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A new approach is suggested to the problem of the self-action of waves in a nonlinear medium whose 
permittivity depends on the intensity of the wave field. The initial boundary-value problem is reduced to the 
Cauchy problem. The scalar wave equation (plane-layered medium and general three-dimensional cast) is 
considered, as well as the vector problem of propagation of an electromagnetic wave in plane-layered media 
for two possible polarizations. It is shown that in all cases a closed nonlinear equation holds for the reflection 
coefficient, and the wave field in the medium can be described by a linear equation. The limiting case of 
incidence of the wave on a halfspace is considered and asymptotic solutions for the low-intensity waves are 
found. 

PACS numbers: 03.40.Kf, 42.65.B~ 

The problem of wave propagation in nonlinear media 
is of great interest, in particular, for nonlinear optics 
(see, for  example, Refs. 1-3) and electrodynamics of 
plasma. 4-7 In the simplest formulation of the problem 
of the self-action of a wave, generation of the various 
harmonics is not taken into account, and propagation of 
the wave is studied in a medium whose permittivity is 
determined by the intensity of the wave field 

the study of two aspects of the problem (2). The f i rs t  
aspect is connected with the investigation of the wave 
reflected from the nonlinear medium and the ambigui- 
ties arising therefrom,' and with hysteresis phenomena 
(the hysteretic phenomena were apparently f i rs t  noted 
by silin5). On the basis of various considerations, the 
authors obtain and analyze approximate expressions for 
the reflection coefficient o r  for the field inside the me- 
dium. 

The second aspect of the problem (2) is connected 
Here I(r) = u ( r ) ~ * ( r )  is the intensity of the wave field with researches on the effect of nonlinearity on Be pro- 
inside the medium. The wave field itself is described 

pagation of wave beams with narrow angular spectrum. 
by a nonlinear Helmholtz equation Substituting the field 

where 

k2=(fi'e&-', E (r, I ( r ) )  -Eo-'~*(r, I(r)).  

U (x, p) -A (2, p) e-jh 

in the expression (2) (the x axis is directed along the 
beam, p a re  the coordinates in a plane perpendicular to 
the x axis) and neglecting the term a 2 ~ / a x 2 ,  we obtain 

Equation (2) describes the stationary self-action of the parabolic equation of nonlinear quasioptics: , waves in a medium with the permittivity (1) for the 
scalar problem. The conditions on the boundaries of 2ikaA(z, p)laz=ApA (2, p)+kZe ( x ,  p; IA(z, p) I')A(Z, P) (3) 
the medium a r e  given, namely, continuity of the field with a specified initial condition at = This equation 
V ( Y )  and of i t s  derivative av(r)/an in the normal direc- is similar to the nonlinear Schr6dinger equation and 
tion. transforms at c = ck, p) into a parabolic equation that 

A large number of researches have been devoted to describes the propagation of waves in linear inhomoge- 
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neous media in the approximation of small-angle scat- 
tering. The results for the exact integration of Eq. (3) 
for the simplest statement of the problem a r e  well 
known (see, fo r  example, Refs. 8 and 9). 

Questions ar ise  a s  to the accuracy of the obtained ap- 
proximate solutions of problem (2), and also a s  to the 
conditions of their applicability and stability. It is 
clear that, for an answer to these questions, i t  is im- 
possible to limit ourselves to qualitative considerations, 
for example, in the transition from (2) to (3). I t  is ne- 
cessary to consider the complete problem (21, which is 
a boundary-value problem. 

Making use of the idea of invariant imbedding (see, 
for example, Ref. lo), i t  was possible in Refs. 11-13 
to develop a method for linear inhomogeneous media 
that permits a reduction of the initial problem to the 
Cauchy problem, and enables one to obtain a closed 
nonlinear equation for the reflected field. The wave 
field inside the medium is described by a linear equa- 
tion. This method is generalized below to the case of 
nonlinear media. The one-dimensional scalar Helm- 
holtz equation is considered in detail; the equations for 
the three dimensional case and the vector Maxwell 
equations a r e  discussed more briefly. The results 
make it possible to derive all  the approximate equations 
enumerated above, under certain assumptions. More- 
over, since the initial boundary-value problem is re- 
duced to the Cauchy problem, the equations obtained in 
the present work a r e  suitable for numerical analysis 
and solution of statistical problems. 

