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The influence of the Coulomb energy on the superwnducting-transition temperature in granulated materials 
is investigated. A microscopic analysis yields an effective Hamiltonian that depends on the number of 
particles and on the phase as the variables. A study of the system described by this Hamiltonian shows that at 
zero temperature there exists a critical value of the Josephson energy, of the order of the Coulomb energy, 
below which superconductivity is impossible. At nonzero temperature the Coulomb interaction is screened 
and superconductivity is possible at lower values of the Josephson energy. A sufficiently high temperature 
enhances the fluctuations and destroys the superconductivity. It is shown that at low values of the Josephson 
energy the system is an insulator in the region where the superconductivity is destroyed. 

PACS numbers: 74.10. + v, 74.40. + k 

1. INTRODUCTION 

Granulated material, meaning a system of metallic 
grains coated with an insulator layer, i s  presently the 
subject of intensive investigation. Depending on the 
material, the size of the grains can range from several 
dozen to several tens of thousands angstroms. The 
small thickness of the insulator enables the electrons 
to tunnel from one grain to another. This tunneling 
determines the property of the entire material. At 
low temperatures, the electron-phonon interaction 
leads to formation of a superconducting gap in each 
grain. This, however, does not produce a phase transi- 
tion in an isolated small grain.'" Only the tunneling 
of the electrons from one grain to another can cause a 
phase transition and the onset of superconductivity in 
the entire   ample.^ Of extreme importance in this 
case is the Coulomb interaction of the electrons, For 
one electron to transfer from one grain to  a neighbor- 
ing one, the energy required is of the order of 8 / d ,  
where e is  the electron charge and d is the grain di- 
mension. If the grain is  small, this energy can be- 
come larger than the grain binding energy. According 
to a qualitative analysis presented in Ref. 9, super- 
conductivity is impossible a t  this energy ratio. We 
report below an investigation of the feasibility of a 
superconducting transition a t  various relations between 
the Coulomb energy, the grain binding energy, and the 
superconducting gap width. The analysis i s  carried 
for the case when the grain dimension is smaller than 
the radius of the Cooper pair. It is assumed a t  the 
same time that the distance between the energy levels 
in each grain is less than the size of the Cooper gap. 
This imposes a lower bound on the grain size. The 
partition function is calculated by continual integration 
with respect to the order parameter. It turns out that 
the fluctuations of the modulus of the order parameter 
a re  small in a wide range of temperatures. Only the 
phase fluctuations a re  substantial. The functional of 
the free energy is derived. It depends on the phases 
and includes the Coulomb interaction. Averaging with 
this functional yields the thermodynamic and kinetic 
quantities. It is shown that even a t  zero temperature 
a superconducting transition is possible only when the 
Josephson energy exceeds the energy needed by the 

electron to leave the grain. When the coupling constant 
is decreased, the superconductivity is destroyed and 
the system goes into the dielectric state. At nonzero 
temperature, a screening of the Coulomb interaction 
by the charged excitations i s  possible. This leads to 
the existence of superconductivity in the region of lower 
Jose~J-son  energies. When the coupling constants be- 
tween the grains a re  large, the transition temperature 
is close to the value calculated in the BCS approxima- 
tion. In this region, the Coulomb interaction becomes 
completely negligible and the superconductivity limit 
is  determined only by the Josephson energy. 

2. CHOICE OF MODEL 

We consider a system of metal grains. The electrons 
in each grain interact via phonons. In addition, the 
electrons a r e  subject to Coulomb repulsion. The insu- 
lator film that c a t s  each grain can be described by 
introducing a potential barrier that prevents free mo- 
tion of the electrons from one grain to another. The 
Hamiltonian fi of such a system i s  

where Do =e2/l r - r'l and e is the electron charge. 

