
and 72 .  tions) relative to the total number of configurations, 
i. e., classes of conjugacy of the commuting permuta- 

The principal spectral characteristic in each magnetic tions. This is a purely combinatorial problem. 
band with number j is the density of the number of 
states per unit area  in the interval dE, which we des- 
ignate by p,(E)dE, where 

Here M is the multiplicity of the degeneracy at  fixed 
pl and h. Irrational numbers (2r)"ecp can be approxi- 
mated by rational ones N,M;', where the numerator Ni 
and the denominator Mi increase if N,M;' - (2n)-'e@, 
i -*. It is easily seen that with increasing N, and Mi 
the dispersion law breaks up into more and more mag- 
netic bands, so that a l l  the characteristics, with the 
exception of the total density of the number of states 
per unit area  

C K d ~ ,  
> 

become meaningless. 

At large N it is possible to pose the natural problem 
of calculating the statistical weights of various numbers 
of magnetic bands produced in the decay, bearing in 
mind the percentage of the configurations Y l  and 72 with 
the number of bands in the given interval k * Ak (i. e., 

. - 
the common cycles of a pair of commuting permuta- 

I ) ~ h e  reader  must be warned that the paper by Aharonov and 
casher3 contains wrong references to the known work of 
Atiyah and Singer. Fortunately, these references have no 
bearing on the matter. 

2 ) ~ h e  quadrature non-integrability of one of the eigenfunctions 
in Ref. 3 points to the absence of a gap in this case. 
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Nonlinearity of current-voltage characteristic and 
magnetoresistance of the interface between the 
superconducting and normal phases 

B. I. Ivlev, N. B. Konin, and C. J. Pethick') 

L D. Landau Institute of Theoretical Physics, USSR Academy of Sciences 
(Submitted 5 March 1980) 
Zh. Eksp. Teor. Fiz. 79, 1017-1024 (September 1980) 

We consider the dc resistance of the interface between the normal and superconducting phases at current 
densities of the order of the Ginzburg-Landau critical value. Account is taken of the effect of an external 
constant magnetic field on the interface resistance. 

PACS numbers: 74.30.Ci 

1. Measurements of the resistance of superconduc- 
tors in the intermediate state have shown that i t  ex- 
ceeds the resistance of the purely normal phase."2 It 
was subsequently established that the additional resis- 
tance is due to the finite depth of penetration of the 
electric field, I,, into the superconductor. This depth 
greatly exceeds the coherence length [(T) and the depth 
X(T) of penetration of the electric field in the super 
conductor, and is due to processes that a r e  peculiar to 
superconductors and a r e  connected with the relaxation 
of the unbalance of the populations of electron-like and 
hole-like branches of the excitation energy spectrum? 

"NORDITA, Denmark. 

The population difference between the electron and hole 
branches of the spectrum leads to a difference between 
the chemical potential of the pairs, yo= (1/2)ax/at (per 
particle) from the chemical potential ~g =-erp of the 
quasiparticles (X is the phase shift of the order param- 
eter and cp is the scalar potential of the electric field. 
As a result, the gauge-invariant scalar potential 

differs from zero. The characteristic length over 
which the difference between the populations of the 
spectrum branches in the interior of the superconduc- 
tor relaxes is in fact the depth of penetration of the 
electric field. Near the critical temperature, the depth 
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of penetration of the electric field exceeds the diffusion 
length I,=(D/Y)"~ of the quasiparticles (D is the diffu- 
sion coefficient and Y"p/e; is the reciprocal time of 
the electron-phonon collisions). As a result, a t  lengths 
on the order of I,, there is established an energy de- 
pendence of the distribution function, characterized by 
a chemical potential -e@ that relaxes slowly in turn 
over lengths on the order of 2, >>I,. 