2. We f i rs t  consider the one-dimensional case, cor- 
responding to a plane-layered medium. Let the layer 
of the medium occupy part  of the space Lo c x  -'L and 
let a plane oblique wave 

be incident on i t  a t  the right. Here p is the radius vec- 
tor in a plane perpendicular to the x axis, q is the pro- 
jection of the wave vector on this plane, p2 = k2 - qZ,  k 
= n + iy  (the quantity y describes the damping of the 
wave). For an isotropic medium, we can assume with- 
out loss of generality that the vector q is directed along 
the y axis. We seek a solution of Eq. (2) in the form 

We obtain the following equation for the function u(x) 

6 u  (x)ldx2 + p" I+ E ( X ,  wZ(x ) )  ] u ( x )  =0, (4) 

where w = I v l 2  is the intensity of the incident wave, 

Z(x)  = u ( x )  ~ ' ( x ) ,  ~ = k ' p - ~ e  (x ,  w Z ( x ) ) .  

To the right and left of the layer, the field has the form 

u ( x )  =exp[ ip(L-x) , ]+R'(w)  exp[ ip(x-L)  1, x>L, 

u ( x )  =TL ( w )  exp(-ipx) ,  LO, 
(5) 

where R,(w) and TL(w) a re  the complex reflection and 
transmission coefficients of the wave; for simplicity, i t  
is assumed that the wave number k inside and outside 
the layer has the same value. From the conditions of 
continuity of u(x)  and dub)/& on the boundary of the 
layer, we obtain the boundary conditions for Eq. (4): 

U ( L ~ = U L - I + R L ( W ) ,  u r ( L )  = - i p [ i - R L ( w )  I=-ip[2-uLlr 

 LO) =TL(w),  u'(L0) =- ipTL(w) =- ipu(L,) .  
(6) 

The boundary value problem (4) and (6) is equivalent 
to the integral equation 

U ( x ;  L, W ) =  etptr.-x' +2 d x f  e i p l r - r . l  i r  ( x , ,  WI ( x , )  ) u (x, ;  L, W )  , (7) 
r. 

where I(x1) =Z(x';L, w) and the following additional vari- 
ables a r e  introduced in correspondence with the theory 
of invariant imbedding: L is the location of the right 
boundary layer and w is the intensity of the incident 
wave. 

We now differentiate Eq. (7) with respect to L: 

L' w). = i p e ~ p ~ L - z ~ + ~ e r n ~ L - s ~ ~  (L ,  w I ( L )  ) ( w )  + 2 ~ d x l e ~ p l * - ~ ~ l  
d L  2 

Lo 

a r (xr ,  W Z ( X ' ) )  a z ( z f )  + u (x'; L, 10) 
8 J (x') 

(8 
where u,(w) =u(L;L, w) is the field in the plane x = L. 
We set 

and choose the quantity a(L, w) in the form 

For  the function JI(x;L, w) we obtain the integral equa- 
tion 

We differentiate now Eq. (7) with respect to w: 

+ !!! f d x r e ~ ~ * - x ' l u ( x ' ;  L, w )  
2 w d l  (x' )  d  w  

La 

Equations (lo), (11) a re  outwardly similar; therefore we 
can connect their solutions by the linear relation 
$= b(L, w)au/aw, where the coefficient b(L, w) is de- 
scribed by the formula 

b ( ~ ,  w ) = w [ a ( L ,  w)+aS(L ,  w ) ] .  (12) 

Thus, the solution of Eq. (7) satisfies the equality 
Gc< L) 

a u ( s ;  L, w )  d a ( x ;  L, w )  
=a(L ,  w ) u ( x ;  L, w ) + b ( L ,  W )  

d L  dw ' 
(13) 

which can be regarded as a differential equation if we 
add to i t  the boundary condition a s  L - x :  

For  the function uL(w) we have 

The f i rs t  term on the right side of (15) is determined by 
Eq. (13), in which we must set x = L, and the second, 
by the boundary condition (6). As a result, we obtain 
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the closed nonlinear equation 

-- ip ~ u , ( w )  a u ~ ( W )  - 2 i p [ u L ( w ) - * 1 + - e ( ~ ,  W Z ( L ) ) U , ~ ( W ) + ~ ( L ,  w) -  a~ 2 aw 
(16) 

with the initial condition ULo(w) = 1 which follows from 
(7). 

