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The problem of the decay of a weakly bound level (in the zero-range-potential model) in the presence of an 
elliptically polarized monochromatic field with an arbitrary degree of polarization ellipticity is solved using 
the formalism of quasistationary quasienergy states. Numerical results are presented for the strong-field case, 
and various limiting cases are investigated analytically and the results compared with those of earlier 
quasiclassical calculations. Simple expressions are obtained for the probability for N-photon ionization and 
for the corrections to it that determine the conditions for the applicability of the first nonvanishing order of 
perturbation theory. The effect of a static electric field on the decay of the system in the field of a nonresonant 
light wave is also examined, and it is shown that considerable enhancement of the decay is possible in the case 
of few-photon processes as a result of "tunneling from a quasienergy-state harmonic." 

PACS numbers: 41.10. - j, 32.80.Kf 

1. INTRODUCTION 

The decay of a system under the action of an intense 
light field plays an important part in many processes 
involving the interaction of laser  light with matter. A 
general treatment of the ionization problem with arbit- 
rary  relations between the properties of the wave and 
the characteristic parameters of the system turns out 
to  be extremely complicated, even for the simplest 
system capable of decay-a short-range potential well 
with a single bound level (a negative-ion model). Only 
the case of a weak low-frequency field (fiw<< E,, where 
E,  is the energy of the bound together with the 
special case of a circularly polarized wave,5a6 has been 
studied adequately. The methods developed in Refs. 
1-4 cannot be used to study decays in strong fields 
having "optical" frequencies t i r ~  5 E,, even if only be- 
cause they do not take account of the change in the posi- 
tion of the bound level due to the action of the field, 
which is not small in strong fields and substantially 
affects the level width (decay p r~bab i l i ty ) .~  

The study of quasistationary (decaying) states that 
ar ise  from discrete levels on exposing the system t o  a 
monochromatic field can be substantially simplified by 
using the quasistationary-quasienergy-state (QQES) 

which is a generalization of the usual 
quasienergy-state (QES) formalismg to a group of 
problems in which field broadening of the levels is  
significant. In this approach the position and width of 
the level a r e  determined in a unified manner a s  the 
real  and imaginary parts of the complex quasienergy 
c =Re& - ir/2, r/fi being the ionization probability per 
unit time in the exponential decay region.' In this paper 
we use the QQES formalism to solve the problem of 
calculating the complex quasienergy of a particle with 
a low binding energy (in the zero-range potential ap- 
proximation) in the field of a plane wave of arbitrary 
polarization.') Unlike the case of circular polarization, 
in which the problem reduces to a stationary problem 
in a rotating coordinate system,= the general case does 
not rule out a periodic time dependence of the Hamil- 
tonian, and the problem is essentially of quasienergy 
type from the very beginning. The solution obtained 
generalizes the results  of Refs. 1-4 to the case of 

arbitrary frequencies and strong fields, and thereby 
completely solves the problem of the action of an intense 
monochromatic field on a weakly bound system. The 
presence of an exact solution also made it possible to  
clarify the accuracy of the approximations used in 
Refs. 1-4 and to investigate the problems, which a r e  
important for practical applications, of the limits of 
applicability of the f i rs t  nonvanishing order of perturba- 
tion theory for the width of the level and of the depen- 
dence of the decay rate on the polarization of the wave. 

2. EQUATION FOR THE COMPLEX QUASIENERGY 
AND PERTURBATION THEORY 

The Schrb'dinger equation for the QQES wave function 

Y . ( r ,  t )  =e-"'"O.(r, t ) ,  cD ( t+Zn/o)  -0 ( t )  

for a particle in the potential U(Y) in the presence of the 
monochromatic field 

( 1  5 1 -C 1 is the ellipticity of the polarization) can be 
written in integral form as2) 

( t )  = J d t ' e - w ( l - " ' / " d r ' ~ ( ~ ,  t ;  I',  t ')  U ( I ' ) @ = ( I ' ,  t ' ) .  
r r, 

-- 
(1) 