In the case of weak currents and magnetic fields, the 
depth of penetration a t  T, - T << T, is 1$)=2 ( 4 ~ / n ~ ) "  
( ~ e f s .  4 and 5) and is determined by the electron-pho- 
non interaction. The electron-phonon interaction, how- 
ever, is not the only mechanism of relaxation of the 
electron-hole unbalance. The relaxation can be acce- 
lerated by any factor that leads to pair breaking and 
facilitates particle exchange between the excitations 
and the condensate. The role of the paramagnetic im- 
purities in this case is well k n ~ w n ~ ' ~  (see, e. g., the 
equation for @ in Ref. 6). An equation for that part of 
the distribution function which is even in energy and is 
connected with the unbalance of the electron and hole 
branches was obtained earlier?" This equation offers 
evidence that an important role can be played here by 
the vector potential of the electromagnetic field. An 
equation that describes the behavior of the scalar elec- 
tric potential with allowance for this circumstance was 
obtained near the critical temperature in Ref. 9. In a 
certain temperature range that will be defined below the 
vector potential can substantially influence the electric- 
field penetration depth, which can therefore depend 
strongly on the superconducting current a s  well a s  on 
the external magnetic field. It is important to empha- 
size that this influence begins to manifest itself a t  mag- 
netic field and current values substantially lower than 
the corresponding critical values. The additional re- 
sistance introduced by the superconducting phase is 
proportional to the resistivity of the normal metal 
multiplied by the depth of penetration of the electric 
field. The indicated effects should lead thus to non- 
linearities of the current-voltage characteristic and to 
a strong dependence of the resistance of the interface 
between the normal and superconducting phases (s-N 
interface) on the applied magnetic field. A definite 
idea of the influence of the magnetic field and of the 
current on the rate of relaxation of the electron-hole 
unbalance and on the depth of penetration of the electric 
field can be obtained by using the results of Refs. 4 
and 5 for alloys with paramagnetic impurities, where 
the role of the pair-breaking factor is assumed by the 
reciprocal time 7: of the electron mean free path with 
respect to spin flip. By replacing, in order of magni- 
tude, 72 by c-'~'DQ~, a s  was done in Refs. 4 and 10, 
i t  is possible to understand qualitatively the main fea- 
tures of the behavior of the depth of penetration. In 
this paper these effects a r e  considered consistently on 
the basis of the exact equations of Ref. 9. 

In addition to the finite depth of penetration, the S-N 
interface is characterized also by a jump (i. e., by a 
rapid change in scales of the order of 5 and I,) of the 
electric field. This question has been studied earli- 
er?'" In the temperature range considered below, 
however, the jump of the field is small and will not be 

taken into account. 

We assume for simplicity that the sample is a cylin- 
der of radius yo << 5, A and is made of dirty supercon- 
ductor with I,,, << ((TI. It is assumed that the sample 
is divided into a superconducting and a normal region 
by an interface with a thickness of the order of [(T) 
<<1, which can therefore be regarded a s  infinitely thin. 
Such a sample can be placed in a longitudinal magnetic 
field H. 

2. In the stationary state, the superconductor is de- 
scribed by the following equations, which a r e  valid at  
temperatures close to critical: 

where A is the modulus of the order parameter, while 
Q =A - (c/2e)vx and @ a r e  respectively the gauge in- 
variant vector and scalar potentials. The vector poten- 
t ial  Q satisfies Maxwell's equation 

rot rot Q=4njlc, 

and the distribution of the scalar potential @ should be 
found with the aid of the kinetic equation. The electro- 
neutrality condition connects the scalar potential @ with 
that part of the distribution function which is even in 
energy, ff = n, + n-,- 1, which describes the unbalance 
of the electron and hole branches: 

In turn, a, satisfies the kinetic equation4"* 

where u, = E/(E' - A')''~ and J,, is the integral of the 
collision with the phonons, whose explicit form will 
not be written out here (see, e. g., Ref. 9). The term 
with ( v A ) ~  in the left-hand side of (3) is significant only 
at  distances on the order of 5 from the S-N interface 
and leads to the appearance of a jump in the electric 
f i e~d?  From the results of Artemenko, Volkov, and 
zaitsevl it is seen that in the temperature region (T, 
- T)/T << (Y/T)" the jump of the electric field is small. 
We shall use below for @ an equation that is valid pre- 
cisely in this temperature range, so that the term with 
(vA)' in Eq. (3) can be neglected. 

