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Theory of tunnel relaxation in a photon field 
Yu. Kagan and L. A. Maksimov 
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The subbarrier relaxation of a particle located in a nonsymmetric double-well potential is considered. The 
phonon subsystem plays the role of a thermostat. It is shown that the tunnel kinetics of the particle is 
characterized by two relaxation times. The relaxation of the occupation numbers is proportional to the square 
of the overlap integral, whereas the relaxation of the phase correlation is of zero order with respect to the 
overlap integral and generally proceeds at a faster rate than the relaxation of the occupation numbers. The 
relative roles of two-phonon and one-phonon relaxation mechanisms are elucidated. Experiments on sound 
absorption in amorphous media and on tunnel diffusion of mesons are discussed within the framework of the 
proposed model. 

PACS numbers: 43.35.Fj. 43.35.Gk, 63.10. + a 

1. INTRODUCTION 

In r e c e n t  y e a r s ,  a whole  g r o u p  of p r o b l e m s  h a s  a r i s e n  
which can  in  p a t t e r n  be reduced  t o  s u b - b a r r i e r  tunneling 
between two potent ia l  we l l s  wi th  s l ight ly  d i sp laced  ene r -  
gy l eve l s ,  in the  p r e s e n c e  of a n  a r b i t r a r y  in t e rac t ion  
wi th  the  phonon field. T h i s  g r o u p  includes  quan tum dif- 
fus ion of l ight  p a r t i c l e s  in  crystals wi th  de fec t s ,  t he  
class of low-frequency exc i t a t ions  i n  a m o r p h o u s  med ia ,  
o r i en ta t iona l  t r ans i t i ons ,  and  so on. A c h a r a c t e r i s t i c  
f e a t u r e  of t h e s e  p r o b l e m s  is t h e  p r e s e n c e  of a s m a l l  pa- 
r a m e t e r ,  s u c h  as the  o v e r l a p  i n t e g r a l  J of the  wave 
funct ions  belonging to s t a t e s  in  d i f f e ren t  wel ls .  T h i s  

l e a d s  to t h e  r e s u l t  tha t  two-well  tunnel  k ine t i c s  d i f f e r s  
in p r inc ip le  f r o m  the  well-known p i c t u r e  of r e l axa t ion  
of two-level s y s t e m s  (spin  re laxat ion) .  A s  w i l l  b e  shown 
below, even  in the  p r e s e n c e  of only o n e  d i s s ipa t ion  
mechanism-the  in t e rac t ion  of t h e  "particle" wi th  t h e  
phonon field-a p rope r ty  of two-well  k ine t i c s  is the  si- 
mul t aneous  p r e s e n c e  of f a s t  and  s l o w  r e l a x a t i o n s  that  
d i f f e r  s t rong ly  i n  magni tude.  Using t h e  language of s p i n  
kinet ics  a n d  in t roducing approx ima te ly  the  concept  of 
longi tudinal  T, a n d  t r a n s v e r s e  T, relaxation t i m e s ,  w e  can 
v e r i f y  t h a t  t h e  relaxation of t h e  occupat ion n u m b e r s  (longi- 
t ud ina l  re laxat ion)  is d u e  to transitions f r o m  one w e l l  to 
the  o t h e r ,  and  the  probabi l i ty  of t h i s  t r ans i t i on  is pro- 
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portional to J2. At the same time, the relaxation of 
phase correlation of the states (transverse relaxation) 
is due to phase randomization that takes place in each 
well separately, and the ra te  of this process i s  not con- 
nected with tunneling and remains finite even a s  J- 0. 