Here G i s  the retarded Green's function for a free 
particle in the field F(t); it has the well-known form1' 

m [ r - r ' - a ( t ) + a ( t 8 )  J 2  
sc, ( I ,  t ;  r', t') = 

eF ( t )  - J' ) , a ( t )  = - - . 
2(t- t ' )  m a z  

I '  

As in problems on decay in a static field, an impor- 
tant circumstance that simplifies the problem for the 
case  of the zero-range potential 

is the well-known behavior1' of the function @&(r, t )  a s  
Y-0: 
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Here and below we use "Rydberg" units (e = m  =ti = 1). 
Energies a r e  measured in units of the binding energy 
IEo( of the unperturbed level in the potential well, and 
the field amplitude F is measured in units of Fo 
= J8m (E, [S/eE The relation 

U ( r )  Q, (r ,  t )  ---4n8 ( r )  f ( t )  

makes it possible to perform the integration over r' in 
Eq. (1) a t  once. Taking r - 0 in that equation and 
selecting the term proportional to r-' in the integra- 
tion over t' (in which it is convenient f irst  to trans- 
form from t' to the new variable T = t  - t') we obtain, 
with the aid of (3); the equation for c and the periodic 
function f ~ ( t ) :  

dt' - exp ( - iEt ' )  { f  ( t - t ' )  exp i S ( t ,  t ')  - f  ( t )  1, (4) ( f i - - l ) f ( t ) - ( 4 n i ) - * S  t,slz 

where 
S(t ,  t') asc1 (0, t ;  0, f - t ' )  

47' at' ly" 
= -sin2- [I-1 cos o (2 t - t ' )  I +  -sinot' cos w (2t - t ' ) ,  

02t' 2 0 
(5) 

E zY2 - E, 1 = (1 - t2)/(1 + t 2 )  is  the degree of linear po- 
larization of the field,13 and y2 =2F2/w2 o r ,  in absolute 
units, Y2 = Ep/ lEo 1, where E,= e2P/4mw2 is the average 
kinetic energy of the oscillations of the electron in the 
field. 

The substitution 

(which corresponds to a unitary transformation that 
eliminates the term proportional to A2 in the interaction 
V(r, t) eliminates the last term in (5) and somewhat 
simplifies the equation: 

The kernel of the integral equation (7) is periodic in T 

with the period T, = ~ / 2  =n/w; from this it follows that 
q(t) contains Fourier components of only one parity. 
This is due to the fact that &) is determined by the 
asymptotic behavior a s  Y - 0 of the s-wave part of 
9(r, t) alone and, according to the dipole selection 
rules, the kth and ( k  + 1)-th harmonics of Q, have op- 
posite parities and s o  only one of them can contribute 
to  cp(t). In a circularly polarized field ( I  =0) the space 
part of the kth Fourier component of @E(r,t) corres- 
ponds to the orbital angular momentum projection M = k , 
so only the Fourier component with k = O  contributes to 
p(t); this means that Eq. (7) has the trivial solution &) 
=const, which leads to a transcendental equation for E. 
It is  easy to verify that, in accordance with the ambiguity 
in the definition of the quasienergy, Eq. (7) has not only 
the solution {E, q(t)), but also the solutions 

{ E + k o ,  p ( t )  exp ( i k o t ) } ,  k-*I, * 2 , .  . . 
We eliminate this ambiguity in the usual manner by 
selecting the solution that reduces to the unperturbed 
solution (E = 1, p(t) = 1) for F = 0. 

Expressing q in the form 
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we obtain the following homogeneous equations for the 

Pk : 

where 

and, a s  can be easily verified, the M,, satisfy the rela- 
tions 

Using Poisson's integral representation of the Bessel 
function and calculating (9) by expanding the integrand 
in powers of y, we obtain for the Mok with k s, 0 the fol- 
lowing power ser ies  in y, which is absolutely convergent 
for al l  w t 0: 

Here ,F, is a hypergeometric polynomial. The values 
of the roots pk = m a r e  so chosen that the QQES 
function Q,,(r, t) in (1) will behave asymptotically a s  
outgoing waves in "open" channels (ReE> kw) and will 
damp out in closed channels (ReEc kw): 

Re pk>O when k > Re Elm, 
Im pk<O when k>Re Elm. 