We align the z axis with the cylinder axis. If HIIz, 
then the components of the vector potential Q 
={Q,, Q,, Qr} take the form Q, = $ H p ,  Q, = O .  Since the 
cylinder radius Y, << 5, 6, it follows that Q, and A a r e  
practically independent of p.  To obtain the equations 
which these quantities satisfy, we must average Eqs. 
(1)-(3) over the thickness of the sample. The quantity 
Q' in Eqs. (1) and (3) is then replaced by 

Equation (3) takes the form 
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As shown in Ref. 9, the function a! can now be sought 
in the form 

and for @ we obtain the equation 

where 

. . 

and p = 4e2D~2/rc2. At small Q ~ ,  when p << 1, we ar- 
rive a t  the result of Atremenko et al? Equation (4) is 
valid in the temperature range 

The depth of penetration of the electric field into the 
superconductor, a s  follows from (4), is proportional 
to E , [~T /TA(~  +I)]'" and depends strongly on the mag- 
netic field and on the current. 

We change over to the following dimensionless vari- 
ables: 

z=Ezl, A=BA1, Q = LQ'. H=2"xH.H', 
2 e e  

where 

and x is the Ginzburg-Landau parameter. Equations 
(11, (2), and (4) then take the form 

A Z + ~ = I ,  (6) 

j=-aO/az-A2Q., j-const, (7) 

a 2 ~ ~ a ~ 2 = ~ b - 2 e .  (8) 
We have left out here the primes of all the new vari- 
ables, and in (6) we have also left out the term with 
the second derivative of A, since the characteristic 
scale of variation of all the quantities is 1, >> 1, where 

The quantity I(P) is determined by Eq. (51, in which 
now 

p - - @ = p ( I - ~ ' ) ,  B=S(T.-T)/nr. 

We put j,=-A'Q,, and then we have from (6)-(8) 

ai./az=l,-'Q, j=j.-a@/&, A2+j:lA'=qz, (1 0) 

where $ = 1 - H'/H;, and Ho = 81n/ro is the critical 
field for a cylinder with a small radius ro << A (in ordi- 
nary units we have Ho =4XH,/ro). 

In the interior of the superconducting region (see Fig. 
1) the normal current at z >> 1, is j, =-a@/az =O, there- 
fore 

j = j  A = A ~ ,  Q=O (11) 

[the critical current is jc(H) =zv3/3 . 31'2]. The quanti- 
ties j and A,, are  connected by the third equation of 
(10). As the S-N interface, where z =0, is approach- 

FIG. 1. 

ed, the normal current increases, the super conducting 
current decreases, and the order parameter increases. 
Over distances 1 <<z << 1, we have, by virtue of the con- 
tinuity of E (the jump of E is small), j, = j and 

j.=o, A @ = o O .  (12) 

At still smaller distances from the interface (z -11, A 
begins to decrease. When the problem is considered 
a t  scales on the order of I , ,  we can use (11) and (12) 
a s  the boundary conditions at z =a and z = 0, respec- 
tively. 

Equations (10) with boundary conditions (11) and (12) 
can be easily integrated: 

The total potential drop a. across the S-N interface 
is obtained from (13), in which we must put @ = O  and 
j,=j. Changing over to integration with respect to 
dA, we get 

The quantity A,, is connected with the current j b the 
relation j = d($ - 4)'" and lies in the range (${"TI 
c A o S  7. 

3. Expression (15) describes completely the charac- 
teristics of the S-N interface at the employed values 
of the magnetic fields and currents, but the explicit 
form is quite complicated, so that it is useful to con- 
sider several limiting cases. 

A. Assume first  no magnetic field, H = 0 and 7 = 1. 

a) We consider the temperature region Tc - T <<Y, 
where j3 << 1. Here 1 << 1 and the integral in (15) can be 
easily calculated: 

QOz=a j ' l (d , ) ,  

where 

At low currents, 4 is close to 1 and from (16) we have 
f (ao)=l,  

~ ~ = ~ ~ l ~ j  (17) 

meaning in ordinary units a voltage V = jRo across the 
S-N interface, whose resistance is then R~=~:'/U, 
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where 12'=1 ( ~ T / T A ) ~ ' .  This agrees with the result of 
Ref. 5. 

