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The statistics of a multimode laser with equidistant modes is investigated during all stages of lasing evolution. 
The distribution functions of the photon numbers in individual modes and of the total photon number are 
obtained. The distribution of the photons in an individual mode agrees in all lasing stages with the thermal 
distribution, but the time of correlation of the number of photons in the laser mode is much longer than the 
corresponding time for thennal emission. The total photon distribution function is obtained also in the 
dynamic stage of the lasing and in the stationary regime. The limitations of the intracavity laser spectroscopy 
method, due to the statistical character of the multimode laser radiation, are considered. The sensitivity 
threshold of this method is obtained. 

PACS numbers: 42.55. - f, 42.60.Da 

INTRODUCTION 

In a number of situations connected with the operation 
o r  application of a multimode laser, the description of 
the laser  radiation in terms of the mean values of the 
photon occupation numbers o r  fields is insufficient. In 
these cases it is necessary to take into account the sta- 
tistical properties of the l a se r  radiation. Thus, e.g., 
the onset of an individual ultrashort pulse in  the multi- 
mode radiation is not a determined process and re-  
quires a probabilistic description. This, as is well 
known, is due to the statistical character of the radia- 
tion during the initial stage of lasing.' Allowance for  
the statistics of multimode radiation is important also 
in the method of intracavity laser  spectroscopy (ILS). 
The fluctuations of the photon occupation numbers about 
the mean values produce noise (shot noise due to the 
emission and absorption of the photons), which will be 
shown below to limit the capabilities of this method. 

tion not only during the initial lasing stage, but also 
during all  the succeeding ones. There  is a t  present no 
such published analysis of the stat ist ics of multimode 
laser  emission. From among the papers closest in 
scope, we note that of Letokhov et a ~ . ~ * '  who obtained, 
for a special model of a laser  with identical modes, 
control equations for the distribution functions of the 
number of photons in an individual mode and of the total 
number of photons, and obtained their stationary solu- 
tions. 

In the present paper we consider a model of laser  with 
unlike modes and with an inhomogeneous gain contour, a 
model more appropriate for standard multimode lasers.  
Inasmuch a s  in this laser  the inversion depends only on 
the total number N of the photons in the resonator, the 
gain saturation leads to narrowing of only the distribu- 
tion N, whereas the photon numbers in the individual 
modes turn out to have a broad Rayleigh (thermal) dis- 
tribution. The absence of factors that stabilize the num- 

In the f i r s t  example, an important role in the descrip- ber  of photons in an individual mode causes the fluctua- 
tions of the number of photons to be long-lived, and the 

tion of the system is played by the phase relations be- 
correlation time to be long compared with the case of a 

tween the fields of the individual modes. In the photon- 
single-mode laser.  The results  of the investigation can occupation-number representation this means allowance 
be used to analyze the role of fluctuations in ILS. The for the off-diagonal elements of the density matrix. In 
threshold of the sensitivity of the ILS method is obtain- 

the second case, however, interest attaches usually to 
ed. 

the spectroscopic aspect of the problem, i.e., to the 
distribution of the photons over the laser  modes. To $1. CONTROL EQUATION FOR THE PHOTON 

describe the statistical properties of the field, i t  suf- SUBSYSTEM AND ITS SOLUTION FOR THE INITIAL 

fices here to know the photon distribution function, i.e., LASING STAGE 

the diagonal part of thi density matrix of the photon 1. We consider the interaction of two-level atoms of 
sub-system. Since the spectrum is usually recorded an active medium with an assembly of laser  modes. 
over times that a r e  long compared with the duration of We assume that the luminescence-line contour of the 
the initial (linear) lasing stage, i t  is of interest to in- medium is homogeneous and the transverse relaxation 
vestigate the properties of the photon distribution func- time T,<<T,, where TI is the longitudinal-relaxation 

594 Sov. Phys. JETP 52(4), Oct. 1980 0038-5646/801100594-09$02.40 O 1981 American Institute of Physics 594 



time. LetokhovZ formulated for this model of the active 
medium, using the approach developed in Ref. 4 for the 
single-mode case, an equation for the density matrix of 
the system "two-level atoms +multimode radiation." 
With account taken of the off-diagonal elements of the 
density matrix in first  order in the small parameter 
( T ~ T ~ ) " ~ ,  and neglecting the effects of spatial inhomo- 
geneity of the laser field, Letokhov2 obtained for the 
diagonal elements of the density matrix a control equa- 
tion that generalizes the single-mode equation of Ref. 4 
to include the case of many modes with identical fre- 
quencies. We write down this equation, which is the 
starting point for our investigation, in a form that is 
suitable for the case of unlike modes. 

-nl~,(n)]+S(M-m+l)-i(n)-S(M-m)Pm(n) 

+9(m+l) Pm+i (n) -dPm(n). (1 

Here P,(n) describes the probability of finding the sys- 
tem in a state with m atoms in the lower level and M - m atoms in the upper level and with a distribution n 
=b,) of the photon numbers in the modes. Here 1 is the 
index of the mode, 9 is the rate of transitior! of the 
atoms from the lower level b to the upper level a a s  a 
result of the pumping, S is the rate of relaxation of the 
upper level, and y ,  is the rate of photon damping in the 
I-th mode. The quantity k ,  characterizes the interaction 
of the atom with the I-th mode of frequency w,: 

where wo is the frequency of the atomic transition, p is 
the dipole-moment matrix element, e' is the polariza- 
tion vector of the I-th mode; the averaging in (2) is over 
the positions of the atoms and over the orientations of 
p. For  the equidistant-mode system of interest to us, 
Eq. (2) can be represented in the form 

kt=kxr=k[ i + n a ~ ' / ~ 0 2 ] - 1 ,  Z=O, *i, . . . , (3) 

where Lo is the number of modes contained in the lum- 
inescence line: Lo = I~/(T~AW); Aw is the frequency in- 
terval between modes. 