The equation for E ,  

which follows from (8) i s  comparatively easy to solve 
numerically on a computer. Some results of such nu- 
merical  calculations a r e  presented in Fig. 1. While the 
level shift Re& + 1 remains quadratic in F up to F - 0.1, 
the width begins to  deviate from the power-law depen- 
dence ~ ( l t W + ' )  in considerably weaker fields F -F, ; 
moreover, F,, decreases with decreasing w. The 
ionization probability r i ses  substantially a s  1 is in- 
creased from 0 to 1 with fixed values of F and w. We 
note, further, that when y G 1 the functional dependences 
r ( F )  of I? on F for 1 = 0  and 1 = 1 differ considerably 
from one another (see Fig. 1) and that the deviations of 
r ( F )  from the power-law dependence se t  in at con- 
siderably lower values of F in a circularly polarized 
field than in a linearly polarized one (also see Sec. 4j. 

The matrix elements Mkn a r e  small when y is small 
(M,, - y2(1n-kl + 'n ,k)) and to investigate the dependence of 
E on the wave parameters one can use the following ex- 
pansion [the "Br illouin-Wigner series" for Eqs. (8)] : 
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FIG. 1. The level width r as a function of the field amplitude 
F. The full (dashed) curves are for linear (circular) polariza- 
tion of the field. Curves a, b, and c are for field frequencies 
w of 0.8, 0.4, and 0.3, respectively, and correspond to two-, 
three-, and four-photon ionization, respectively. ro is the 
width in  the first nonvanishing order of perturbation theory. 

When 1 = 0 we have Mkn - iikn and Eq. (12) reduces to the 
following equation for &, which was obtained earl ier  in 
Refs. 5 and 6: 

These equations a re  suitable for calculating the terms 
of the perturbation ser ies  

In particular, the expressions for E, and E, obtained 
from (12) a r e  the same a s  those obtained by direct cal- 
culations using QQES perturbation theorys (the amount 
of calculations required, however, is much less than 
when using the formulas of Ref. 8). When w G 1 / ~  the 
terms in the perturbation ser ies  (13) with n s N  a r e  real. 
When 1 / ~ <  w s 1/(N- 1) the quantity rN = - 2 1 ~ ~ 5 ,  is the 
probability for N-photon ionization in the first  non- 
vanishing order of F ,  and when w > l/(N - 1), rN deter- 
mines the correction to the width calculated in lower 
orders  in the field. Formulas for r, and r, will be 
found in Ref. 8, and an expression for r, is given 
below [ ~ q .  (2011. The expressions for rN become ex- 
tremely cumbersome for large N, but in that case one 
can devise an approximation that takes account of the 
presence of a small parameter: w << 1. We shall ex- 
amine such an approximation below. 

3. THE LOW-FREQUENCY CASE; COMPARISON 
WITH QUASICLASSICAL CALCULATIONS 

When F is small, the function At) in Eq. (4) is only 
weakly dependent on w, whereas the t dependence of cp 
may be strong when w e  1 [see Eq. (6)]. In place of 
Eqs. (8), therefore, it is convenient to  use the corres- 
ponding equations for the Fourier components of f (t): 

[(B+2lu)"'-l]t - 2 R,,,(B) f.. 
"--- 

(14) 

The f ikn  also satisfy relations (10) and, using Eq. (4), 
we can obtain an expansion of 5, (k 2 0) in a convergent 
ser ies ,  analogous to expansion (11): 

-21" (5) "'E (k!)'(k+2s)! 
M ~ ~ ( E ) = -  (- 

o2 
n-b*,~, S=O 

(n-2s) Is! (s+k) 1 

I.+k 
(nfk-p)  l(2nf2k-p) ! C ,,=o ( f ) (Is+*-p) ! (2n+2kr2p+l) 

r ,=0  11=0 
(15) 

(-.O'a[E+(r,+rr-n)u]n+L'+" 
(r,) ! (r2) I (2n+2k-p-rz) I (p-r,) ! ' '  