In the Hamiltonian (I), the operators J,:(r) and J, ,(r) 
denote respectively the operators for  the creation and 
annihilation of the electron with spin o! at the point r. 
The first  term in (1) describes the electron kinetic 
energy reckoned from the Fermi energy &,. The quan- 
tity V ,  describes the interaction via the phonons. In 
addition, this quantity includes the short-range part of 
the Coulomb repulsion. The third term in (1) describes 
the action of the external potential due to the presence 
of the dielectric coating. The last term in (1) takes in- 
to  account the long-range part of the Coulomb inter- 
action. The integration is carried out a t  distances 
larger than A. The quantity A is the cutoff parameter 
that satisfies the relation p;' <<A <<d, where p, is the 
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Fermi momentum and d is the characteristic dimension 
of the grain. 

The thermodynamic quantities a r e  expressed in the 
usual manner in terms of sums over the states of the 
Hamiltonian H. For  example, the free energy t2 is 
given by 

fXl=-ln Sp exp (-PI?), (2 

where 6 =1/T is the reciprocal temkrature .  

It is convenient to  use in the calculation by means of 
(2) the method of integration over an auxiliary field.'' 
This method was used to describe isolated grains? 
The integration in Ref. 7, however, was carried out 
only over static fields. To consider the influence of 
Coulomb interaction, account must be taken of the 
time-dependent fields. The usual transformations 
yield 

$a=-lnS exp (-&Ti&, Af])DA(r, z)DAe(r,  T) .  (3) 

The free-energy functional that enters in (3) is writ- 
ten in the form 

X exP (- j i i . , ( T )  dr)  exp (- 'A(r*') " dr dT 
0 0 Vo ) -  

where 

T, denotes the chronological operator. 

The term A,, in (4) describes the long-range part 
of the Coulomb interaction and i s  equal to 

where 

The continual integration in (3) will be carried out 
separately with respect to  the modulus and with respect 
t o  the phase of the external field A. The dependence of 
the free-energy functional F[A, A*] on the modulus 
1 is a strong one in a wide range of temperatures and 
the integration can be carried out by the saddle-point 
method. We use for the calculations the Green's- 
function formalism employed in superconductivity 
theory. Introducing the normal and anomalous Green's 
functions G(r, r', 7) and F(r, r', 7) defined by 

G(r, r', .c)=(T,$,(r, O?$++(rl, T)) ,  

F(r,  r', T) =(Tx$,(r, O)$+ (r', 7 ) )  
(7 

and neglecting the term H,, in the Hamiltonian, we ob- 
tain the equations 

(alar-V,z/2m-e,+ll(r) ) G (r, r', T) 
-A (r, T ) P  (r, rr, T) =6 (r-r') 6 (T) , 

(-a/ar-V,'/2m-ea+U(r))F'(r, r', z )  +A'(r, z)G(r,  r', z )  =O. (8) 

Assuming the dependence of on 7 to be slow and 
minimizing [A, A*] with respect t o  1 A I ,  we obtain a 
third equation 

A (r) = v z ( ~ ,  rl) . (9) 

Equations (8) and (9) constitute the system of 
Gor'kov's equations. The only difference in the case of 
a homogeneous bulk superconductor lies in the presence 
of the external potential U(r). If this potential is large 
enough, then the solution of the system (8) and (9) re- 
duces to a solution of the corresponding system in the 
isolated grain. Integration with respect to  the momenta 
is then replaced by summation over discrete levels. 
If the grain is not perfectly spherical, the distance 
A E  between the levels is determined by the formula 

where N(0) is the density of the states on the Fermi  
surface and V is the volume of the granule. 

At sufficiently low value of AE ,  the summation over 
the levels can be replaced by integration, and we arrive 
a t  the usual BCS formula 

Replacement of the sum over the discrete levels by 
an integral is legitimate if 

where T,, is the temperature a t  which the solution f i rs t  
appears in (1 1). 

