolecule. However, in principle, the case J < O  
is also possible. A stacking of the molecule on itself is 
then more advantageous and the parameter I J I  charac- 
terizes the energy for stacking one part of the pile of 
monomers relative to another part. 

The total energy of the chain is thus equal to 
N N - I  

H = C v ( z i ) -  JC aiai+,. 
. = I  1-1 

In contrast to the energy of the traditional one-dimen- 
sional Ising chain, in the present case the potential en- 
ergy of the i-th joint in the external field Vk,) depends 
not only on i ts  own state, but also on the state of all 
joints preceding it in the chain. Hence, the presence of 
an external field leads to the onset of a distinctive long- 
range action in a one-dimensional system, which is 
completely absent from the Ising model. 

It is convenient for us to characterize the rigidity of 
the macromolecule by the quantity 

which is directly connected in the present model with 
the persistence length lo (lo = ~ a ) . ~ ' ~  We recall  that the 
persistence length of a polymer chain is usually defined 
as  that distance along the chain over which the probabil- 
ity of returning to the original point becomes compar- 
able to unity." We note that a low rigidity (J<< T)  cor- 
responds to a = 1 +  W/T. (In the limit J = O  we have a 
=I.) 

2. PARTITION FUNCTION AND THERMODYNAMIC 
CHARACTERISTICS OF A MACROMOLECULE 

We consider the partition function ZN(n,o) of a chain of 
N elements, the end of which (last "joint") has a param- 
eter o and is a t  the si te n. It is, by definition equal to 
the following sum over a l l  possible se ts  {o,}: 

under the conditions that 

In (4) we have introduced the notation 

q ( n )  =V(an) /T ,  p J / T ,  
where T is the temperature. 

In the sum (4) we split off the factor 

which is characteristic for the Ising model. In that case 
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ZN satisfies the following recursion relation 

ZN (n, o) = e-v'") x ZN- ,  (-0, s )  g(a, 81, 
.-*I 

(6) 

where g(a,  o) =a/ ( l  + a ) ,  and g(o, -0) = (1 +a)". 

To isolate the dependence of ZN(n, o) on the large pa- 
rameter N we use the standard method of expanding 
ZN(n, o) in the eigenfunctions of the following s e t  of dif- 
ference equations: 

cpk (n,  ( I )  = eC-p(n) C cpk(n-o, s )g (a ,  s ) ,  (7) 
S 

where k enumerates the eigenfunctions $, and eigenval- 
ues X, of this equation. Through direct substitution one 
verifies easily that the expansion for Z,h, o) has the 
following form: 

zN (n,  a )  = X Cke-LRN Ipk(n, a ) ,  (8) 
k 

where the C, a r e  some coefficients. If the spectrum of 
A, s tar ts  with discrete values, fo r  sufficiently large N 
we can restrict  ourselves in Eq. (8) to only the basic 
term with the smallest discrete value Xo: 

zN (n, a) =C.~-"$O (n, a ) .  (9) 

Using Eq. (5) we then get for the f ree  energy of the 
macromolecule (N ,> 1 ) 

F=-T lnZ=-NT ln(2ch B) +NTho. (1 0) 
Introducing the symbols u(n) 1) and v(n) 

-1) we rewrite Eq. (7) in the form 

One checks easily that the functions u(n) and v(n) deter- 
mine the monomer density distribution along the x-axis. 
Indeed, the eigenvalue of Eq. (11) is a functional of the 
potential Vk,) of the external field, and by definition 
the density p(n) of the joints is equal to 

p ( n )  =8F/6V=N6hO/6q ( n )  . (1 2) 

By varying Eq. (11) we establish that the density of the 
joints is proportional to 

~ ( n )  a {u2(n) +vZ(n) +2au(n) v(n)}e*("). (13) 
This formula generalizes the expression for the mono- 
mer  density in a chain without rigidity ( a  =I).' 

When the external potential is symmetric, q(n) =cp  
x (-n), we have the following relation between u and v: 
u(n)=m(-n). The se t  (11) can thus easily be reduced 
to an equation for u(n) only: 

We shall assume that the external field cp(n) vanishes 
a t  infinity [ c p ( ~ )  =0] and produces a potential well with 
a finite width and depth. We shall be interested in a 
compact form (globule) of the macromolecule, such that 
its size is determined by the shape of the potential well. 