Although the expression for M, is more cumbersome 
than that for M,, when w is small  we can limit our- 
selves in the expansion analogous to (12) to the approxi- 
mation 

An estimate of the first  englected term shows that this 
approximation allows us to determine the N-photon 
width r, with a relative accuracy of -w/16 when w is 
small  (see (19) below). In  Eq. (4), approximation (16a) 
corresponds to setting f (t) = const and averaging the 
right-hand side with respect to t over the period T 
=2n/w: 

The accuracy of this approximation can be estimated 
by averaging, after f irst  taking account of the Stark 
effect on the adiabatic in f (t), i.e., writing 

This estimate again gives the relative accuracy of ap- 
proximation (16) a s  -w/16. 

Now let us examine the relation between the equations 
obtained above and the quasiclassical approximation.'-4 
When F<< 1,  we can put &=-i,  i.e., E = l  +y2,  on the 
right in (16) and take 

re2 Irn E--2 Irn(2M00+M0,') =4 Irn Moo (E-l+y2). 

To extract the imaginary part of &&, we do not use ex- 
pression (2) for the Green's function G(0, t; 0, t -tl) in 
(16b), but i ts  expansion 

in the wave functions cpp(r, t)exp(-i(p2/2m +~ , ) t}  for a 
f ree  particle in the field F(t). Then we expand cp,,(r=O, t) 
in a Fourier se r i e s  in t: 

Now, using the relation - P 
e'" d r 3 i  - +n6 (s) 

0 

we can easily perform the 7 integration in (16b) and 
extract the imaginary part. As a result, we obtain 

These expressions for r correspond to the initial for- 
mulas (10)-(15) of Ref. 4, where they were investigated 
in detail in the low-frequency (w<< 1) approximation 
where the integration in F,(p) can be performed by the 
saddle point method. 
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In the "antiadiabatic" limit y << 1,  the perturbation- 
theory expression fo r  the ionization probability for the 
case N>> 1 can be easily obtained from relations (15) 
and (16a) without introducing any additional e r r o r  due 
to the approximations involved in calculating F,(p).  
Thus, to  the f i r s t  nonvanishing order  in F we obtain 

where 

As follows from an analysis of the t e rms  rejected in 
deriving (16a), a?) i s  the f i r s t  t e rm in an expansion of 
t he  coefficients a, in powers of w ;  specifically, 

We note that even for N =3,  the difference between (18) 
and the accurate expression derived from (12), 

x [2( l -0)"-1-(1-20)"1,  

amounts to only -5%. 

For I = 0 (circular polarization) formula (18) becomes 
exact, 

and agrees with the expression obtained in Refs. 5 and 
6. As numerical calculations show, in a linearly polar- 
ized field it i s  convenient to  express I?, in the form 

r N ( z = i )  
= C ~ ( ~ / 2 3 w ' ) ~ R f ~ ( N - v ) .  (22) 

n-v 

FIG. 2. Frequency dependence of the parameters F,(N - v )  
and b N ( N  - 1 1 )  that determine the probability for N-photon ioni 
zation in a linearly polarized field for the case of 10-photon 
ionization (N = 10); f , i s  the result obtained in the first non- 
vanishing order of perturbation theory, and b N  i s  the correc- 
tion to it. 

Here f ,(N - v) determines the dependellce of I?, on the 
deviation of the frequency from the N-photon threshold 
[f (1) = 1] and C, is a numerical factor that remains 
virtually constant (C,= 2-3) for the values N -' 20 that 
we a r e  considering. The behavior of f ,  is  qualitatively 
the same  for  a l l  N. The graph o f f  ,=,, i s  shown in 
Fig. 2 a s  an exampre. 

As is evident from Eqs. (2 1) and (221, for large N the 
ionization probability r, is  considerably higher in a 
linearly polarized field than in a circularly polarized 
one, even in the most favorable case N - v = 1. We also 
note that the N dependence of r, for 1 = 1 differs sig- 
nificantly from the results  given by the quasiclassical 

in the antiadiabatic limit y << 1. In 
other words, in the limit in which the level decays via 
the multiphoton-ionization mechanism, the quasi- 
classical  approach correctly reproduces only the func- 
tional dependence of r on F: r-pN. 