The function (16) for large currents was tabulated 
numerically. I t  turned out that i t  is approximated with 
good accuracy by unity, so that the function (17) retains 
the same form all  the way to the critical current. This 
circumstance is quite unexpected, inasmuch a s  when 
the current is increased to the critical value jc = 2 / 3 a  
the order parameter A. in the interior of the supercon- 
ducting region is suppressed to a value A. = m, and 
this should lead to an increase of the depth of penetra- 
tion of the electric field and to an increase of the resis- 
tance. For  purely numerical reasons this effect, how- . 
ever, is small, and 1, is practically constant. The 
linear dependence of the voltage V on the current was 
confirmed in experiment1' up to critical values of the 
latter .'2 

b) We turn now to the temperature range 

TIT< (T.-T)IT,c ($")'", 

where B >> 1. We consider currents that a re  not very 
weak, so that p =P(l-  A') >> 1, and I =pin. From (15) 
we obtain with logarithmic accuracy 

In ordinary units we have for the voltage on the S-N 
interface 

We see that in this temperature region the current vol- 
tage characteristic (CVC) of the S-N interface is es- 
sentially nonlinear. This singularity of the CVC can 
be easily understood qualitatively if it is noted that 
when the current is increased then, in accordance with 
the statements made in Sec. 1, the relaxation of the 
electron-hole unbalance is accelerated. The depth of 
penetration of the electric field (9) then decreases in 
proportion to Q-ln -j-ln, and the resistance R -I,/* 
ctj4/2 decreases with it. For  weak currents j/jc -[Y/ 
(Tc - T)]'" << 1, the CVC assumes the linear form (17). 
Figure 2 shows schematically the CVC in this tempera- 
ture range. 

B. Let now the sample be placed in a parallel mag- 
netic field H. 

a) We consider f i rs t  the region of small currents j/jc 
(H) << 1. In this case p = P(1- 772) =PiY2/H; and 

FIG. 2. Schematic current-voltage characteristic of S - N  
interface in the temperature range y/ T<< (Tc - T)/T<< (y/~)'/2. 
The dashed line shows the linear dependence characterized by 
the resistance Re = l g)/u. 

FIG. 3. Schematic dependence of the resistance of S - N  
interface on the magnetic field in the temperature range 
-y/T<< (Tc- T) /T  << ( - y / ~ ) ' / ~ .  

This linear dependence of the voltage on the current 
is characterized by a resistance (in ordinary units) 

In the temperature region T, - T << Y, where B << 1, we 
have 

The factor (1 - 2/g) l fL describes here the suppression 
of the superconductivity by the magnetic field. 

We consider the temperature range Y/T << (T, - T)/T, 
<< (y/T)lJ2. Here 

B=8(TC-T)/n~>l. 
In very weak magnetic fields, where Hz/& << p-l << 1, 
the resistance is 

When the field is increased to values H/H, -B"" << 1 the 
resistance decreases sharply and at  H/H, >>p-'" we 
have 

The decrease of the resistance continues to the value 
H/H0 = 1/a, where R/R, =@""fi, after which it in- 
creases. The dependence of the resistance on the mag- 
netic field is shown schematically in Fig. 3. Kadin, 
Skocpol, and  inkh ham" investigated the influence of 
the magnetic field on the effective depth of penetration 
I, =Ra of the electric field. The Z,(H) dependence they 
obtained agrees qualitatively with the dependence de- 
scribed by formulas (191, (21), and (22) and shown in 
Fig. 3. 

b) We consider now large values of the magnetic field, 
q>> 1. Here A<< 1 and p =@. From (15) we obtain 

where f (x) is defined in (16). As indicated above, f (x) 
=I ,  so that in this case the resistance of the S-N inter- 
face is approximately 

in the entire range of currents 0 c j jc(H). 

519 Sov. Phys. JETP 52/31, Sept. 1980 lvlev eta/. 51 9 



The authors a r e  grateful to A. F.  Volkov and Yu. N. 
Ovchinnikov for helpful discussions. 

'I. L. Landau, Pis'ma Zh. Eksp. Teor. Fiz. 11, 437 (1970) 
[JETP Lett. 11, 295 (1970)). 

2 ~ .  B. Pippard, J. G. Shepherd, and D. A. Tindall, Proc. 
Roy. Soc. Ser. A 324, 17 (1971). 

3 ~ .  Tinkham, Phys. Rev. B 6, 1747 (1972). 
4 ~ .  N. Artemenko. A. F. Volkov, and A. V. ~ a f t s e v ,  Low 

Temp. Phys. 30, 478 (1978). 
5 ~ .  Schmid and G. Schijn, J: Low Temp. Phys. 20, 207 (1975). 
6 ~ .  P. Gor'kov and G. M. Eliashberg, Zh. Eksp. Teor. Fiz. 