2. We now obtain a closed control equation for the 
photon subsystem, eliminating the variable m from (1). 
We introduce, following Refs. 2 and 4, the conditional 
mean values 

where P(n, t) =C,P,(~, t). We assume that the rate 
l / T i - q + S  of the reaction of the atomic subsystem is 
large compared with the relaxation rate of the photon 
subsystem: 1/ TI >> y,. Thanks to  this adiabaticity condi- 
tion, the atomic subsystem manages to attune itself to 
the photon subsystem, s o  that the values of qa and at  qs 
need be expressed only in terms of the photon variables 
n, regardless of the considered instant of time t. For 
an approximate equation for the distribution function of 
the atoms over the levels, a t  a fixed value of the photon 

variables n ,  can be obtained by replacing in (1 ) the 
terms of the type 62, * l)P,(n * 1,) and nlP,(n); this re- 
placement was used in Refs. 2 and 4. Making this re- 
placement and using the fact that the numbers m and M 
- m are  large, we obtain a Fokker-Planck equation in 
the variable m: 

which contains the photon variables only in the form of 
the parameter N: 

If the main contribution to the sum (6) is made by 
modes with I<< Lo, then N is approximately equal to the 
total number of photons Clnl. In the general case there 
is no such equality, but for brevity we shall call the 
quantity N the total number of photons. 

The adiabaticity condition allows us to solve Eq. (5) 
neglecting the term P,(n). The solution takes the form 

where 

We now derive the equation of interest to us for the 
photon-subsystem distribution function P(n, t). To this 
end we sum Eq. (1) over m, and calculate the condition- 
a l  mean values (4) obtained by summation with the aid 
of the obtained distribution (7). As a result we obtain 
the equation 

P(n, t )=  {[Nkl(nl+l)qb(N)P(n+ll)-Mklq.(N) (nl+ l)P(n) 
I 

(nl+1)P(n+l1) l-[Mk1nlllb(N)P(n) 
-~k~n~q.(N)P(n-l~) +ylntP(n) 11, (8) 

where 

Expressions (9) coincide formally with those obtained 
by Letokhov2 (we have neglected the terms kLo << q + S ) ,  
but the quantity N determined by formula (6) has gener- 
ally speaking a different meaning. 

Equation (8) is fundamental for the subsequent analy- 
sis of the statistics of multimode laser emission. We 
make now two remarks concerning i t s  derivation. 

Allowance for the terms discarded in (5) when the 
substitution (H, i 1)  - n, is made introduces in Eq. (81, 
corrections that correspond to fluctuations of the num- 
ber of excited atoms of the active medium and lead to 
an additional contribution to the noise. The influence of 
this noise on the statistical properties of the radiation 
in individual modes is negligibly small compared with 
the action of the photon shot noise, but when the fluc- 
tuations of the total number of photons a re  considered 
in the case of a large excess above the lasing threshold, 
both types of noise a re  important. In order not to clut- 
ter up the analysis that follows, we confine ourselves 
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to the case of a small excess above threshold (g- 1 
<<I), when Eq. (8) is sufficiently accurate. 

The second remark likewise pertians to the applica- 
bility of the initial equation (1 1. It i s  derived by dis- 
carding from the off-diagonal elements of the density 
matrix a number of terms that oscillate with frequen- 
cies of the intermode beats and describe combined in- 
teraction of the modes. This approach is adequate for 
the balance approximation widely used in dynamic theo- 
ry of multimode lasers and in particular in the ILS the- 
ory. The purpose of the present paper is to obtain a 
statistical description of the laser system precisely 
within the framework of this approximation. We note 
also that in the case of small excess above the thresh- 
old the influence of combination processes is small. 

3. We are interested in the development of the lasing, 
starting with the instant when the laser is turned on. 
The initial condition for Eq. (81, when the problem is so 
formulated, is 

As already noted, during the initial lasing stage, when 
N is small compared with its stationary mean value R, 
it i s  possible to neglect in (8) the dependence of q,, and 
qs on N. The solution of Eq. (8) with initial condition 
(1 0) then takes the form 

where nt(t) i s  defined by the equation 

k ( t )  -a, ( 0 ) ~ ~  ( t )  +bl , (1 3) 
with initial condition Et(O) =O. In Eq. (13) we introduced 
the gain of the I-th mode (with allowance for the losses) 

and the mean value of the spontaneous noise 
bl-klMtl.(N). 

According to ( l l ) ,  during the initial (linear) lasing 
stage the modes a re  independent. The distribution of 
the number of photons in an individual mode coincides 
with the thermal distribution. The effective "tempera- 
tures" depend here on the time and are  different for the 
different modes. 