4. LIMITS OF APPLICABILITY OF THE FIRST 
NONVANISHING ORDER OF PERTURBATION 
THEORY FOR THE LEVEL WIDTH 

The question of the l imits  of applicability of the f i r s t  
nonvanishing order  of perturbation theory for r is very 
important for the analysis of experiments on multi- 
photon ionization. As was shown in Ref. 10, the per-  
turbation se r i e s  in an alternating field is convergent, 
the radius of convergence F, in the low-frequency case 
being 

However, the critical field Fcr, which determines the 
condition fo r  the applicability of the f i r s t  te rm in the 
expansion of r, with respect to  F, depends on the rate 
of convergence of the se r i e s  and, generally speaking, 
is not the same a s  F,. The results  of the preceding 
section permit us to investigate this problem using the 
6-function well a s  an  example. 

The expression for the f i r s t  correction to r, follows 
from (15) with k=O: 

a r ,  a 
I-:" = [ 4 l m  R ~ + , ( E ) + ~ R . ( E ) - +  aE r Y - ( E , i ]  aE , (24) 

E =  I 

where R,-~'" is the nth te rm of expansion (15) with 
k = 0. has a simple form only in the case of a 
circularly polarized field. Writing 

and neglecting the last  t e rm in (24), which i s  small  a s  
compared with the preceding t e rms  for a l l  N >  1,  we 
obtain 

The b, for l =  1 were calculated numerically [F'ig. 2 
shows an example of the dependence of 6 ,  on (N- v)] 
and is was established that the N dependence of b, is 
weak when N 6 20 and that we may assume that 
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for all  v except for a narrow near-threshold region 
where N - v is close to zero. The conditions for the 
applicability of the f i rs t  nonvanishing order of pertur- 
bation theory for the imaginary part of the quasienergy 
in the case of ionization from a 6-function well follow 
from Eqs. (25). In a linearly polarized field we have 

i.e., here we have exactly the same parameter a s  
determines the radius of convergence (23) of the per- 
turbation series.  For a circularly polarized field it 
follows from (25a) that when (N - v) = 1 and N i s  large 
we have 

i.e., the critical field for large N decreases much 
faster for 1 = 0 than for 2 = 1. The difference becomes 
even more substantial when N - v is decreased. These 
results a r e  confirmed by accurate calculations (see Fig. 
1). 

Thus, the rate of convergence of the perturbation 
ser ies  depends not only on the nature of the specific 
system, but also on the wave parameters 1 and a. Thus, 
for a circularly polarized field when N 2 8 we have the 
inequality F; <F,, which follows from (23) and (26b). In 
fields such that F: < F <  F,, therefore, the correction 
r:) exceeds the value of rN given by the f i rs t  nonvan- 
ishing order of perturbation theory, although the entire 
perturbation ser ies  still converges. At the same time, 
in a linearly polarized field the violation of the condi- 
tions for the applicability of rp) means that perturba- 
tion theory cannot be used to calculate the level width 
when F 2l$. 

Let us make another remark concerning the applica- 
bility of perturbation ser ies  t o  the description of 
specific experiments. Since the value of rN a s  mea- 
sured experimentally cannot be smaller than a certain 
value r,,, because of instrumental factors, background 
effects, etc., there is a lower bound to the field 
strength F: 

On the other hand, rN falls off rapidly with increasing 
N [see Eqs. ( 2 1 )  and (22)] and the greatest permissible 
field strength (for a given frequency w) is FE = F, 
- (2~)-'''. Hence perturbation theory for rN cannot be 
used for a l l  values of N, but only for values smaller 
than a certain value N,, such that 

When N >  N, condition (27) i s  satisfied only for F > F,, 
so  perturbation theory is certainly not applicable to the 
description of actual experiments involving a high 
photon multiplicity N. Taking rm,,- 10-l5 IE, I a s  an esti- 
mate and using formulas (21) and (22) for a 6-function 
well we obtain N,= 10 for a linearly polarized field and 
N,= 8 for a circularly polarized one. The maximum 
value of N for which inequality (27) still holds is ,  gen- 
erally speaking, larger for atoms than for a 6-function 
well, since the value of I?, for atoms substantially ex- 
ceeds the value of rN for a short-range potential (for 

the same value of F/F,). This is also confirmed by the 
fact that ionization of atoms in fields of strength F s F, 
has been observed experimentally for values of N up to 
-20. Thus, we would expect deviations from the power- 
law dependence of rN on F to be observed at lower 
photon multiplicities N in experiments on the breakup 
of negative ions than in experiments on atoms. 