' 

What has been said above leads to a number of conse- 
quences. Fi rs t ,  i t  i s  clear that the approximation of a 
single relaxation time, which is usually made in the 
theory of two-well tunnel kinetics (see, for example, 
Ref. I ) ,  is not adequate for the problem in the general 
case. Second, the premise that the presence of widely 
differing relaxation times T1 and Tq (Ti >> T2) can be ex- 
plained only by taking into account the interaction be- 
tween different pairs of wells (spin-spin interaction) is 
not true; see,  for example, Refs. 2 and 3. I t  is impor- 
tant that in the case of tunnel relaxation this is already 
a feature, in principle, of a single isolated pair of wells. 
Finally, we note that, a s  will be shown in what follows, 

means of an external field, then the form of the func- 
tions 11) and Ir)  i s  practically unchanged. As a conse- 
quence, the nondiagonal matrix elements HI, and the 
matrix elements of interaction of the particle with the 
oscillations of the medium V,,, V,,, V,, remain un- 
changed. On the other hand, upon a change in ( (if ( i s  
not too large in comparison with A ) ,  the eigenfunctions 
]I) ,  (2 )  change markedly. This leads to a strong de- 

pendence of the matrix elements of the interaction on 
the level spacing: 

v , ~ = v , , - ' I . S I ~ - + C v , , ,  
(1.4) 

v , ~ - v , , = c v ~ - s s v , , ,  v - = v , , - v , ,  

(for definiteness, the functions [I) and Ir) a r e  chosen to 
be real). 

The interaction matrix elements in the (I, r )  repre- 
sentation have a different order of magnitude relative to 
the overlap integral: 

the longitudinal relaxation, o r  the jump of the particle v, ,-I ,  v , , - J ~ ,  V,,-Jn. 
from one well to another, does not reduce in the case of (1.5) 

This relation is preserved in the representation (1.2) a small  distance 5 between levels simply to a direct in- 
elastic transition but, a s  also in the case of quantum only i f  A<< 5 .  If A and 5 a r e  comparable, then the ma- 

is determined by two contributions. Along tr ix elements VIZ and V,l have the same order of mag- 
nitude. with transitions that a r e  accompanied directly by exci- 

tation of the phonon system (noncoherent diffusion), 
there exist transitions characterized by purely elastic 
coherent tunneling into a state that i s  fluctuating be- 
cause of interaction with phonons in a single well (co- 
herent diffusion). The second mechanism, which again 
depends on the damping of the nondiagonal density ma- 
trix elements (transverse relaxation) can be predomin- 
ant at  small  .C, over a wide range of the parameters. 

The purpose of the present work is the analysis of the 
picture of two-well tunnel relaxation a s  a function of the 
distance between Levels and of the temperature T. We 
shall consider only one pair of nearby levels in neigh- 
boring wells, assuming that the separation between lev- 
els in a individual well, which is determined actually by 
the scale of the zero-point oscillations oo i s  large 
enough s o  that 

I E l  ( 00 ;  (1.1) 
here and below, R = 1. 

For  the problem under consideration, i t  is most nat- 
ural  to specify the parameters in the representation of 
mutually orthogonal functions which correspond to mo- 
tion of the particle only in one (q,) or  the other ($,,I 
well. In this representation, the Hamiltonian of the 
particle can be written in the form 

H='lZ (Eaz+Aaz),  (1.2) 
where A = 2H,, = woJ (basically, this is the definition of 
the overlap integral J). 

The connection between the representation of the 
eigenfunctions (1.2) of the Hamiltonian (1.2) and the ( I ,  
r )  representation has the well-known form ( 5  >- 0) 

I l > = u l l ) + v l r ) ,  E ,=' /%E,  

12)=-ul l )+-ulr ) ,  E,=-'/,e, (1.3) 
e=(EZ+A2)%, u = [ ' l 2 ( l + & l  e)]'", u = = [ ' l 2 ( i - E l  e ) ] ' " ,  

C=uz-v2=E/ e ,  S=2uu=A l  e .  
If we change the level spacing 5 ,  for  example, by 

This very significant circumstance demonstrates the 
definite advantage of the (I, r )  representation, especial- 
ly in the case of an approximate analysis of the relaxa- 
tion picture. We shall be able below to demonstrate 
this lucidly. 

2. KINETIC EQUATION 

For the description of the interwell kinetics under the 
conditions of interaction with the phonon field, it is nec- 
essary to introduce a more general kinetic equation for 
the density matrix of the tunneling particle. A number 
of methods can be used to obtain such an equation. We 
note here, very briefly, one such derivation. 