The linear lasing stage is restricted by the condition 
W<<Rm, i.e., to times t S t,,,. For t,,, we obtain with 
the aid of (3) and (13) the relation 

[a,(O)t,t]-'" exp [ a o ( 0 ) t , t ] - ( 9 + S )  (6-1)'(kL0)-', (1 5) 

where f = kM(9 - S)[y( B+s)]" is the parameter of the 
excess above threshold. For numerical estimates we 
assume the following values of the system parameters: 
Lo-lo5; y-10' sec-'; k-0.1 sec"; f - 1-0.2; ao(0) 
- (6 - 1 )y- 0 .2~;  I/T, - (8+ s)- 10' sec". For t,,, we ob- 
tain from (15) the estimate to,,- 5x10" sec. For the 
total number of photons in the stationary regime we 
shall obtain below the estimate m, - 10'. Using the 
smallness of the parameter (6 - I) ,  we neglect the de- 
pendence of b, on N, assuming in the estimates bt= y. 

At times t zt,,, it i s  necessary to take into account 
the saturation of the gain. 
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§ 2. THE FOKKERPLANCK AND LANGEVIN 
EQUATIONS. LASING DYNAMICS 

1. Shortly after the start  of the lasing (t 2[ao(0)Id), 
the average number E, of the photons in the modes be- 
comes large: nt>> 1. This enables us to change from 
the difference equation (8) to the Fokker-Planck differ- 
ential equation. Using the expansion 

Neglecting in the curly brackets the derivatives of [. . . ] 
of order higher than the first, which a re  small because 
of the inequality El >> 1, and expanding the expression in 
the square bracketi' in terms of the derivative with re- 
spect to nt,  we get the equation 

Since the numbers nl become large even during the 
linear stage of the lasing (at t - t,,, nl -E./L0- IO'), the 
region of applicability of Eq. (16) overlaps the region in 
which the solution (ll), (12) obtained above i s  valid. At 
& >> 1 Eqs. (11) and (1 2) take the form 

and determine also the solutions of Eq. (16) during the 
linear stage t -< t,,,. Using expression (1 7) for P(n, t), 
we find that the distribution of N during the initial stage 
is Gaussian with a variance d -3 /Lo;  =Ct~ ,Z1 .  

At t 2 t,, the dependence of the gains a t  on N becomes 
significant. 

2. It is convenient to proceed with the analysis by us- 
ing the system of Langevin equations, which can be ob- 
tained by a standard procedure (see, e.g., Ref. 5) from 
the Fokker- Planck equation (1 6) 

n l ( t )  -al [ N ( t )  Inl ( t )  +bl+Fl(n, t ) .  (1 8) 
The random forces Ft in (18) have a Gaussian charac- 
ter, (Ft)=O, and 

<P,(n, 1 )  Fl . (n,  t')>=2bln1611.6(t-f).  (1 9) 
The initial condition for the system (18) is2' nt(0) =O. 
The solutions of (18) constitute a set  of trajectories in 
the configuration space of the system. Each of these 
trajectories starts out from the origin and corresponds 
to a concrete realization of the random forces {Ft(t)). 

3. We investigate first the dynamics of the lasing, 
i.e., the motion of the system along the trajectory {Zt(t)} 
corresponding to zero random forces { F t ( t ) ~  0). This 
trajectory satisfies the usual system of rate equations 

if (1) =a,[iV(t) 1% ( t )  +bl. (20) 
During the linear stage of lasing, the equation (20) co- 
incides with (13); the solution in this stage is of the 
form 

ii,(t) =bl[exp(al ( 0 )  t )  - lI /a , (O).  (21 
We now describe the known6*' stationary solution of the 
system (20). The stationary value i s  determined 
from the approximate equality ao@,) =-bJE(=) = 0: 
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At the chosen values of the laser parameters we get R, 
f i  lo8. The stationary-lasing spectrum has (at y, a y) a 
Lorentz shape 

%(-) a%(-) [ l+n212i&(-) /Lt]-f .  (23) 
The value of no(-) is obtained from the equality p, 
= Z ~ E ~ ( - ) ;  Go(-) = @ , / ~ ~ ) ~ - 1 0 ~ .  The width of the sta- 
tionary lasing spectrum 

L - = [ L J E ~ ( - )  I ~ ~ = = L ~ -  (24) 

is equal to L, f i  lo2. The time of establishment of s ta- 
tionary lasing is of the order of t, - lao@,) - 0.1 sec. 

During the intermediate lasing stage, bounded by the 
conditions El >> 1 and t << t,, the term b, is small com- 
pared with the first  term in the right hand side of (20). 
Neglecting b,, we obtain fo r  nl(t) the expression 

El(%) =E1(to) Ul(1, to), 

where 

Ul(13 1 0 )  = e r ~ ( ' T ( t ,  to)-( l -xl)  [ ( t - t o ) y f  q ( t ,  to) I-(t-t,)6yr) (25b) 
and 

I 

cp(t,to)= j a o [ ~ ( t n )  ldt' 
C 

In the derivation of these formulas we used an identity 
that follows from (3) and (14): 

a,=ao- (l-xi) (ao+y) -671; 6y1=y1-7; 70-y. 

We choose to to be an instant of time in the linear stage 
of the lasing, to t,,, s o  that we can substitute (21) for 
;,(to) in (25a). Neglecting a t  {,(to) >> 1 the number 1 in 
(21), we obtain for n,(t): 

&(L) =(b,la,(O) ) e x p { ~ ( t ,  0 ) - ( * - X I )  [y t -Q(t ,  0 )  1-6y~t) .  (27) 

We a r e  interested in times t,,, s t < <  t,. The function 
s ( t ,  O), and consequently also R(t), is determined by 
the self-consistency equation (we assume that the sel- 
ective losses by, a re  relatively small and neglect the 
corresponding changes in 40 and R )  

In the derivation of (28) we used the assumption q(t, 0) 
<< yt, which will be subsequently verified. Using (26) 
and (28), we obtain the asymptotic form of F( t ,  0): 

where ~ ( t ) -  0 a t  t zt,,. Substituting (29) in (27) we ob- 
tain at teat -< t -< t,: 

R, nzL2 El ( t )  = G- exp {- - - bit] 
Lo [ L O )  l 2  

where 

L ( t )  =Lo/*. 