Equations (13), (14), and (16) are completely equiva- 
lent both to the integral equation (7) and to the initial 
boundary value problem (4), (61, which is now reduced 
to the Cauchy problem. These are precisely the equa- 
tions of the theory of invariant imbedding for the given 
system. We note that if  we set x = Lo in Eq. (13), then 
we obtain the equations for the transmission coefficient 
of the wave 

The reflection coefficient- is equal to RL(w) =u,,(w) - 1. 
If the medium is linear, then the dependence on w dis- 
appears and the equations transform into those obtained 
earlier. "*I2 

If the permittivity does not depend explicitly on x, 
i. e., if 

then we can carry out in Eq. (16) the limiting transition 
Lo- -*, corresponding to incidence of the wave on the 
halfspace x < 0. We obtain then a linear differential 
equation of first order for the reflection coefficient 

aR ( w )  ip b ( w ) A = - 2 i p R , ( w ) - - - ~ ( w l i + R , I "  ( l + R , J Z  (18) 
aw 2 

with the initial condition R, =Ro at w = 0, and for the 
quantity Ro we have from (18) 4Ro +';(0)(1 =R,)' =0, 
i. e., 

The wave field u(x) inside the medium is described 
here by the linear equation (L - x -- -x) 

with the initial condition u(0, w) = 1 + R(w), where 

a(w)=ip+ipe(wI i+R, lZ)  ( i+R, ) /2 ,  b ( w ) = w [ a ( w ) + a * ( w )  1. 

At ';(O) =0, we have Ro=O and for a sufficiently low 
intensity of the incident wave (w -0) we can set '; 
=BkZp*w and seek a solution of Eq. (18) in the form 
R, (w) =kw; then 

In this case, b(w) = -2?w and it follows from Eq. (19) 
that [$= (p -p*)/2i] 

[ 
ikggw 

u (5 ,  W )  = ( 1  + HweaG) exp - ipz  + -- (1 - f l yx )  . (19') 
4w - I 

The case E(0) < 0 corresponds to the problem of the 
generation of an electromagnetic field in a plasma. 5*6  

Equation (18) should describe hysteresis phenomena as  
a function of the energy and angle of incidence of the 
wave. For example, in the absence of damping (y=O), 
i t  is easy to find a partial solution when R,(w) is real. 
Under these conditions b(w) = 0 and a transcendental 

equation for R,(w) follows from (18): 

4R,=-r[w(l+R,)" ( i+R,) ' .  

We then get from (19) 

Such a solution was investigated by Bass and ~ u r e v i c h ~ ;  
it corresponds to a situation in which a plane wave pro- 
pagates in a nonlinear medium. We note that Eq. (18) 
is valid for arbitrary damping of the wave and can be 
used conveniently for numerical analysis. 

The incidence of a wave on a layer of the medium (or 
halfspace) was considered above. Following Ref. 11, 
we can consider a case in which the source of the field 
is located inside a layer of the medium. Inasmuch a s  
such a problem is not of special interest, we shall not 
consider i t  here. 

3. We now-turn to the three-dimensional problem. 
We note that if a bounded beam is incident on a layer of 
the medium (Lo< x <  L), the problem remains three di- 
mensional even in the case in which the permittivity 
does not depend explicitly on the coordinates. The dif- 
ferential equation (2) is equivalent to the integral 

where Uoh ,  p) is the given incident field, (20) 

I ( z ,  p )=U(z ,  P ) ~ ( Z ,  PI,  g ( z ,  ~ ) ,==- (4nr ) - '  exp ( ikr) ,  

gb, p) is the Green's function in free space. 

We now consider the equation for the Green's function 
with a source at the point (L,po) in the case x 4 L: 

G(T pi L, pd=g(L-z ,  P-P.) -p {&I j41&?(z-zlr P - P ~ )  

X ~ ( ~ , , p , ; I ( ~ t , p l ) ) G ( ~ i , p ~ ; L , p e ) .  (21) 

Then the wave field U(x, p) is determined by the equation 

while the function f(po) corresponds to a distribution of 
sources in the plane x = L. Here 

u,(x.P)= ~ Q ~ ( L - z ,  p-p0)f(po) ,  

where W(pl, p") =f(p')f*(p"). 