The equation for the density matrix p of the entire 
system a s  a whole has the standard form 

ap / ni+ i [ / / + / ~ , , , +  c', PI =o. (2.1) 
Here H has the value (1.2), Hph and V a r e  respectively 
the Hamiltonians of the phonon subsystem and of the in- 
teraction of the particle with the oscillations of the me- 
dium. Using the formal integration of this equation with 
respect to time for the equation of evolution of the den- 
sity matrix of the particle 

f =Sp,,p, 

we find directly 

a i l  a t + i [ H ,  ~ I + I = o ,  (2.2) 
where the collision integral J has the following form: 

In these expressions, Sp,, represents summation over 
the states of the phonon subsystem. 

To obtain the entire picture of the kinetics, it suffices 
to take into account the interaction of the particle with 
the medium in the Born approximation. We can then 
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neglect [under the integral sign in (2.3)] the correla- 
tions between the states of the particle and the phonon 
subsystem, which is equivalent to the approximation 

where pph is the density matrix of the phonons a t  thermo- 
dynamic equilbrium. As a result, Eq. (2.2) becomes 
closed relative to the density matrix f. 

We now make some remarks. The approximation 
leading to (2.4) does not impose any actual restrictions 
on the relation between the magnitude of the interaction 
of the particle with the phonons and the level space 8. 

If the interaction of the particle in an individual well 
with the medium is sufficiently strong, i t  is necessary 
to take the polaron effect into account from the very be- 
ginning, and to carry out renormalization of the levels 
and of the matrix element H,, of coherent coupling be- 
tween the wells. 

Thus, in the general case the values of the parame- 
ters  5 and A in (1.2) must imply an explicit account of 
the polaron renormalization. After this, the interaction 
with the phonons in the individual well at the new equil- 
ibrium position of the particle (V,,, V,,) can be regard- 
ed as  weak, while the "jolting" matrix element V,, is 
already small because of the fact that i t  is proportional 
to the overlap integral [see (1.5)]. 

It is  convenient to solve the general problem of relax- 
ation by the Laplace method. We insert (2.4) in (2.3). 
Then, Eq. (2.2) gives 

p f  ( p ) + i [ H ,  f ( P )  I + J ( p )  = f  ( 0 )  : (2.2') 
for the Laplace transform of the density matrix of the 
particle f(p): Herej(0) i s  the initial distribution. The 
Laplace transform of the collision integral operator has 
in this case the form 

For the sake of brevity, a notation i s  introduced, the 
sense of which i s  clear from the definition of the ma- 
trix element in the representation of the eigenfunctions 
of the Hamiltonian Ho: 

where El = E ,  + E, a r e  the values of the Hamiltonian 
Ho(A=l, 2; E, is the energy of the phonon system). 

The matrix elements of the collision integral can be 
written in the form 

JId - C bleCdf e. (2.7) 
J 

The direct transformation (2.5) leads in the represen- 
tation (1.2) to the following expression for the matrix 
elements of the superoperator a: 

The relaxation of the particle is determined by the roots 
of the homogeneous part of Eq. (2.2') (a system of three 
independent algebraic equations, defined for the matrix 
elements f,,); In the zeroth approximation, neglecting 
the interaction with the medium, these roots a r e  equal 
to 

The exact values of the roots a r e  shifted from these 
values in the complex region by a distance of the order 
of v'. Therefore, in the calculation of the matrix ele- 
ments (2.8), we se t  

neglecting by the same token a certain finite width in 
the conservation law in the integration over the phonon 
variable in (2.8). The imaginary part is omitted in the 
right hand side of (2.10); a s  usual, this part leads to 
renormalization of the energy levels. 

Making use of Eq. (2.10), we can write down in explic- 
i t  form the expression for the coefficients (2.8): 

here 
pa- (pph) aa, EaaP- (E.+Ea) - (Eb+E,). 

In the following, we shall be interested in two-well 
kinetics under the condition 

e a o ~ ,  (2.12) 
where w, i s  the characteristic frequency of the phonon 
spectrum. 