We similarly obtain from (28) 

6 N ( t )  = R ( t )  -7V,=[2a,'(-)t]-', 

where 

It follows from (30) and (31) that the lasing spectrum 
in the absence of selective losses has a Gaussian pro- 
file with a width that decreases like I/= (this behavior 
of the multimode lasing spectrum profile was establish- 
ed by Ambartsumian, Kryukov and ~etokhov'). It is 
seen from (30) that the intensity a t  the maximum of the 
lasing spectrum increases like m, thus approximately 
ensuring constancy of R(t). The difference @(t) tends 
to zero like l/t (see the figure). 

The foregoing analysis of the laser  dynamics allows 
us to proceed to the investigation of the statistics of the 
multimode emission during the nonlinear stage. 

$3. THE FUNCTION P(n, t )  IN THE DYNAMIC 
APPROXIMATION 

1. We choose in the linear stage an arbitrary instant 
of time to (to < t,,,) satisfying the condition Go(to) >> 1. 
Then the function P(n, to) is  determined by Eq. (1 7). In 
the present section the further evolution of the function 
P(n, t) i s  considered with the aid of the system (18) in 
the dynamic approximation, i.e., neglecting during the 
stage (to, t) the random forces in (1 8)?' In the following 
sections we investigate the corrections to this approxi- 
mation and the restrictions on the range of i ts  validity. 

In the dynamic approximation, the function P(n, t )  is 
connected with the function P(n, to) in the following 
manner: 

~ ( n , t ) = j  {n ,[ .I-nld(tlto.na) l } ~ ( n ~ . t ~ ) n  dnlo, (34) 
I I 

where the determined functions nfl(t I to, no) satisfy the 
system (1 8) and the initial conditions n$to I to, no) =n!. 
We emphasize that in contrast to the situation dealt with 
in the analysis of the lasing dynamics in Sec. 2, we 
must now find the solutions of the dynamic problem for 
arbitrary initial conditions. 

2. To determine the functions nt(t ( to,  no) we use the 
fact that the variance of the quantity NO, in accordance 
with the expression (1 7), is relatively small: o(to)/NO 
- L : / ~ < <  1. Therefore, despite the large scatter of the 
initial values nj, i t  turns out that for the trajectories 
that make the largest contribution to the integral (34) 
the ~ ~ ( t  ltO,nO) curves pass on the (N, t) plane close to 
the curve N = ~ ~ ( t  I to, no) =m(t) investigated in Item 3 of 
Sec. 2 (see the figure). The functions rrd(t Ito, no) a re  of 
the form4' 

nld(t I to, no) =n1° exp { ~ ( t ,  t o )  - ( I - X I )  [ ( t - t ~ )  ~+cp( t ,  to) 1 
-@to) 671). 

(35) 

For a6(t) a t  t 2t8,t we have the estimate la6(t) Iwao(o)/ F I G .  I. plo t s  o f  R(t)  (sol id  l ine )  and plots of ~ ~ ( t  I t o , n O )  
F,. (dashed l i n e s ) .  
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Here 
1 

q ( t ,  to)= g ( t ,  t o )+  6 q ( t ,  to)= j a0[ i9 ( t1 )+  d ~ ~ ( t ' l t , , n ~ ) ] d t ' ,  (36) 
b 

where = N ~ - R ,  and G(t, to) is determined by (26). 
Using the relative smallness of &(t Ito, no), we obtain 
from (36) an approximate expression for 6q(t, to): 

I 

6 q  ( t ,  t ,)  = J a,' (t') AN&(~' It,, no) dt'. (3 7) 
b 

We neglect in the square brackets of the argumentof the 
exponential in (35) the term 6q << G<< yt. Taking (25b) 
and (29) into account, we get 

nld(t I to, no) -n:Ul(t, to)  exp [6cp(t, to) I. (38) 
Using (37) and (38), we obtain a differential equation for 
6cp(t, to): 

i a 
N*(t l to ,n')--N(t)+--  

ao l ( t )  at 
[ 6 8 ( t , t 0 )  I -  x x l n l 0 U l ( t ,  to)exp[6q(t ,  to) I. 

1 

(39) 
Obtaining the solution of this equation with the initial 
condition 6q(to, to) = O  that follows from (37), and sub- 
stituting this solution in (38), we obtain the function 
nfYt 1 to, no) in explicit form 

n? ( 1  It., no) = n?Ul (1. to)  (1 - [nILil l  ( to )  IDl ( t .  to)  . (40) 
I 

where 

3. We substitute expression (17) for P(n, to) and the 
obtained functidns nf in (34). Next, introducing auxili- 
ary integration with respect to e and the corresponding 
6 function, we integrate with respect to {ny]: 

Ul ( t ,  t1)fil (to) 
expi-znl/Ul ( t ,  t o )& (t.1 I .  

Integrating now in  (42) with respect to  z and using (25), 
we obtain an expression for  P(n,  t) 

I ' 

Xexp [[~a,' ( t*)R(tX)dt* ]d t f  }-' exp  [[j a: ( t ' )R( t l )d t ' ]  . (44) 
,' b 

Equation (44) depends formally on the choice of the in- 
stant of time to. Actually, however, with the choice to 
< t,,, (when, properly speaking, the simple form (1 7) of 
P(n, t o p a n  be used), there is no dependence on to, 
since N(to)a; (to)= 0. 