5. THE EFFECT OF AN ELECTRIC FIELD ON DECAY 
STIMULATED BY A NONRESONANT LIGHT WAVE 

The problem of decay in the presence of an additional 
static electromagnetic field can be treated in much the 
same way a s  the decay problem in the absence of a 
static field was treated in Sec. 2. The only complication 
is a somewhat more cumbersome expression for the 
Green's function G in Eq. (1). Thus, if the direction of 
the field vector .T of the static electric field is deter- 
mined by the angles 8 and cp in a coordinate system in 
which the z and x axes a r e  parallel to the wave propaga- 
tion direction n and to the major axis of the polarization 
ellipse of the wave, respectively, the equation for E 
will again have the form of Eq. (4), but with the follow- 
ing more complicated expression for S( t ,  t'): 

1 
S r ( t ,  t') =Ss,o(t, t') --9r2t" 

3 

" ( 
ot' 

+ - ~ i i c o s  w t + q , - - ) ( t , c o s - - - s l n -  . 1 , (28) 
0 2 2 0 2  

A=sin 0 ( l + l  cos 2 q )  ", t g  9 ,  = E  t g  cp. 

Expression (28) will be considerably simpler if the two 
fields a r e  orthogonal (A =0), and if, further, the field 
F(t) i s  circularly polarized, the equation for E reduces 
from an integral equation to a transcendental equation. 

The effect of a static field on multiphoton ionization 
was first  discussed qualitatively in Ref. 14. A quantita- 
tive treatment for the case of a short-range potential 
was given in Ref. 15 in the weak-field low-frequency 
(F<< 1, w<< 1) approximation, which, however, cannot 
be applied to  few-photon processes (w s I), for which 
the effects of a static field turn out to be most impor- 
tant. The use of an additional static field in experiments 
on the laser  spectroscopy of atoms leads to a substan- 
t ial  change in the characteristics of the resonant pro- 
cesses (e.g., in the ion yield in the case of ionization), 
especially when highly excited states, which a r e  easily 
disturbed o r  destroyed even by weak static fields, a re  
involved in the process. Such a scheme was used in 
experiments1' on selective ionization, in which high- 
lying levels a r e  populated by a sequence of resonant 
cascade transitions from the ground state. 

Analysis of the exact equations (4) and (28) shows that 
the application of a weak field 9 may considerably alter  
the ion yield even in the case of nonresonant ionization, 
provided the frequency of one o r  more of the laser pho- 
tons is close enough to the edge of the continuous spec- 
trum. Then decay can take place via the mechanism of 
"tunneling from a virtual state": an electron absorbs 
several (k) photons and tunnels in the field 7 with the 
energy ( E ,  + kw)< 0 close to the top of the barrier.  In 
QES language this mechanism implies tunneling from 
a QES harmonic. We emphasize that this mechanism 
can operate only in the presence of two fields-a high- 
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frequency field and a static field-having different 
amplitudes, and cannot operate when 3 = 0 ,  when 
tunneling and multiphoton ionization take place only in 
the mutually exclusive limiting cases y >> 1 and y << 1, 
and cannot interfere at all. 