In this case, the two-phonon (in the general case- 
multiphonon) processes begin to predominate over the 
one-phonon ones already a t  sufficiently low tempera- 
tures: 

T ' t T a o ~ ,  (2.13) 
this being due to the low density of the phonon states at 
the low frequencies. (For the definition of T* see  Sec. 
4.) If we assume simultaneously that 

e a T ,  (2.14) 
then i t  is easy to understand that we can neglect the 
quantities w and & in the 6 functions in (2.11) over the 
entire temperature range (2.13). In this case, the form 
of the expression (2.11), a s  also the of initial expres- 
sion (2.8), becomes invariant relative to the choice of 
representation for the states of the particles and, in 
particular, it can be used also for the ( I ,  r )  representa- 
tion. The fact that in this case expression (2.8) is in- 
dependent of p makes the relaxation process purely 
Markovian . 

We note that under the conditions (2.13) and (2.14) we 
can neglect H in the Hamiltonian Ho in the initial colli- 
sion integral (2.3) and, keeping i t  in mind that we a r e  
interested in those times t for which tT >> 1, we can let 
the upper limit of integration in time become infinite. 
Recognizing that in the chosen approximation 

f ( t - r )  %eiH'f ( t )  e-iH', 

we can simultaneously substitute f(t-  7 ) -  f(t). As a re- 
sult, we obtain the kinetic equation which was used 
earl ier  in the analysis of the quantum diffusion of par- 
ticles in a 
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Keeping it in mind that all the results turn out to be 
most lucid in the temperature range in which the condi- 
tions (2.13) and (2.14) a r e  valid, we begin the analysis 
with precisely this case. 

3. TWO-WELL TUNNEL RELAXATION AT T>>c 
AND T> T* 

In correspondence with the arguments advanced in the 
preceding section, we shall take into account only the 
two-phonon excitations in the studied temperature range. 
In the ( I ,  r )  representation, the operator equation (2.2') 
with the condition integral (2.7), (2.1 1 )  can, neglecting 
quantities of the order of & in the 6 functions in (2.11), 
be rewritten in the following explicit form: 

P X I + ' / Z ~ A  ( f i l - f l y )  +2Wxl+A ( f r l + f r r )  = X I  ( 0 )  , 
~ f ~ ~ + i E f t ~ - i A x ~ + Q f ~ , +  w (fir-f, ,)  f 2 A ~ , = f , .  ( 0 ) ,  (3.1) 
~f~~-iEf.l+iA~~+Qf,~-W(f~~-f~~) + 2 A ~ ~ = f , ~  (0). 

Here x1 =-xr =frl -.fi!), fi!) is the equilibrium density 
matrix (f:!' =fg' =$); 

A = n j " p , ~ , , = 6 ~ - ~ = ~ ( ~ , - ~ , )  
aP 

[see the notation in (1.4)]. 

The roots of the homogeneous system in (3.1) a r e  de- 
termined by the cubic equation 

ps+2a2p2+a,p+a,=0, 
where 

We now make use of the smallness of the overlap inte- 
gral  J. In correspondence with (1.51, there exists the 
following relation between the coefficients of (3.2): 

Q-J", W=Q12, AcQJ.  (3.5) 
Taking (1.1) into account and the similar  inequality 51 
<< w,,, which i s  always assumed implicitly to be satis- 
fied, and with account of (3.5), we can materially sim- 
plify the expression for the coefficients (3.4); in partic- 
ular, we can neglect all terms containing A in the form- 
ulas (3.4). 

Analyzing Eq. (3.3), we can easily establish the fact 
that at  both 51>> A and 51<< A, one of the roots (pi) is al- 
ways small  in comparison with the two others. The val- 
ue of this purely r ea l  root is obtained directly from the 
relation 

-p,=y,ca,/a,.  (3.6) 
Discarding the small  terms in the coefficients of (3.41, 

we have 

The found root describes the slow relaxation of the 
nonequilibrium distribution to the equilibrium state. In 
terms of spin kinetics, y, represents the characteris- 
tic time of longitudinal relaxation. 