The appearance of a nonzero solution in (11) does not 
mean a phase transition in the isolated granule, since 
allowance for  the fluctuations smears  out the singu- 
larity. The fluctuations of the modulus of the order 
parameter turned out to be small under the following 
condition 

These fluctuations were considered in Refs. 6 and 7. 
The condition (13) shows that when the inequality (12) 
is satisfied there exists an extensive region of tem- 
peratures, in which the fluctuations of the modulus of 
the order parameter a r e  small. The analysis that fol- 
lows will pertain precisely to this region. Equation 
(11) was derived without allowance for  the long-range 
part  of the Coulomb interaction and without allowance 
for the jumps from grain to  grain. This neglect is 
legitimate if the frequency T i j  of the jumps from one 
grain to  another exceeds the Coulomb energy E ,  that 
appears when the number of electrons in the grain is 
decreased by unity: 

where Sij is the area  of the contact between the i-th 
and j-th grains. The square of the jump frequency 
I Ti,12 is proportional to the coefficient of the penetra- - 
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bility through the barrier.  This coefficient is assumed 
to  be small. When condition (13a) i s  satisfied, the sys- 
tem of granules in the absence of superconducting pair- 
ing would be a normal metal. In the opposite limiting 
case, a Mott transition would take place and the system 
would become an insulator. The condition (13a) is here- 
after assumed satisfied throughout. 

Equation (11) determines the modulus of the order pa- 
rameter, but not its phase. Therefore the dependence 
of the functional 9 [A, A*] on the phase is  a slow one. 
In the next section this functional will be reduced to a 
simpler form. 

3. DERIVATION OF THE FREE-ENERGY FUNCTIONAL 

To simplify the functional 3 [ A ,  A*] defined in (4), in 
which the modulus of the order parameter is fixed, we 
neglect for the time being the coupling between the 
grains. Only slow changes of the phase will be of im- 
portance hereafter. We therefore expand the functional 
F [ A ,  A*] (4) in terms of the deviations of the phase: 

0 

pT[A, A']=pFo+1/2 J j dr dr' drdr' @(r, r', ~-r')(p(r, r)q(r1, r ' ) ,  (14) 
0 

where 

0 (r, r', T-T') =6'516q (r, r) 6q (r', r') . 

Yo in (14) is the equilibrium part. There a r e  no 
terms linear in cp, since the expansion is about the 
equilibrium position. Carrying out the functional dif- 
ferentiation in (4), we obtain 

'I2@ (I, r', r-T') =A;F(O, 0)6 (r-r') 6 ( ~ - r ' )  
-(T,$,(r, t )$+(r ,  ~ ) $ + + ( r ' ,  r1)$,+(r', TI)) 181' 
-(TT@,(r, r)  @+ ( r ,  T) +'(rr, 7') $, (r', T') )Ae2, (1 5) 

The averaging in (15) is  over the states of a Hamil- 
tonian that includes a term fiht that describes the long- 
range Coulomb part. Only connective graphs a r e  taken 
into account. 

We calculate the mean values in (15) by perturbation 
theory, expanding the powers of Hh,. The main con- 
tribution can be taken into account in the random-phase 
approximation. The quantities QI a r e  determined from 
the following equations: 

The indices of the variables in (16) designate the num- 
ber of the grain. The integration is over each grain. 
The quantity QI,(r, r' ) denotes the Fourier component of 
@ ( r , r l ,  T -  T') with respect to time. The functions 
lT,,(cu =1,2,3) a r e  equal to 

where G,(r, r ' )  and F,(r, r ') a r e  determined by Eqs. 
(8). If the potential barr ier  is high enough, the func- 
tions G ,  (r, r ') and F,(r, r') differ substantially from 
zero only when both arguments, r and r', a r e  located 
in the same grain. This circumstance i s  reflected in 
Eqs. (16). 

The condition that the probability of electron jumps 
from grain to  grain be small  is  written in the form 

where T i ,  is the jump frequency referred to unit area. 
This frequency can in principle be expressed in terms 
of the potential U(r). We shall not need, however, the 
explicit form of this relation. 