In that case the density (13) of the globule and the 
function u(n) describing i t  must vanish a t  infinity. We 
verify f i rs t  that localized solutions of Eq. (14) (which 
vanish a t  infinity) a r e  possible only when X < 0. In- 
deed, we substitite cp = 0 in Eq. (1 4): 
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u(n+l )+u(n-I )  =2(ch lo-a- 'sh h o ) u ( n ) .  (1 5) 
If we rewrite this equation in the form 

u(n+l)+u(n-1)-2u(n)  =2{ch lo-a-' s h l o - l ) u ( n ) ,  

it becomes clear that solutions of (14) that decrease ex- 
ponentially with In I a r e  possible only when 

ch &-a-1 sh io - l>0 .  (1 6) 
The equation coshXo - cu"sinhXo = 1 has two roots: X 

= 0 and A = ~,-a-'. The condition (16) is satisfied 
either when Xo < 0 o r  when Xo > Am. However, only the 
smallest discrete value Xo is of interest to us and i t  
must be negative. 

3. GLOBULE IN  A RECTANGULAR POTENTIAL 
WELL 

We consider a s  an example the rectangular potential 
well 

assuming that d >> a. 

If [d/2a] =m, there can fit inside the well 2m +1  sites 
on which there can be joints. For  such an external field 
Eq. (14) has different functional forms outside the well, 
inside the well, as  well as  a t  the points adjacent to its 
boundaries. 

For negative Xo the general form of the solution is: 

u=Aekkn, --<n<- ( m f l ) ,  
u=B ch k,n+C sh k,n, - ( m - I )  <n< ( m - I ) ,  (18) 

u=De-'I", ( m + l )  <n<-: 

ch k,=ch A,-u-~ sh A,, (1 9) 
ch k2=ch (bo+cpo) -a-' sh (lo+ cpo), (20) 

th k2(2m+l)  =sh k, sh k2{ l -ch  k, ch k2- ( l -a- ' )  (I-ch cpa)1-', (21) 
where cpo = v,,/T. 

From Eq. (14) wi thn=- (m+l ) ,  -m, m,  m + 1 ,  cor- 
responding to the boundaries, we easily find B, C, and 
D (the coefficient A can be determined from the nor- 
malization condition). The s e t  (19) to (21) enables us to 
find the eigenvalue Xo as  function of cu and of the param- 
eters of the potential well. We now analyze these equa- 
tions. 

We note first  that k, is real  only if condition (16) is 
satisfied, i.e., when Xo < 0. One can check that for fin- 
ite values of cu the eigenvalue Xo is always negative. If 
Vod<< Ja ,  Xo approaches zero  with increasing rigidity. 
An analysis of Eq. (1 9) to (21) for small  Xo and a - m 

leads to the result 

h,=a-'[I-ch{cp,(Zm+l)) I .  
It then turns out that 

kl=a-' sh{q1,(2m+l)) < l .  (23) 
We see  that in the limit a s  cu-- .o the region where the 
globule is localized broadens to infinity. However, a 
macromolecule of arbitrarily large but finite rigidity is 
confined to the potential well. This conclusion is anal- 
ogous to the quantum-mechanics conclusion that a par- 
ticle is captured by even a very small  one-dimensional 
potential well. 

It follows from (23) that if 2mqo >> 1 there occurs a 

competition of two large parameters: a and ezm"J. It is 
clear that kt c< 1 when V&<<2Ja. If, however, we have 
the inequality Vod >> 2Ja, then kl and Xo cease to be small 
in the limit as  a,-- m. 

The condition Vod >> J a  requires a reconsideration of 
the limit cu - -. Firs t  of all, i t  is clear that this limit 
is feasible only because T- 0. In other words, i t  as- 
sumes that the temperature is a small  energy parame- 
ter ,  in particular, T << ~ a / d  << J. 

We let  T tend to zero, assuming that X, + po<< po. 
Equations (19) to (21) then lead us to the conclusion that 

lo=-qo+p/d---cpo+2Ja/Td. (24) 

As i t  follows from Eq . (24) that ki = I X o  I >> 1 ,  the glo- 
bule fits practically completely in the potential well, 
and one needs speak only about the monomer distribu- 
tion in the region - (m + 1)  < n < m + 1. We have thus 
verified that the shape of the globule depends very con- 
siderably on the relation between the characteristic a J  
of the macromolecule and the characteristic Vod of the 
well. 