The remaining two complex conjugate roots of Eq. 

(3.3) a r e  now found directly: 

The second term in y2 is small  in comparison with the 
first. However, we shall retain it in this expression 
for convenience in comparison with the results of the 
next section. The general form of the dependence of the 
density matrix on the time can be represented in the 
following form in this case: 

The oscillating part of the density matrix is damped 
with frequency y2. It is easily understood that the res-  
onance a t  the frequency w =& in an alternating external 
field will have a width equal to y,. Thus y, plays the 
role of the transverse relaxation time. 

It is significant that the frequencies of longitudinal and 
transverse relaxations in the considered temperature 
range have a different order of magnitude relative to 
the overlap integral [see (3.7) and (3.8) with account of 
(3.5)]. The transverse relaxation takes place in the 
general case more rapidly than the longitudinal relaxa- 
tion. This occurs over a wide range of parameters, s o  
long as  one of the inequalities below is valid: 

A a e ,  A a Q .  (3.10) 
The second inequality should be specially noted, in 

spite of the independence of 51 from J ,  because of the 
strong falloff of 51 with decrease in the temperature. In 
the case of two-phonon processes, 

Q = ~ O ~ ( T / O ~ ) " ,  (3.11) 
where n = 7, if both wells a r e  different, and n =9 if the 
walls a r e  practically identical (see,  for example, Refs. 
4 and 5). 

Thus, two-well tunnel kinetics in the considered re- 
gion is  characterized by the presence of two widely dif- 
fering longitudinal and transverse relaxation times. It 
i s  important that this takes place for an isolated pair of 
wells. 

The slow-relaxation decrement (3.7), which actually 
determines the frequency of migration of the particle 
from one well to the other, consists of two terms. In 
complete analogy with quantum diffusion in  a crystal 
(Refs. 4 and 5), the f i rs t  te rm represents coherent mi- 
gration, and the second the contribution from purely 
noncoherent transition between the wells. It is of in- 
terest  that, taking (3.5) into account, we obtain for the 
ratio of the noncoherent and coherent contributions in 
(3.7) 

It then follows that the jump from well to well in two- 
well tunnel kinetics i s  determined primarily by the co- 
herent process. 

It can be concluded from the form of (3.7) that the co- 
herent contribution to the longitudinal relaxation at  
>> A can have a peculiar form. At low temperatures, 
the transition probability increases strongly with T, 
goes through a maximum, and then begins to fall off 
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sharply. Both slopes have the same temperature de- 
pendence (3.11). It is of interest that exactly the same 
behavior was actually observed in experiments on the 
diffusion of p' mesons in crystals (see the correspond- 
ing analysis in Ref. 6). 

We note that in the case of a significant increase in 
the temperature, the inequality (3.12) does not hold. 
This i s  connected with the fact that w, is really multi- 
plied by the polaron pre- exponential factor, which falls 
off with increase in T. Moreover, the sub-barrier 
classical jumping sets in. As a result, noncoherent 
contribution becomes predominant and yl again increas- 
es with increase in T. The temperature picture of the 
behavior of the longitudinal relaxation can be greatly 
transformed a s  a function of the relation between the 
parameters, especially of the value of &. 

As is seen from the expressions (3.7) and (3.8), ac- 
count of the cross terms in the collision integral, which 
a r e  proportional to A [see (3.l)], .turned out to be un- 
important, although i t  was not possible to exclude them 
in advance in accord with the degree of the overlap in- 
tegral. However, these terms can be omitted only in 
the ( I ,  r )  representation. In the representation (1.2), in 
the case 5 -A, all the coefficients of (2.11) lead to 
terms of the same order in the kinetic equation. If we 
use the well-known approximation of two relaxation 
times (for the longitudinal and transverse components 
of the density matrix) in this representation from the 
very beginning, then we get erroneous resuits in the 
general case. In view of the nontriviality of this asser- 
tion, we shall consider i t  in some detail. 