We now obtain the distribution function P(N, t )  of the 
total number of photons. It is more convenient here to 
s tar t  from the integral representation (34) of the func- 
tion P(n, t). Using (34) and (40) we obtain for P(N, t)  the 
following chain of equations: 

G I ( ~ ,  to)  = x , ~ , ( t ,  to)  + N D , ( ~ ,  to ) .  (46) 

Using the expansion of the 6 function in a Fourier inte- 
gral  in w, and integrating in (45) with respect to no, we 
obtain 

x exp (iu [ N - ~ ( t )  + G~ ( t ,  to)& ( to )  ] -& in[  l+ioGl ( 4  to)% (to) I )  
I 

(47) 
It can be shown that the values of w that make the main 
contribution to the integral (47) satisfy the inequality 

I o ~ ~ ( t ,  to)i&(t0)'~ G I / Y L ( ~ ) ~ ~ .  (48) 

Therefore, expanding the argument of the exponential in 
(47) up to second-order terms in the parameter (48), we 
get 

da, 3 
P ( N , ~ ) -  jZexpfio[~-N(t)l--at(t)),  2 (49) 

In the derivation of (49) we omitted the second term in 
the square brackets of (47), which is small  compared 
with unity relative to the parameter [~(t)]"". With the 
aid of (41), (46), (25) and (29) we obtain the asymptotic 
(at t,, << t) value of CI(t, to&(to): 

c l ( t ,  ta)iir(to)==nl(t) [ i / 2 t - ( i - x l ) y l  ( l a / ( - )  IT-)-'.  (51) 

Substituting (51) in (50), we get 

As seen from (49), the main contribution to the integral 
(47) is made by values w 5 vii(t). From this inequality 
and from (51) i t  follows that the estimate (48) is cor- 
rect. 

Integrating in (49), we obtain for P(N, t) a Gaussian 
distribution 

P(N,  t )  = ( E n a d ( t ) ) - '  e x p { - [ N - R ( t )  ] z / 2 0 ~ ( t ) )  (53) 

with variance u$(t) determined by (52). Analogous o p  
erations yield, accurate to the discarded quantities that 
a r e  small  in the parameter [ ~ ( t ) ] " ' ~ ,  the photon dis- 
tribution function in an individual mode 

P,(nl, t )  = ( i i l ( t ) ) - '  exp[-nl/iil(t) 1. (54) 
The functions P,(n,, t) might have been obtained in this 
approximation directly from (38) via the substitution 
exp[6q]- 1. With this substitution, however, the func- 
tion P(n, t) would turn out to be a product of the distri- 
bution functions of independent modes. This, in turn, 
would lead to a large variance of N: u2( t ) -X/ l ( t )  (cf. 
(52)], and in accordance with (37) 6q(t, to) would turn 
out to be not small, in contrast to the assumption. 

The results of the present section will be used next to 
investigate the noise. 

$4. NOISE AT LONG TIMES ( t>t=,)  

1. We investigate this solution of the system of Lan- 
gevin equations (1 8) with the initial condition n l  (ti) =n: 
a t  the instant of time ti z t,,. We represent this solu- 
tion by the sum 

nl ( t )  =ntd( t )  +n ln( t )  , (55) 
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where the definite function n:(t) is a simpler designation 
of the function nd(t Itl,nl) used in Sec. 3. For  the ran- 
dom function n; (t) we obtain from (18) the equation 

h n ( t )  = a , [ N d ( t ) ] n l n ( t )  +a l ' ( t )Nn( t )n l ( t )+Fl ( t )  (56) 

with initial condition nf(.i) = 0. We have used here an 
inequality for  N~=C,H.~; :  ((Nnl2) <<g,, which will be 
proved below. For Nn(t) we have 

where F(t)  =El xzF,(t), and, a s  a result of (1 9), (F)  = 0 
and 

( F ( t ) F ( t l )  )=2b0N,6(t-1'). (58) 

In the second term of the right-hand side of (57) and in 
the correlator (58) we have neglected the difference be- 
tween sums of the type Clu,n ,  and the quantity R,. 

2. In Item 4 below it  will be shown that in the calcula- 
tion of noise in a single mode we can neglect the second 
term of (56). The solution of (56) then takes the form 

n l n ( t ) =  j P 1  ( t f ) e x p  [ j a 1 [ N d ( t 1 ' )  ld t"]  l'. 
,( 1' 

Using (19), (25b), (35), and (29), we obtain a t  t<< t,: 

= 2b,nld( t )  j e ~ ~ [ ~ l , l n ( t l t ' )  - ( 1 - x l ) r ( t - t ' ) - ( t - t ' ) 6 y l ] d t ' .  (60) 
I ,  

In the last integral we have neglected the small differ- 
ence between sow) and ao(R). The quantity an:(t)I2) i s  
of interest, naturally, only for modes that land in the 
lasing line contour a t  the instant of time t, i.e., modes 
that satisfy the estimate (1 - n 1 ) ~ t  -[l/l(t)I2 s I .  The 
value of ((nf)') can then be estimated at (t,,, s t<< t - ) :  

( [ n l n ( t )  ] ' ) 4 4 n l d y t ~ [ n , d ( t )  Iz. (61 
We present the explicit form of (60) for several partic- 
ular cases. For central modes, i.e., a t  (1 -uz)yt << 1, 
we have 