If Vod >> Ja ,  when the entire globule is in the potential 
well, i t  makes sense to study i ts  structure assuming 
that cpo =.o, i.e., assuming the well be be infinitely 
deep. Inside an infinitely deep potential well Eq. (14) 
reduces to 
u(n+l)-2u(n)+u(n-l)=2{chl-a-'shl-i)u(n), Inl<m, (25) 

where X = Xo + po. Putting further in (14) In I = m  and 
In I =m + 1 ,  we get the boundary conditions for Eq. (25): 

All u(n) with In I > m vanish identically. We note that 
the eigenvalue X entered not only in the equation, but 
also in the boundary condition. The asymmetry of the 
boundary conditions (26) is connected with the fact that 
they a r e  written down for the function u(n) =qo6z, I ) ,  
i.e., for a quantity which is completely characterized 
by a well defined value of o. The boundary condition 
(26) is satisfied by the solution 

u-uo sh k,(n+m),  (27) 
where k2 is determined by condition (20) 

ch k,=ch h-a-I sh h (28) 
and the relation 

th k1(2m+l )  = a s h  k r ( ( a - l ) e h - a  ch k:)-I. (29) 

We note first  that from Eqs, (28) and (29) we get an 
equation that directly determines the quantity k2 that 
characterizes the behavior of the solution inside the 
well: 

From this i t  follows that the solution (18) inside the well 
is strongly restructured when the persistence length be- 
comes comparable with the size d of the well. Indeed, 
when cu =cu*=2m + I  =d/a, when l o = a a  =d, the quantity 
k2 = 0. If cu > a*, then k2 is real ,  but if cu < cu *, the 
quantity k2 is purely imaginary. 

One sees  easily that k, becomes of order unity when 
cu - ea", which is equivalent to the condition 2Ja - Td. 
When 2Ja << Td we have a 1 k2 I<< 1 and a long-wavelength 
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consideration of the problem is thus possible. For such 
values of the rigidity, X also turns out to be small  a t  
the same time. Indeed, i t  follows from Eqs. (28) and 
(29) that a s  k2- 0, the eigenvalue X tends to the value 
X, n 2/a* = 2a/d << 1. 

We take in Eqs. (25) and (26) the limit to the long- 
wavelength approximation, restricting ourselves to the 
first  terms in the expansion in powers of A. In that case 
case Eq. (25) and the boundary conditions (26) take the 
simple form: 

#u h(2-ah) 
a'-+-u-0, 

aZ2 a 
(31 

For small  rigidities (a < a *), when k2 = iu the solution 
of Eq. (27) becomes 

U(Z) =uo sin x (x+d /2 ) ,  % = [ h a - ' ( 2 - d )  I"', (33) 
where 

t g ( x d ) / x = ( a + l ) l ( a h - 1 ) .  (34) 
The boundary condition (34) admits of the existence of 

different values of X which are ,  in fact, the eigenvalues 
of Eq. (7). The number of such values equals p=[d/r 
++I .  It is very important for the method used by us that 
the smallest value Xo be separated by a finite gap from 
the other values of X for al l  values of the rigidity ( a  
2 1). The function X =X(a) for the lowest eigenvalue is 
single-valued and monotonic (it corresponds to curve 1 
in Fig. 1). The remaining p - 1 graphs of the function 
A, =A,(a) lie above the lowest one and a r e  double-valued 
(the first  ones of them a r e  shown in Fig. 1 with the 
numbers 2, 3, 4). For  not too large values of s the u p  
per branches of these graphs approach asymptotically, 
in the limit as o! - 0, the function A = 2/a indicated by the 
dashed line in Fig. 1. 

We now track the behavior of the graph for the lowest 
value of X. In the limit of very small rigidity ( a  << a * )  
the lowest eigenvalue is proportional to a: 

h=='/,  (na/d)  ' a .  (35) 
When there is no rigidity ( a  = 1) this expression is, of 
course, the same a s  the corresponding result from the 
paper by I.M. ~ i f s h i t z '  but recalculated for the one-di- 
mensional case. Relation (35) for a #  1 also follows from 
from the results of that paper. Indeed, Khokhlov has 
shown4 that a s  far a s  i ts  statistical properties a r e  con- 
cerned a macromolecule i s  equivalent to an absolutely 
flexible fiber in which the role of the length of the free- 
ly joined monomers is played not by a ,  but by the per- 
sis tence length lo = aa .  A t the same time the number of 

FIG. 1. The eigenvalues A s k =  1, 2, 3. 4) as functions of the 
rigidity coefficient. 

links N must necessarily be replaced by =Na/lo = ~ / a .  
Of course, X then changes to an effective eigenvalue X. 
As Xi =XN, we have X =ax. Using the relation X 
=+(na/d)' for the absolutely flexible chain and replacing 
in i t  X- ; = a h  and a -  1 = a a ,  we get Eq. (35). 