The inequality (17) is the upper bound of the jump 
frequency. It is assumed a s  before that the lower bound 
(13a) is  satisfied. The condition (13a) allows us to 
neglect the influence of the Coulomb interaction on the 
form of the Green's functions in (16) and (16a). 

In the considered approximation d << to, where to is 
the dimension of the Cooper pair, a substantial con- 
tribution to the physical quantities is  made only by 
configurations in which cp(r ') is  constant over the en- 
t i re  volume of the grain. The lowest nonzero harmonic 
has  an energy (5,/d)' times larger than the charac- 
terist ic energy of the superconductor. Therefore the 
contribution of the nonzero harmonics can be disre- 
garded. The free-energy functiona1 (14) contains only 
the quantity Q i j :  

To solve Eqs. (16) we use the fact that the charac- 
teristic distance over which the functions II,,(r, r') and 
n,,(r, r') decrease is of the order of p;', This distance 
is much smaller than the distances over which D(r - r ' )  
changes. We can therefore integrate in (16) directly 
with respect to the rapidly varying functions. The in- 
tegration yields 

n, (rz) =az6,,-ar D (r'-I,"') n, (r?"') dram, C I (1 9) 

where 

02a, = j II,. (ri, rfi)dr", o a ~  = j II,,(r', r") dr", 

We solve the second equation of (19) by successive 
approximations. The zeroth approximation nfo)(ri) i s  
taken to be the solution of this equation without the 
left-hand side: 

It is difficult to solve (21) in explicit form. We note, 
however; that this equation describes the classical 
electro-static problem. The solution nfo) is the dis- 
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tribution of the charges over different granules that 
produce a potential 4/e2a, part of the grains and a 
zero potential a t  a l l  the remaining ones. Therefore the 
integral of n?)(r') over the grain can be expressed in 
terms of the capacitance matrix C,,: 

Calculating the f i rs t  correction to nj'"(ri), sub- 
stituting the obtained solution in (19), and using (22) 
we reduce Eq. (19) for  cP ,,, to the form 

where N is the density of the Cooper pairs, and p is 
the energy of the pair on the Fermi surface. The func- 
tion A(T) determines the relative number of super- 
conducting pairs: 

In the derivation of (23) we used the inequality 
v, Cij/e2V,p:<< 1, This inequality ensures smallness 
of the corrections when Eqs. (19) a r e  solved by suc- 
cessive approximations. In addition, it was assumed , 
that the frequencies w a r e  much smaller than 
T,(w<< T,). At zero temperature a l l  the electrons a r e  
paired and X(0) =I. 

In this case @,,, is inversely proportional to  the 
Coulomb energy. At nonzero temperature, the "normal" 
electrons screen the Coulomb energy and increase Qr,, 

strongly. This screening is possible if condition (13a) 
is satisfied, when the "normal" electrons can flow over 
freely from grain to grain. 

Expressions (14), (18), and (23) determine the func- 
tional of the phase in the zeroth approximation in 
Tij/cFP:. Allowance for the next-order approximation 
leads to the appearance of Josephson terms. By means 
of the usual calculations" we obtain 

" 

In (24), B i j  is the matrix inverse to QrijW/w2. The 
Josephson energy J,, differs from zero only for the 
nearest neighbors and is expressed in terms of the 
junction resistance R i j  in the normal state: 

Y[cp] (24) by summation with-respect t o  the eigenstates 
of the effective Hamiltonian Herr :la 

H~~ =z [ 1 1 2 ~ i ~ I ~ j + J ~ , ( l - c o s  (cpl-cpt) ) I ,  
I j  

where the operator 6, is given by 

The operators ii a r e  the operators of the number of 
the Cooper pairs in the i-th grain. The eigenvalues 
of the operators ii a r e  integers. The f i rs t  term in the 
Hamiltonian (26) describes, with allowance for the 
screening by the normal electrons, the electrostatic 
energy that results from pair production on the grains. 
With the aid of the Hamiltonian (26) we shall investigate 
in the next section the thermodynamics and the response 
to an electromagnetic field. 