( [ n l n ( t )  ] z )=4b ln ,d ( t ) f l f l - r r i ; ] .  (62) 

For a small time interval At? ti << ti we get from (60) 
< [ n l n ( t )  ]2)=2b1nld(t)At.  (63) 

3. We investigate now the fluctuations of the total 
number of photons. The quantity Nn satisfies the equa- 
tion (57). We separate in N" the fas t  and slow compon- 
ents, Nn=NS+N;, which satisfy the equations 

N," ( t )  = a,'W,NSn(t)+ x l a , [ N d ( t )  ] n l n ( t ) ,  (64) 
1 

&" ( t )  -ao'N,Nfn(t) + F ( t ) .  (65) 

The functions n;(t) in the right-hand side of (64) vary 
slowly with time, therefore the solution N f  (t) can be 
obtained from (64) in the adiabatic approximation, neg- 
lecting the term : 

~ , " ( t ) = [  Iant(-) l i V , l - ' ~ x l a l [ ~ ~ ( t )  l n l n ( t ) .  (66) 
1 

The solution of (65) with the initial condition N,"(tl) = O  
is 

I 

Nfn(t)== IF( t t ) exp [ - la , ' ( - )  lv, (t-t ')  Idt'. (6 7) 
I ,  

For the mean squared value of N,? we get from (67) with 

the aid of (58) the expression 
bo 

( [ N f n ( t )  1') -- {I -exp[-21ani(m) IN,(t--t*) I ) .  (68) l a o f ( - )  I 

At At >ai1(0) the quantity ([N: (t)12) reaches a stationary 
value 

The order of magnitude of (N: (t)]') is obtained from 
(66) using a t  t<< t, the estimate (61): 

( [N," ( t )  I Z ) 4 L ( t ) n d ( t )  ~ / [ a n ( 0 )  1%-yW,l[a~(O)  l't. (70) 

From (68) and (70) we find that ((Ns" )') is smaller than 
((~f") ' )  by a factor ao(0)t >> 1. At times t 2 t, we have for 
(@lSn)') the estimate ( ( N ~ ~ ) ~ ) "  (b .  - 1)L-, which is less 
than ( ( ~ f " ) ~ )  by a factor G(-)(t - 1) >> 1. 

The foregoing comparison of the variances of Nfn and 
N! shows that the random function Nsn (t) can be neglect- 
ed wherever correlators at equal times a r e  considered. 
On the other hand, when integrals of correlators of the 
type (N"(t)~"(t')) a r e  considered, i t  must be taken into 
account that ~ ~ " ( t )  (67) has a short correlation time 
-ail(0), and i ts  contribution to the double integral with 
respect to t and t' turns out to be comparable with the 
contribution of Nsn(t). 

4. We now justify the neglect of the term a ; ~ " n ,  in 
(56) when (n;(t)]') was determined. The quantity anf 
(t)I2) is expressed in terms of an integral of the corre- 
lators of products of the terms of the right-hand side, 
taken at two arbitrary times. In this case, a s  noted 
above, the contribution of the term a$Vnn, to the inte- 
gral  can be estimated by replacing i t  by the quantity 
a$Vsnnl. Comparing the variances of aiNsnnr with, e.g., 
the f i rs t  term of (56), we obtain, using (70): 

§ 5. DISTRIBUTION FUNCTIONS FOR LONG TIMES 
(t,t St)  

1. The distribution function of the total number of 
photons can be represented in the form 

where N(t I ti, nl, {F}) is a solution of the Langevin sys- 
tem (18) with the initial condition n(tl) =nl for a con- 
crete realization of the random forces {F}. The aver- 
aging (. . . )( ,] in the integral of (71) is over the realiza- 
tions of the random forces. Just a s  in Sec. 4, we rep- 
resent N(t Itl, n', {F)) as a sum of the definite function 
Nd(t ( t i ,  nl) investigated in Sec. 3 and the random com- 
ponent ~ " ( t  Itl, ni,{F}) considered in the preceding sec- 
tion. As follows from the results of Sec. 4, the function 
Nn can be replaced by ~ f "  defined by (67). The latter, 
under the condition At = t - tl >> '(o), can be repre- 
sented in the simple form 

N f n ( t )  = F ( t )  [ lao'(-) IN,l-', (72) 
which does not depend on the initial condition at t = tl. 
We then have for P(N, t) 

x j d n '  exp[- iQNd(t l t r ,nl )  ] P ( n i ,  t , ) .  (73) 
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The integral with respect to n1 in this expression de- 
termines the characteristic function x,,(n, t) of the dis- 
tribution obtained in Sec. 3 for the quantity N ~ .  The 
averaging over {F), on the other hand, determines the 
characteristic function x,(n, t) of the distribution of Nfn. 
After finding the function ~ ~ ( $ 2 ,  t) with the aid of (53) and 
xn(n,t) with the aid of (72) and (581, we obtain from (73) 
for P(N, t) an expression valid for all times t E. taat: 

Allowance for the noise leads, a s  seen from (75), to a 
nonzero variance of N  a s  t-- - (cf. the dynamic expres- 
sion (52)]. Under the condition ud(td) -0, we obtain the 
time td that bounds from above the range of validity of 
the dynamic expressions (43) and (53) for  P(N,  t) and 
P(n, t): 