In the representation (1.2) in the considered tempera- 
ture region (2.13), (2.14), the kinetic equation reduces 
to the system (3.1), (3.2) if we replace the indices I and 
r in the latter by 1 and 2, and se t  

h=O, E+e. (3.13) 
If we use the transformation (1.4), then it is easy to 

establish the connection between the kinetic coefficients 
in the new (superior bar)  and old representations: 

Again finding for the determination of the roots a cubic 
equation, similar to (3.3), we can easily establish the 
fact that its coefficients a r e  identical with those of (3.4). 

In the two-relaxation-time approximation, which is 
equivalent to the Bloch equation, we have the following 
simplified system in place of (3.1) [with account of 
(3.1311: 

From this system, it is easy to find 

Let &--A. Then, taking (3.14) into consideration, we 
have 

i.e., a result certainly known to be incorrect. Only in 
the limit & >>A, S2 do expressions (3.16) go over to the 
correct result (3.7), (3.8). 

Thus, in the analysis of tunnel relaxation in the or- 
dinary representation (1.2), the two relaxation time a p  
proximation in the equation for the density matrix turns 
out to be inadequate and i t  is necessary to make use of 
the exact matrix of the collision integral. 

4. TWO-WELL TUNNEL RELAXATION AT T< T* 

In the previous section we considered the temperature 
region T > T*, in which the decisive role in kinetics is 
played by two-phonon processes. With account of (2.1 4), 
the scattering of phonons here has a purely elastic char- 
acter, and the elements of the matrix of kinetic coeffi- 
cients (2.11) contains only delta functions of the form 
6(E, - E ~ )  [see (3.2)]. In the case of preservation of the 
inequality (2.14), this result is preserved for two-pho- 
non processes and for any arbitrary reduction of tem- 
perature. Now, however, inelastic and in particular 
single-phonon processes can become important. Suc- 
cessive inclusion of such processes in the kinetics re- 
quires r ea l  values of the arguments of the delta func- 
tions in (2.11), which in turn presupposes the use of the 
representation (1.2). 

We estimate the characteristic temperature T* a t  
which the single-phonon processes begin to play an im- 
portant role. For  this purpose, we return to the gener- 
al  expression (2.11). I t  is not difficult using the trans- 
formation (1.4) for the matrix elements of the interac- 
tion, to ascertain that now the kinetic coefficients, to- 
gether with terms of the form (3.2), will contain simi- 
lar  terms,  but with the substitution 6(E, - Ea)- 6(E, 
- Ea i E). For  example, in the case of the single-phonon 
transition, calculating an expression of the form 

~l')=nC v - ~ P I ~ ~  (E,-E@*E) 
a 

under the assumption that T >> E, we find 

where m = 2 i f  the wells a r e  different, and m = 4 in the 
case of identical wells. The energy parameter w"' in 
this expression has the scale of the depth of the well. 

We now compare (4.1) with the analogous expression 
for the two-phonon processes (3.11). Assuming that the 
wells a r e  not identical we obtain for the temperature T* 
at which case both expressions become equal in value 

The inequality T* << w, follows from (4.2) by virtue of 
(2.1 2) [the f i rs t  factor in (4.2) i s  not greatly different 
from unity; we note that the factors w'l'/wD >> 1 and 
~" ' /b<< 1 frequently cancel one another]. At the same 
time, the weak dependence on the small  parameter &/wD 
(of degree 3) leads to the result that the value of T*, 
which itself depends on E,  practically always satisfies 
the relation 

P>e,  (4.3) 

therefore, in particular, a t  T = T* the assumption used 
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in the calculation of (4.1) is valid. 

An entirely analogous estimate is. obtained in the de- 
termination of T* from a comparison of the single-pho- 
non and two-phonon contributions to other coefficients. 
It should be noted that when the other matrix elements 
of the interaction a r e  used [see the expressions for W 
and A in (3.2)] then, in the general case, the tempera- 
ture dependence of the two-phonon processes is identi- 
cal with (3.11) with n = 7, and of the single-phonon ones, 
with (4.1) with m =2. 