The presence of terms corresponding to tunneling 
from QES harmonics in the expression for the total 
width r = 2  Im E determined by Eqs. (4) and (28) can 
be easily seen in the case F<< 1, in which the field F 
can be taken into account by perturbation theory up to 
the order N - 1 (by expanding the exponential in (4) in 
powers of y )  and the remaining integral over t' can be 
calculated by the saddle point method (provided I 
<< I ( N  - 1)w - 1 PI2). If, in the equations written below, 
we retain only t e rms  of the f i rs t  nonvanishing order 
in F, we can express the total decay probability r in 
the form 

N-I 

r=r, + zrh.r+rr 

Here r, is the multiphoton-ionization probability in the 
field F(t) (see Sec. 3), rr= 3exp( -$9)  is the tunneling 
probability in the static field 9 (for F = O ) ,  and the 
rk,r-pk a r e  "interference" t e rms  corresponding to 
tunneling with the absorption of just k < N  photons. The 
expression for rkertakes the simplest and clearest form 
in the case of circular polarization of the field F(t) and 
a static field 3 orthogonal to it: 

Here I c ( ~ ) I ~  represents the probability for populating 
the "virtual" state by the action of the wave field, and 
rr (E, + kw) represents the probability for its decay in 
the static field 9. Expressions analogous to (29) and 
(30) can also be obtained for a general potential well 
U(Y) by taking the light field into account by perturbation 
theory out to the (n - 1)-th order in the QES wave func- 
tion 

and then using the quasiclassical approximation to cal- 
culate the tunneling probability in the field 9. 

In the case of a nondegenerate initial (unperturbed) 
state qEo, the angular dependence of @(,)(r) can be ex- 
pressed as a superposition of spherical functions 
YL Jr) with 0 sL s k. The coefficient C P ~  - in (30) is 
determined for given L and M by the asymptotic be- 
havior as y-- of the kth harmonic @fL of the QES 
function (the projection of @"(r) onto Y,,): 
- 
@2 (r) -c;:)v8 k,L(r) Y'X(~) 7 

where *,,, YL, is the solution for the potential U(Y) for 
the energy &, = E, +kw that is regular at infinity and 
reduces to the normalized wave function for one of the 
r ea l  excited states when &, is equal to the energy of 
that state. r,(E, + k w )  is the probability for tunneling 
in the field 9- from the "virtual" state \k ,,,(r)~,,(r), 
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whose dependence on &,, L, and M in the field F is 
determined by well-known formulas, which a re  given 
for the Coulomb and short-range potentials, for ex- 
ample, in Ref. 3. We note that in the general case the 
probability amplitudes C& for ionization via states 
with different L and M values may interfere. The 
specific values of the angular momentum L and its 
component M in the direction of the static field that 
occur in the amplitude CPJ a r e  determined by selection 
rules that depend on the type of polarization of the 
field ~ ( t )  and on the mutual orientation of the fields [in 
particular, L = M  = k  in Eq. (SO)]. When &, i s  equal to 
the energy E, of a rea l  state, c(,) has a pole and r,,, 
reduces to the product of the probability for resonant 
population of the r ea l  level @,, and the probability for 
the subsequent decay of that level in the field F in 
accordance with the cascade mechanism investigated in 
Ref. 16. 

As an example, let us examine the breakup of the 
ground state of hydrogen in a linearly polarized field 
~ ( t )  whose direction makes the angle P with that of the 
static field 9. For simplicity we shall limit ourselves 
to the t e rm rKFwith k =  1;  this will allow us to investi- 
gate the most interesting case, in which the direct two- 
photon ionization channel r2 is open: 

Here the presence of the term proportional to Fsin20 
is associated with the fact that when 8 = ~ / 2  the angular 
momentum of the electron after the photon is absorbed 
has the projection M =i1 in the direction of the static 
field 9 while the tunneling probability is proportional 
to 91u1 . The presence of the factor Ik in Eq. (30) is 
associated with the same circumstance. The ionization 
is therefore most efficient when O =O. 