2. We now obtain the photon distribution function 
Pl(nl, t) in an individual mode. In item 4 of Sec. 4 i t  
was shown that, with a relative e r ro r  [ ~ ( t ) ] " ' ~ < <  1 ,  i t  
is possible to neglect the term a;h"'n, in (18) when noise 
in an individual mode is investigated. Neglecting, with 
the same accuracy, the difference between al(Nd) and 
al(N), we obtain for nl(t) a linearized Langevin equation, 
corresponding to the following Fokker-Planck equation: 

The solution of this equation, which joins a t  t,,,<< t 
<< td the function (54) obtained in the dynamic approxi- 
mation, has the same form a s  (54). Thus, with relative 
e r ro r  [ ~ ( t ) ] " ' ~  << 1, the function P,(nl, t) takes a t  all 
times t bounded from below by the condition El(t)>> 1 
[i.e., t z~;'(o)] the form 

3. In the stationary regime it  is also possible to ob- 
tain the total distribution function P(n, -). On the basis 
of the detailed balancing principle, we obtain for the 
stationary solution of the Fokker-Planck equation (16) 
the following relations: 

a 
[a ,  (N)nl+bl lP(n,  -)-- [blntP(n, -) ]=O. 

an, (79) 

Expanding the coefficient al(N) near in powers of AN 
= N - g ,  and using the relation a,(-F1(-) +bl = O  that 
follows from (20), we seek the solution of this equation 
in the form 

In P(n ,  -) =(aO1/2b,) (AN)'+ ~ ( n )  . (80) 

For the function ~ ( n )  we have the equation 

a x b )  -=-- a; + ( i - 4 -  AN; 
an, f - i , ( - )  bo 

for the modes in the stationary-lasing contour, taking 
(75) into account, we can neglect the second term in the 
right-hand side of (81) in the parameter u4(-) << 1. We 
then have ~ ( n )  = -zlnl/iil (-) + const. After determining 
the value of the constant from the normalization condi- 
tion with the aid of relations (23) and (24), we obtain the 
final form of the total distribution function 

It can be shown that the partial distribution functions 
(82) 

P(N, w) and Pl(nl, -) obtained from (82) coincide with the 
distributions (74) and (78) a t  t =-. 

$6. NOISE IN  THE INTRA-CAVITY LASER 
SPECTROSCOPIC METHOD 

1. The foregoing investigation of the statistical pro- 
perties of multimode laser radiation is directly applica- 
ble to the analysis of noise in the ILS method. Up to 
now, the theoretical description of the ILS, proposed in 
Refs. 10-12, was based on various modifications of the 
system of ra te  equations (see, e.g., Refs. 6, 10, 13- 
15). The gist of the ILS method, according to this de- 
scription, is that an increase of the damping constant 
of some particular laser mode by an amount 6yl leads 
to an exponential decrease of the number of photons in 
this mode compared with the number of photons in the 
absence of the additional absorption. The smooth lasing 
spectrum of the multimode laser then acquires, at the 
frequency of the selected mode, a dip whose relative 
magnitude a t  times t<< t, increases like [l - exp(-6ylt)] 
(30). 

We note that this dynamic description of the ILS takes 
no account whatever of the statistical character of the 
multimode-lasing spectrum. There is therefore no 
lower bound on the registered dip, and the possibility 
of observing arbitrarily weak absorption lines is de- 
termined entirely by the precision of the measuring ap- 
paratus. 

2. Stochastic processes, as  shown in the present 
paper, lead in a concrete realization of the random 
forces to a lasing spectrum described by a frequency 
function that is not smooth a t  all, but strongly chopped 
up. The variance ( ( ~ n , ) ~ )  of the number of photons n, in 
each mode is equal, in accord with (78), to the square 
$ of the average number of photons. Additional damp- 
ing 6yI of one of the modes leads to a decrease of iil in 
this mode. For relatively weak absorption lines, when 
by, .=I I ao(t) I and the depth of the dip is GIhI  < and is 
linearly connected with 6yl, the value of 6, turns out to 
be less than the mean squared scatter [ ( ( ~ n ~ ) ~ ) ~ ' ~ - n ~  of 
the number of photons in the individual mode. This 
means that the statistical character of the radiation 
makes i t  impossible to register a weak absorption line 
in an individual measurement of the lasing spectrum. 
The only lines that can be registered a r e  those that de- 
crease by many times the average number of photons in 
the given mode. The condition - [ ( ( ~ n ~ ) ~ ) ] " ~  deter- 
mines the sensitivity threshold in the considered scheme 
of a single measurement of the lasing spectrum. The 
threshold values of the absorption coefficient K = by1/c 
a re  determined by the formulas 

- 

For example, at t - 3 x  sec  an estimate yields K = lo-' 
cm". Thus, the statistical character of the multimode las- 
ing limits in principle the sensitivity threshold of the ILS 
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method in a single measurement. stages. The photon-number distribution (78) in an indi- 
vidual mode of multimode lasing coincides a t  al l  stages The sensitivity threshold can be increased by a factor 
with the distribution for the thermal radiation?) How- 

by accumulating the single obtained by registering ever, the noise investigation reported in Set. ( shows a ser ies  of p independent pulses. 
that in contrast to thermal radiation the correlation time 

3. In the preceding Item we considered the most wide- of the number of photons in a single mode is large: At 
ly used scheme of recording selective absorption in the -t,. It is shown that the distribution of the total number 
ILS method, wherein one measurement is performed for of photons i s  Gaussian. The relative variance of this 
an individual realization of the lasing-development pro- distribution decreases with time in power-law fashion, 
cess. and reaches a stationary value at sufficiently large 