At T s T*, if we assume that 

we find the following directly from (4.1) 

Q ' i ) a e .  (4.4) 
It is easy to understand that the inequality actually car- 
r ies over to a l l  elements of the matrix of kinetic coeffi- 
cients (2.11), i.e., 

I Wdl c s .  (4.5) 
In the representation (1.2) the damping decrements 

a r e  determined by the roots of the equation 

With account of the inequality (4.5), the determination 
of the roots of Eq. (4.6), with accuracy to terms that 
a re  linear in O, becomes trivial: 

- p l - ~ , , l l ( 0 )  -Q121'(0), - P ~ . ~ - *  le+Q,r"(e). (4.7) 
Here we have used the general relation 

We substitute the values of the matrix elements of (2.11) 
in (4.7). For the damping decrements yl and y2 [see the 
definitions (3.6) and (3.8)] we find directly 

We transform the matrix elements in this representa- 
tion to the ( I ,  r )  representation, using the relations 
(1.4). As a result, we get 

here 

W ~ 2 n  z p , l  V,,aB121/2[6 (E,,+e) +6(E.,--el]. (4.1 0) 
OP 

The expressions for O and W without the index t have 
as  before the values (3.2), which correspond to the 
purely elastic case and therefore a r e  determined only 
by the two-phonon processes. The expressions (4.10) 
already contain a contribution from both the two-phonon 
and the single-phonon processes. 

It is significant that the temperature ranges where 
the expressions (4.9) and (3.7), (3.8) a re  valid, overlap. 
Actually, by virtue of the inequality (4.3), the expres- 
sions (3.7) and (3.8) remain valid right up to T=T*. By 
reason of (4.5), the result (4.9), which is obtained only 
by use of this inequality, is preserved even in a certain 
region of temperatures above T*. In this region the 
single-phonon processes can be neglected, and O, and 
W, coincide with the values $2 and W, respectively. 
Here, a s  is easily seen, with account of the condition 51 
<< &, the expression (3.7) is identical with yl in (4.9), 
and (3.8) with y2 (4.9). 

The existence of a range of temperatures in which 
both the result (4.9) and the expressions (3.8) and (3.9) 
a re  valid simultaneously, permits us to write down 
single formulas for 71 and y2, which encompass the en- 
t i re  range of temperatures: 

These expressions completely solve the problem of two- 
well tunnel kinetics in the case of an arbitrary relation 
among the parameters A, E and T. The time depend- 
ence for any particular problem is determined here by a 
relation of the form (3.9) with account of the concrete 
initial conditions. 

At T < T*, the quantities O, and W, (4.10) a r e  deter- 
mined by single-phonon processes and y, (4.9) depends 
on the temperature in linear fashion [see (4.l)j. At 
E > A the inequality 

~ r " ~ r ,  ' (4.12) 
which was found in the previous section for T > T*, i s  
preserved a t  temperatures below T* right down to the 
temperature T'  where both roots become equal in value. 
In the range T' < T < T*, the decrement falls off with 
decrease in temperature more rapidly than yi according 
to the law (3.11), since i t  is determined a s  before by 
the two-phonon processes [the f i rs t  term in y, (4.9)]. 

Taking into account the analysis given in the previous 
section in the estimate of T', we can keep only the f i rs t  
term in the expression for yl (4.9). As a result, we 
have 

, T f = T  ( 8 )  ( A / , )  %=T ( A ) .  (4.13) 

We note that T' does not depend on &. 

Thus, the inequality (4.12) a t  & >> A is preserved over 
the entire temperature range T > T', while the ratio 
yz/yi increases with increase in T in the range (T', T f ) ,  
reaches a plateau, and then again begins to increase. 

At T < T', both decrements already depend linearly on 
the temperature and the ratio ydyi reaches a constant 
equal to i. 

At &*A, the decrements yl and y2 remain of the same 
order in value a t  low temperatures, s o  long as  T does 
not become greater than some value T"(T"> T') deter- 
mined from the condition O(Tn)= A. Taking (3.11) into 
account, we have 
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At T > T", the inequality (4.12) again holds, while the 
ratio yz/yl will increase continuously with increase in 
T. 