Let us estimate the enhancement factor for hydrogen. 
Typical values of for frequencies 1 - w = 0.012 
( ~ 1 3 0 0  cm-l) in the absence of resonances a r e  -102p.17 
At these frequencies, a s  follows from (31), v =9.1 and 
r,,,amounts to -1.0p in a static field 3 =45 kV/cm. 
In fields F- 10-3-10-4, which a r e  typical for nonreso- 
nant ionization experiments, the enhancement there- 
fore  amounts to 4-6 orders  of magnitude, i.e., to obtain 
a given number of ions by applying an additional static 
field 9 it is sufficient to use a field F that is 2-3 
orders  of magnitude weaker than would be required in 
the absence of a static field. The difference between 
(F:. and (F)F=o obviously becomes less important in 
th6 many-photon case N>> 1 in which rN-13-~N-2 
(since a considerable increase in I?, can be achieved 
by a small  change in F); hence the mechanism under 
discussion is most effective for few-photon processes. 

"Some of the results of this paper are included in an earlier 
note.'' 

2 ) ~ h e  interaction with the field i s  taken into account in the 
dipole approximation. 
- - 
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Interference of synchrotron radiation of relativistic electrons, which is synchronized consecutively by the 
particle beam itself at two points separated by a long straight gap is investigated. The spectral and 
polarization-angular characteristics of the radiation are studied. Satisfactory agreement between theory and 
experiment is obtained. It is shown that the interference of synchrotron radiation in installations in which the 
magnetic field drops off sharply in the straight gap, and in which the electron beam has a small variance of 
the angular spread of the particles, can be of independent si&cance, on top of synchrotron and wiggler 
radiation, for the solution of many scientific and applied problems. 

PACS numbers: 41.70. + t 

INTRODUCTION 

In e ~ ~ e r i m e n t s " ~  on the  properties of wiggler radia- 
tion (WR) of relativistic electrons i n  a magnetic wig- 
g le r  mounted in one of the  s t ra igh t  sections of a syn- 
chrotron, it was  noted that the  synchrotron radiation 
(R) of the  particles in t h e  s t r a y  magnetic f ie ld at the 
entrance and  exit of t h e  s t raight  gap of the  accelerator 
constitute a n  undersirable  "background" i n  the  obser-  
vation of t h e  polarization- angular  c h a r a c t e r i s t i c s  of 
t h e  WR (especially at high electron energies) .  A m o r e  
detailed investigation of th i s  background has revealed 
t h e  effect of interference of synchrotron radiations 
(ISR) in the region where  the radiat ion of the  electrons 
f r o m  the  f a r  and near  ends of t h e  s t raight  gap  of the  
synchrotron overlap. T h e  radiat ion f r o m  t h e s e  ends 
of the  gap  can b e  represen ted  as t h e  radiation of two 
quasi-pointlike SR s o u r c e s  the  distance between which 
is L (comparable with the  length of the  gap), synchro- 
nized successively by the  electron itself,  which moves 
with velocity v = P C  (c is the  speed of light). 

The  propert ies  of SR are particles moving along a 

closed circle w e r e  investigated in  sufficient detai l  both 
t h e ~ r e t i c a l l ~ " ~  and  e ~ p e r i m e n t a l l ~ . ~ "  It turned out, 
however, that  the radiat ion of t h e  e lec t rons  in the  di- 
rection of the  s t raight  gap has cer ta in  s ingular i t ies  
connected with t h e  in te r fe rence  of t h e  radiation. No 
attention w a s  paid t o  t h i s  c i rcumstance  before, and t h i s  
question remained  uninvestigated. Interest  in lSR is 
r a i s e d  also by the  fac t  that at the  presen t  t i m e  m o r e  
and  m o r e  attention is being paid to the  u s e  of s t ra igh t  
gaps  of electron synchrotrons and  s to rage  rings in or- 
d e r  to place i n  them spec ia l  magnetic s y s t e m s  (e. g., 
wigglers), and to genera te  in t h e s e  sys tems ,  by a 
relativistic electron beam, radiat ion that  can  b e  used  
together  with SR to solve a large group  of scientific and  
applied problems.  It is clear that  i n  such  investiga- 
t ions the ISR mus t  also b e  taken into account. T h i s  
article presen ts  the r e s u l t s  of a n  investigation of the  
ISR phenomenon. 

1. EXPERIMENTAL PROCEDURE AND SETUP 

T h e  ISR w a s  experimental ly  investigated with the  
1.5-GeV "Sirius" electron synchrotron,' whose s t ra igh t  
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