As follows from the investigation in Sec. 4, the dif- 
ficulties connected with the large variance of the signal 
in individual realizations of the lasing spectrum can in 
principle be avoided if two measurements of the spec- 
trum, at the instants of time ti and t2 (teat s ti < t2 << t,), 
are performed in a given lasing pulse. Despite the fact 
that the lasing spectra a t  tl and t2 a r e  described by ran- 
dom functions with a large variance of the number of 
photons in each mode, these spectra a r e  strongly cor- 
related. The reason i s  that the evolution of the individ- 
ual modes during the considered stage (ti, t2) i s  well de- 
scribed by the dynamic approximation, and the noise is 
low and increases slowly (see Secs. 3 and 4). In ac- 
cordance with Eqs. (25), (40), and (55) the selective 
loss is given by the formula 

where 1 is the index of the mode that has the additional 
damping 6y,, and 1' is one of the neighboring modes, 
which have no selective 10sses.~' Here, too, use is 
made of the relative smallness of n: and n p  (61). The 
term in the square brackets of (84) stems from noise 
and leads to the appearance of variance of the measured 
absorption coefficient. At low selective losses (by& 
- tl) << 1), this variance, in accordance with (84), is 
given by 

where ((n;)q is determined in the general case by (60). 
The minimum value of the absorption coefficient that 
can be registered with the aid of the described correla- 
tion procedure is determined by the condition K,, 
= [ ( ( A K ) ~ ) ] ~ ~ ~ .  In the simple particular case ti << t2 we 
obtain for the central modes, using (62), 

Thus, the two-time correlation procedure of measure- 
ment makes it possible to decrease the thresholdvalue of 
of the absorption coefficient registered in the pulse re- 
gime by a factor (t.,/t2)i'4 >> 1 compared with the pro- 
cedure in which a single measurement of the spectrum 
is made in one lasing pulse, for which formula (83a) is 
valid. 

CONCLUSION 

We have investigated the statistics of radiation of a 
multimode laser  with homogeneous gain contour and 
equidistant modes. The distribution functions of the 
number of photons in the individual modes and of the 
total number of photons were obtained for a l l  lasing 

times. The decrease of the variance of this-distribution 
is due to saturation of the gain. The relatively slow 
power-law character of the narrowing of the distribution 
of the total intensity is connected with the difference be- 
tween the interactions of the individual modes with the 
active medium.'' Also obtained is the photon distribu- 
tion function during the dynamic stage of the lasing and 
for the stationary case. 

The results of the investigations can be used to ana- 
lyze the role of noise in the ILS method. In the litera- 
ture on ILS the prevailing opinion is  that the spectrum 
bl} of the lasing of the employed multimode laser i s  a 
smooth function of the frequency and i t  is impossible to 
register against the background of this spectrum the 
dips corresponding to additional losses in individual 
modes. What is really smooth, however, is only the 
spectrum of the mean values {Zl). The real  lasing spec- 
trum {;,} corresponds to a concrete realization of the 
action of random forces during the stages preceding the 
measurement. Therefore the lasing spectrum observed 
in a single measurement has a very choppy structure, 
the scatter of the number of photons in one mode is 
equal to the average number of photons in this mode 
(the strong choppiness of the lasing spectrum of solid- 
state lasers  (TI >> y) was experimentally observed in 
Ref. 16). These natural fluctuations of the number of 
photons in individual modes lead to the appearance of a 
nonzero sensitivity threshold (83) of the ILS method 
(when the ILS is described in terms of the rate equa- 
tions, no limitations a re  imposed in principle on the 
magnitude of the registered absorption). 

We considered also a two-time correlation procedure 
for the measurement of selective absorption. We have 
shown that thanks to the large photon-number correla- 
tion time in an individual mode i t  is possible todecrease 
the scatter of the values of the measured signal and to 
lower the sensitivity threshold of the method. 
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''We replace thereby the exact expression [b, - a , ( N / B l n ,  for 
the diffusion coefficient by the approximate value b p , .  This 
approximation is suitable because the role of the diffusion 
term is negligibly small during the lasing stage bounded by 
the conditions Si, >> 1 and t5 t,, ; during the subsequent stages 
(t i t a t ) ,  however, the following estimate is  valid: a,/b, 
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s l / (y tM 1.  
P ~ u s t  a s  the solutions of (16). the solutions of the system (18) 

a r e  valid only a t  t imes such t h a t f p l .  They a r e  used here- 
after only for such times. 

3 ' ~ n  the single-mode case  the evolution of the initial distribu- 
tion function was investigated in the dynamic approximation, 
e. g. , by Baklanov et a2. 

4 ' ~ e r e ,  a s  in Sec. 2,  we neglect the t e rms  bl in the dynamic 
equations a t  t imes ao- ' (0)e  t e t , .   or simplicity we neglect in (84) the difference between the 
gains of the neighboring modes. In the lasers  customarily 
used for ILS this difference is  extremely small. 

6 ) ~ o r  a stationary distribution of photons in an individual 
mode . this correspondence was establlshed by Ambartsymyan 
et al. for the case  of identical modes in a special laser  
model with nonresonant feedback. We note that in the case  
of a single-mode laser  the distribution of the number of 
photons, which is  thermal during the initial (linear) las- 
ing stage, narrows down rapidly during the succeeding 
stages because of gain-saturation effects. 

1)  Using Eq. (20) of Letokhov's paper,' it i s  easy to show that 
in a laser  with identical modes tir,Si), just a s  in a single- 
mode laser ,  the variance of the distribution of the total 
intensity narrows down exponentially rapidly to a stationary 
value. 
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