54, 612 (1968) [Sov. Phys. J E T P  27, 328 (196811. 
'L. P. Gor'kov and N. B. Kopnin, a i d .  64, 356 (1974) 137, 
183 (1973)l. 

P. ~a layko ,  ibid. 68. 223 (1975) 141, 108 (1975)l. 
9 ~ .  E. Bulyzhenkov and B. I. Ivlev, Fiz. Tverd. Tela (Lenin- 

grad) 21, 2325 (1979) [Sov. Phys. Solid State 21, 1339 (197911. 
'OA. M. Kadin, W. J. Skocpol, and M. Tinkham, J. LOW 

Temp. Phys. 33. 481 (1978). 
"YU. N. Ovchinnikov. ibid. 31. 785 (1978). 
1 2 ~ .  L. YU and J. E. Mercereau, Phys. Rev. Lett. 28, 1117 
(1972). 

Translated by J. G. Adashko 

Temperature dependence of the conductivity of point 
junctions between a superconductor and a normal metal 
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The temperature dependences of the current-voltage characteristics of point junctions between a 
superconductor (aluminum) and a normal metal (silver) were investigated experimentally and estimates were 
made of the parameters of the junctions and of the mean free path I of the electrons in the region of the 
junction. The measured temperature dependences are close to those predicted by Zaitsev [Sov. Phys. JETP 51, 
11 1 (1978)] for junctions with diameter d <(I,{,), although the assumptions of the theory were not realized in 
the experiments. A simple model is proposed for the conduction of point junctions with ((T)<d <I,, where I, 
is the energy relaxation length of the electrons in the normal state of the superconductor. It is shown on the 
basis of this model that Zaitsev's results are valid also for such junctions. 

PACS numbers: 74.70.Gj, 74.70.Lp, 73.40.Jn 

The current-voltage characteristics of point junc- 
tions between normal metals a r e  linear if the junction 
voltage U is such that eU <<k6, (0, is the Debye tem- 
perature),' and do not depend on the temperature a t  
sufficiently low temperature. The transition of one of 
the electrodes of the junction into the superconducting 
state leads to the appearance of noticeable nonlinearities 
(see Fig. 1). Below the superconducting-transition 
temperature T,, a change takes place in the differen- 
tial resistance r = dU/dI at  U = 0, and the CVC takes 
in an appreciable current interval the form 

I=UIR+Io sign U ,  

where R is the resistance of the junction when both 
electrodes a r e  in the normal state, I, does not depend 
on U and is called the excess current. These features 
of the CVC were first  noted by Pancove. 

The values of r and I, depend on temperature below 
T,. Chien and Farre114 observed a differential-resis- 
tance temperature dependence of the form 
r = R  - R,A(T)/A(O), where R, is a constant and h(T) 
and ~ ( 0 )  a r e  the energy gaps in the superconductor a t  
temperatures T and OK, respectively. Gubankov and 
Margolin3 obtained an experimental dependence that 
agreed with the corresponding dependence of the en- 
ergy gap in the superconductor, while the differential 
resistance varied nonmonotonically with temperature. 

Recent theoretical papers1*' dealing with the conduc- 
tivity of S-c-N (superconductor-constriction-normal 
metal) junctions, which include also the point junctions, 
have shown that the results depend on the relations between 
the electron mean free path I, the super-conductor co- 
herence length t,, and the geometric dimensions d  and 
1 of the constriction. (The constriction is regarded a s  
a cylinder of diameter d  and length L, which joins mas- 
sive materials. ) Both references a r e  devoted to the 
study of junctions with (d, L)  << [(T)(1 - T/T,)"~ [t(T) is 
the coherence length in the superconductor a t  the tem- 
perature TI, but the restrictions on the electron mean 

FIG. 1. Current-voltage characterist ics of a point junction 
between aluminum and silver. R =0.1288,1) T = 1.4 K, both 
electrodes in the normal state; 2) T =0.65 K, the aluminum is  
superconducting. 6U is the change of the junction voltage when 
the aluminum becomes superconducting (the current  through 
the junction i s  fixed. 
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