4. PHASE TRANSITION 

In the preceding section, the distribution of the quan- 
tities B i j  and J i j  was assumed arbitrary. We assume 
henceforth that the system is regular and the quantities 
depend only on the difference li - j l .  To investigate the 
properties of the system we use the self-consistent- 
field method. Replacing the interaction in (26) by the 
average field 

and determining the phase-transition point from the 
condition that a nonzero value of (coscp) appear, we ob- 
tain the equation 

where 

In Eqs. (28), the averaging is over the states of the 
f ree  Hamiltonian k?L$ : 

The eigenfunctions of the Hamiltonian (29) can be 
written in the form 

The order of magnitude of Jij is described by the rela- 
t ion 

The factor in the parentheses in (25a) is much less 
than unity and therefore the ratio of the Josephson and 
Coulomb energies can be arbitrary even if condition 
(13a) is satisfied. 

Equations (3) and (24) enable us to calculate the 
thermodynamic quantities. It is more convenient to 
replace the continual integration with the functional 

The numbers 1 ,2 , .  . . , N  in (30) label the grains. The 
function $,. . .,N should be periodic with a period 2n. 
From this condition it follows that n,, n,, . . . , n, a r e  
integers. The wave function (30) describes a state in 
which ni particles a r e  located on the i-th grain. 

Using (26a) and (28)-(30), we reduce the correlator 
II (7) to  the form 

where Z is the partition function 
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Expression (31) is valid a t  not very high tempera- 
tures: T<< T,,. Near T,, only the term with zero en- 
ergy is significant in (23) and (24). In this case all  the 
formulas become classical and the correlator lI (7) is 
equal to unity. 

At zero temperature, only the state with uncharged 
grains makes a contribution (all n, =O). In this case the 
correlator II (7) is equal to 

The correlator n(7) is defined on the imaginary-time 
axis. In real  time, the correlator is described by an 
exponential of an imaginary argument. This means 
that the phase of an isolated granule rotates, on the 
average, with angular velocity Bll/2 equal to the energy 
of a state with one pair. 

Calculating the integral of the correlator H(T) (31), 
we reduce (28) to the form 

At zero temperature we obtain the value of J, at  which 
superconductivity appears: 

At J<J,  no superconductivity is possible. This con- 
clusion was arrived a t  qualitatively in Ref. 9. 

Equation (34) can be interpreted a s  a Mott transition 
for the Cooper pairs. The Josephson energy assumes 
the role of the width of the band. If this width is less 
than the Coulomb energy, the superconductivity is 
destroyed and, as will be shown in the next section, 
the system becomes an insulator. The unpaired elec- 
trons, which appear a t  nonzero temperature, can then 
flow freely from grain to grain, since the condition 
(13a) is assumed satisfied. 

Equation (33) contains the quantities B, ,, which a r e  
proportional a t  low temperatures to the elements of the 
inverse of the capacitance matrix. If the grains a r e  
close-packed s o  that the distance between them is much 
less than the dimension d of the grains themselves, 
then the order of magnitude of the element B,, is given 
by' 

where E, is the dielectric constant of the medium be- 
tween the grains. The quantity B,, can be both larger 
and smaller than T,,. We consider f i rs t  the case of 
small Gij(Bij << T,,,),. At low temperatures T <<Bl,, and 
an appreciable contribution to (33) is made, besides 
the ground state, only by the lowest excited states. 
The lowest excited state in the considered system i s  a 
dipole consisting of charges +1  and -1 located on 
neighboring grains. The position of the dipole in space 
can be arbitrary. Taking the contribution of one dipole 
into account, we obtain from (33) 

where E,  =B,, - B,, is the dipole-excitation energy. 