The following integral representation is valid for the 
function g(L - x, p - po) at x s L: 

g(L-2, PA)-- jdqg(q)exp[i(k'-ql) 'h(L-z)  + I ~ ( P - P , )  I, 
g (q) = A/8ina(lc'-q') "; (24) 

it satisfies the equations (L >x) 

(a/aL)g(L-2,  p-p,) =i(kz+A,)"g(L-X, p-p,), 

(8IaL) g(L-Z,  p-P,) =i(ka+AP)"g(L-I, p-pol. 
, (25) 

We now introduce the function H(L, p, po) 
= G(L, p;L, po), which describes the field of the wave in 
the plane of the source. Equation (21) i s  analogous to 
Eq. (7) considered above, but in place of the wave num- 
ber b there is the operator (k2 + hp)"', and in place of 
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w, the function W(pl, p"); therefore, we can repeat the 
derivation of the equations of the theory of invariant im- 
bedding. The analog of the quantity a(L, w) is an inte- 
gro-differential operator, and the analog of the deriva- 
tive a/aw is the variational-differentiation operator 6 /  
bW(pl,p"). As a result, we obtain the relation 

(26) 
which can be regarded a s  the equation for the quantity 
G h ,  p;L, po), if we add the initial condition 

The operators ii, and 6 are  defined by the equations 
a,G(x,p; L, p,) =i(kz+A,,)'"G(x, p; L, po) 

-kl J+,G(x,P; L,P,)E(L,P,; z(L,P,) )H(L,P,.PJ, 

irp: p") =w(p l ,  p") (cip,+iip.r'). (28) 

For the quantity H(L, pi, p,) we have 

The f i rs t  term in the right side of (29) is determined by 
Eq. (26) a t  x = L, and to find the second term we must 
differentiate Eq. (21) with respect to x and set  s =L. 
Then, with account of (25), we obtain, denoting 
d o ,  P - PO) 'gb - PO), 

Consequently, (29) takes the form of a closed equation 

[alaL-i(kz+A,) "-i(kZ+A,)'"] H(L, p, p,) =-2i(kz+A,) "g(p-p,) 

-k2J ~ Q I H ( L ,  P, PI)E (L, PI; I(L, PI) ) I ~ ( L ,  P,, PO) (30) 

with the initial condition [which follows from (21)]: 

Equations (26) and (30), with the initial conditions (27) 
and (31), a s  well a s  the relations (22) and (28), corre- 
spond to the theory of invariant imbedding for the initial 
three-dimensional boundary problem. For a linear 
medium the dependence on W vanishes, and we arrive 
a t  the equations obtained in Ref. 13. 

We note that, in accord with (241, 
1 

g(p) = -(kz+A,) -'" 6 (p). 
2i 

(31') 

If the quantity c does not depend explicitly on the co- 
ordinates, we can, a s  above, consider the case in which 
the medium fills the halfspace x < 0. This is achieved 
by the limiting transition Lo - -m. In particular, for 
the function 

which describes the back-reflected field, we get the 
equation 

In the important case in which c = P I  and the intensity 
W of the incident field is sufficiently small, we can 
seek a solution of Eq. (32) in the form of a functional 
Taylor se r i es  in W. In first  approximation, 

and we obtain for the function Q the following operator 
equation: 
[ (k'+Ap)"'+(k2+A,)'C+(kZ+Ap~)"'- (k'Z+Ap~~)"'lQ(p', p", p, PO) 

=-ikzp dp,g(p1-p')g'(pl-p") ~ ( P , - P o )  ~ ( P - P , ) ,  (33) 

which is easily solved with the help of the Fourier rep- 
resentation in the variables p. 

We now consider the conditions under which the equa- 
tion of nonlinear quasi-optics (3) is obtained from the 
equations thus found. The wave field inside the medium 
is described by the equation (26) for the Green's func- 
tion, the coefficients of which and the initial condition 
a r e  determined by the back-scattered field in the plane 
of the source H(L, p, po). The function H(L ,p,p,) satis- 
fies the closed equation (30). The back scattering is 
due to the field &; therefore, if we neglect the integral 
term in the operator Zp, then the solution of the remain- 
ing equation has the form H(L, p, po) =g(p - po), which 
corresponds to the presence of only the incident wave in 
the plane x = L. 

Equation (26) then preserves i t s  form and the opera- 
tors a r e  determined by the equalities 

6,G (5, p; L, po) = i  (kz+Aa) '"G (x, p; L, po) 

-kZ ~ & , G ( x ,  P; L,PI)E(L,PI;  T(PL) ) ~ ( P I - P o ) ,  

b(pf, p") =W(p', p") (rip*+ ci,.,'), 

where 

T(p)= jdp, dpz ~ ( P - P I ) ~ ' ( P - P Z ) ~ ( P ~ >  PZ). 