The next values A, (the lower branches of the curves 
2, 3, 4 in Fig. 1 )  correspond to the expressions 

For an appreciable rigidity, when a >> a*, but with 
the long- wavelength approximation st i l l  valid, i.e., a 
<<edfa,  we have 

Finally, for very large ridigity ( a  >> edf '), when the 
long-wavelength approximation breaks down, i t  is nec- 
essary to use the exact relations (25) and (26), from 
which follows that 

Equations (35) to (38) give us the function X =X(a) for 
the whole range of rigidity changes. 

4. THERMODYNAMIC PROPERTIES OF A GLOBULE 
IN  A DEEP POTENTIAL WELL 

When one studies the thermodynamics of a globule in 
a potential well, two formulations of the problem a r e  
possible. Firstly, one can study the distribution of the 
monomers of the globule in a well of fixed width a t  var- 
ious temperatures. Secondly, one can analyze the equa- 
tion of state of the globule, assuming that the size of the 
well is not fixed, but that the external pressure on the 
"walls" of the well is given. 

We consider f irst  the density of the units of the macro- 
molecule in a well of fixed dimensions. We substitute 
into (13) the lowest eigensolution of (27) for which v ( n )  
=u(-n) and use the normalization 

n--m 

It then turns out that 
ch k2(2m+l )  - ch k ,  ch 2k,n 

p(n)= N  ( 2 m f I ) c h  k2(2m+l )  - cth k2 sh k2(2m+l )  ' (39) 

where k2 is determined from Eqs. (28) and (29). In the 
limit of a small  rigidity the coordinate-dependence of 
the density of the globule takes i t s  usual form': the 
density is maximal in the center and vanishes a t  the 
boundaries : 

Nna nnn 
p(n)r:-cos- .  

2d d 

When the rigidity increases the density decreases in the 
center and increases a t  the boundaries. When a >> edfa 
the graph of the function p(n) flattens and there appears 
a finite density jump p(m - 1)  - p(m) a t  the boundary 
points. In the limit of infinite rigidity (a - -, k2- m) i t  
follows from (39) that 

p  (*m) =Na/2d, p  ( n )  =Nald when In ( f m. (41 
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FIG. 2. Temperature dependence of the localization region 
of a macromolecule for a fixed pressure. 

This natural result means that for large rigidity the 
niolecule remains straight inside the well and is broken 
only a t  its boundaries. We note that the persistence 
length lo  is then equal to the size of the system d and 
the simple relation l o  = @ a  is not satisfied. 

We now turn to the equation of state of a macromole- 
cule. Assuming that the parameter J is temperature- 
independent, the pressure P on the walls i s  defined in 
the usual way: 

From this relation we can find the function P = P ( d ,  T ) .  
For arbitrary P and T i t  is rather difficult to find i t  in 
explicit analytical form, but one can indicate the form 
of the equation of state a t  the limiting temperatures 
when Eqs. ( 3 5 )  and ( 3 8 )  hold: 

PB=2aNJ, T<J, ( 4 3 )  

Pd8= (na)'NT, TBJ. ( 4 4 )  

The temperature dependence of the size of the globule 
a t  sufficiently low pressures (UP<< 2NJ) is: 

d=d, when T<2Ja/d., ( 4 5 )  

d= (ana) '"dOY'(T/2J) '" when T > U ,  ( 4 7 )  

where d,,= ( ~ J N U / P ) ' / ~ .  

The limiting size of the globule do at T = O  is obvious: 

al l  kinks occur at the boundaries of the well, their total 
number equals N a / d ,  and the energy connected with 
them is E = F =  WNa/d.  Therefore 

P--aEIad=WNa/B, 

from which follows d = (!UNU/P'/~). When T- Wthe size 
of the globule reaches i t s  minimum value 

&,,- (NJazIP) ". ( 4 8 )  
Figure 2 shows the function d = d ( T )  fo r  a fixed pressure 
on the well walls. 

At high temperatures, when we can neglect the rigid- 
ity, the size of the globule increases with temperature: 
d -  ( N T ~ ' / P ) ' ' ~ .  At low temperatures in the range 

Ja/d ,cTdIIn- l (a /do  )I 
the size of the globule decreases with increasing tem- 
perature. This fact has a simple explanation: when the 
temperature increases the role of the rigidity diminish- 
e s  and the external pressure compresses the molecule 
more. 

In conclusion we note that the assumption of an infin- 
itely deep well, which we used reduces in fact to the 
weaker assumptions: 

cp,=Vo/TBl and Vo>l / ln(d /a) .  

We a r e  grateful to I.M. Lifshitz for a discussion of 
this work and useful advice. 

''Generally speaking the relation lO=aa  i s  not universal. 
Cases of a more complicated dependence of the persistence 
length lo on the rigidity cr are possible (we consider one of 
them in what follows). 
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