5. CONCLUDING REMARKS 

1. The results indicate that the tunnel kinetics for a 
single pair of wells, located in a phonon field has as  a 
characteristic the presence of two completely different 
relaxation times: Ti = I / ~ ,  and T, =l/y, [see (4.11)]. 
From the physical point of view, these times corre- 
spond to the longitudinal and transverse relaxations and 
in this sense play a role analogous to T1 and Tz in the 
problem of spin relaxation. However, and this is im- 
portant, the kinetic equation for the density matrix in 
the considered problem does not reduce to the Bloch 
equation in the general case, and the times that a re  
found do not correspond to the relaxation times Ti, T, 
in the Bloch equation. 

2. The nature of the phenomenon of two different re- 
laxation times in the two-well problem is associated 
with the fact that, in contrast to the spin problem, the 
initial and final states a re  localized in different regions 
of space. As a consequence, the density-matrix ele- 
ments that a re  nondiagonal in the index of the wells, 
a re  damped because of the difference of the instanthne- 
ous interaction with the phonons for both wells; this 
leads to randomization of the phases. This damping 
remains finite even upon approach of the overlap inte- 
gral  to zero, since the damping of the diagonal ele- 
ments is always proportional to 5'. In the case of an 
isolated spin the interaction with the phonons actually 
leads to a single relaxation time in every case. 

3. Over a wide range of temperatures T > T'  (4.131, 
the longitudinal relaxation time is large in comparison 
with the transverse. At T < T' both times a r e  compar- 
able in value. In this region of extremely low tempera- 
tures, y1 and y, have the same linear dependence on T. 
At T >T* (4.2) y1 and yz increase sharply with tempera- 
ture, owing to the two-phonon nature of the relaxation 
in this region. In the intermediate range of tempera- 
tures T' < T < T*, y1 begins to depend linearly on T,  
since the transverse relaxation is a s  before determined 
by two-phonon processes. 

4. As is well known, the anomalous low-temperature 
behavior of amorphous media has i ts  explanation in the 
framework of representations on the existence in such 
media of two-well configurations with uniform distribu- 
tion of distances between levels in the wells and tunnel 
coupling between them (see Refs. 2, 8 and 1). 

It is of interest that in experiments on sound absorp- 

tion in such media, under conditions of resonance sat- 
uration, i t  has been discovered that the width of the 
resonance dip [in our problem i t  corresponds to the 
quantity y,, see  the general expression for the density 
matrix (3.9)] is much greater than the reciprocal time 
of longitudinal relaxation, i.e., yl, which is measured 
independently. Since the adopted description of the re- 
laxation picture for an isolated pair of wells contains 
only a single relaxation time, then the explanation of 
the emergence of two sharply differing relaxation times 
requires the introduction of an interaction between the 
different pairs of wells ("spin-spin" relaxation, see,  
for example, Ref. 7). In fact, a s  the results of the pre- 
sent research show, there exists another relaxation 
mechanism leading to a sharp difference between y1 and 
y,, and a t  the same time unconnected with the interac- 
tion between different pairs of wells. It would be very 
interesting to make clear both mechanisms of relaxa- 
tion experimentally, by investigating the temperature 
and frequency dependences of the relaxation picture. 
The very limited experimental results that do exist ob- 
viously do not make clear the second relaxation mech- 
anism. Actually, they rather indicate that I/T, a s  well 
a s  1 / ~ ~  depend linearly on the temperature, since in 
the case of an isolated pair of wells, the difference be- 
tween y1 and y, appears only when two-phonon process- 
e s  begin to play a role, with their stronger dependence 
on T,  a t  least for I/T,. 

We note that the experiments on the sub-barrier tun- 
nel diffusion of p' mesons in crystals with defects a t  
low temperatures on the other hand reveal a very strong 
temperature dependence for the interwell relaxation, 
which is equivalent precisely to the two-phonon mech- 
anism (see Refs. 9 and 6). To be sure ,  this takes place 
a t  comparatively higher temperatures. 
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