As the initial condition (26) we use the equality 

G(x, P; L, PO) IL-=g(p-PO). (35) 

It is obvious that the linear equation (26) is now equi- 
valent to the integral equation 

which differs from the initial equation (21) only in the 
lower limit of integration. Consequently, the wave 
field (22) will satisfy the integral equation 

L 

fi(x, p) =U,(x, P)  -IL.' Jdx, Jdp ,g (~ -x , ,  p-P,)E (51, PI; z(xil P,) )  U(xl,  P,),  

(36') 
which describes the propagation of the wave forward 
and admits, generally speaking, of scattering at large 
angles (smaller, however, than n/2). The parabolic 
equation of quasi-optics (3) corresponds to the Fresnel 
expansion of the Green's function g(x, p) in Eq. (36'). 

Equation (36') can be rewritten in the form of an op- 
erator equation. Differentiating it with respect to x and where 
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using (24) and (311), we obtain 

a u ( ~ ,  p)/ax=-i(k2+~,) ' h U ( ~ ,  p) 
-'/zik~k2+Ap)-'"~(z, p; I(x, p)) U(z, p), U(0, p) =U,(p). 

4. We studied above the scalar wave equation. We 
now consider the incidence of a plane electromagnetic 
wave on the layer Lo < x < L of a nonlinear medium. 
Let (x, y) be the plane of incidence of the wave, and p 
and q the coordinates of the wave vector along x and y, 
s o  that k2 =p2  +q2. In this case, the problem is de- 
scribed by the Maxwell equations for the electric field 
E and magnetic field H. It is well known (see, for ex- 
ample, Ref. 14) that i t  suffices to consider only two po- 
larizations, when the field E of the wave is perpendicu- 
l a r  to the plane of incidence o r  parallel to it. 

In the first  case, the electric field E = [0, 0, ul(x)ekY], 
while the quantity u(x) satisfies the wave equation 

6ul&'+p2u (2) +kZe (x, w 1 u(z) I '),u (z) =O (37) 

with the condition of continuity of u(x) and dub)/& on 
the boundary. This equation is identical with Eq. (4); 
therefore, we can immediately use the results obtained 
above. 

In the second case, in which the electric field of the 
wave is parallel to the plane of incidence, i t  is more 
convenient to study the equation for the magnetic field 
H = [O, 0, ~ c ~ ~ ' ~ u ( x ) e  hy]: 

d'u e'(z) du ---- +p2u (z) +k2s (z) u (z) =0, 
d 2  l+e(z) dz 

where cf(x) =de/dx and v is the amplitude of the electric 
field in the plane of incidence. Then the quantities u(x) 
and [I + c(x)]"du/dx a r e  continuous on the boundary. 
Since, in the given case, 

i t  follows that 
W 

e.=e(z, IE12)=e z. au(z) 
( I ~ I ~ I * + E ~ I ~  [ I ~ u ( x ) I ' + ~ ~ ( ' ] ) .  (40) 

Here, a s  before, w = Iv 1'. By virtue of the boundary 
conditions on the boundary x = L, 

Setting x = L in (40) and substituting the values (41), we 
obtain a transcendental equation for the quantity c,: 

We proceed next a s  in the second section. Equation 
(38) is equivalent to the integral 

r, 

where the function g(x;x', w) is defined by the equality 

It is now easy to find the equations analogous to (13) and 

u4(w)=l. 

The coefficient of reflection of the wave from the layer 
is determined by the equation R,(w) =u,(w) - 1. 

If the medium occupies the halfspace x < 0 and c, does 
not contain an explicit dependence on x ,  then we can, 
with the help of the limiting transition Lo - -03, obtain 
an equation similar to (18) for  the reflection coeffi- 
cient: 

with the initial condition R,  = 0 at  w = 0, if c(0) = 0. 

Inthe casein which c = /31EI2, we obtainfromformula (40) 
a cubic equation for the quantity 6,. At low intensity of the 
incident wave (pw << 1) C, = Bw , and we can seek a solution 
of Eq. (47) inthe form R, = fiw. We thenget for the quan- 
tity fi the following equation: 

which is identical with (18') in the limiting case of graz- 
ing incidence p - 0, q -- k. 
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