In (35), the summation over i is carried out over the 
nearest neighbors with respect to  j .  The quantities 
B, ,  were taken a t  zero temperatures, where they a re  
inversely proportional to  the capacitance matrix. The 
summation in (35), fo r  the case of close packing of the 
granules, can be carried only numerically. At large 
distances, the function B,, decreases by li - j(-', s o  
that the sum converges. The entire factor preceding 
the exponential in (35) is of the order of unity. In the 
considered case of close packing, a l l  the terms in the 
sum preceding the exponential in (35) a re  positive, and 
therefore the entire factor is positive. This means 
that for  superconductivity to  set  in when the tempera- 
ture is  increased it is necessary to have lower values 
of J. This effect has a simple explanation: a low tem- 
perature "shakes up" the phase little, but leads to ex- 
citations that screen the Coulomb interaction. The 
weakening of the Coulomb interaction facilitates the 
penetration of the Cooper pairs from grain to  grain 
and this, in turn facilitates the onset of superconduc- 
tivity. 

If the distance between the grains i s  much less than 
the grain dimension, then the off-diagonal quantities 
B,, with i* j a r e  much less than the diagonal Bij. In 
this case the lowest excitation is the appearance of a 
charged Cooper pair on one of the grains. For such a 
system we get from (33) 

In a system consisting of widely spaced granules, the 
screening is ineffective and therefore a rise in tem- 
perature leads to a weakening in the superconductivity 
(36). A diagonal Hamiltonian with B,, =O a t  i =j  and Bii  
independent of temperature was postulated in Ref. 13. 
To investigate the Hamiltonian, the approximation (27) 
was made, after which the self-consistency equation 
was derived. The equation obtained in Ref. 13 differs 
from (36), although the employed approximations a re  
the same. On the basis of the equation introduced in 
Ref. 13 it was concluded that in the case of a diagonal 
Hamiltonian the superconductivity becomes stronger 
when the temperature is raised. This statement is  
apparently the consequence of a computational error .  

In (36) the off-diagonal terms were completely dis- 
carded. However, the Bi j  decreased slowly a s  
li - jI-%. As a result, the contribution of the single- 
particle excitations in (33) is formally divergent. The 
summation of the diverging terms can be carried out 
by the Debye-Hiickel method. Estimates of this con- 
tribution showed that it contains exponentials with 
higher arguments than those written out in (36). 

At high temperatures T >> B,, the correlation function 
that enters in Eq. (28) for T, can be replaced by unity. 
We then obtain the classical formula 
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At sufficiently high jump probability, the temperature 
of the transition is close to T,. In this case Eq. (37) 
is also applicable if the temperature-dependent expres- 
sion (25) is used for J. Combining the formulas in (35) 
for the case of close packing with formula (37), we can 
qualitatively draw the entire phase diagram. Such a 
diagram is shown in the figure. In the considered 
region Bl,<<T, the quantity J,, is of the same order 
as J, In the region between J,, and J,, two tempera- 
ture phase transitions take place. 

The phase diagram is much more strongly influenced 
by the screening in the case of strong Coulomb inter- 
action Bll(0)>>T,. At low temperatures, only single- 
electron excitations above the superconducting gap a re  
significant. Excitation of pairs above the Coulomb gap 
requires a high energy. Using (34), in which the quan- 
tities J and B,, must be taken a t  finite temperature T, 
we obtain a t  low temperatures 

Expression (38) is valid s o  long a s  the second term 
is much less than the first. The quantities B,, and 
J(0) a r e  determined respectively by Eqs. (23). (25), 
and (28a) taken at zero temperature. Expression (38) 
shows that this region a t  low temperatures the ap- 
pearance of superconductivity is facilitated when the 
temperature is raised. At T,Z T, ,  the classical formu- 
la (37) is applicable, with J assumed temperature- 
dependent. The quantity T,, determines the tempera- 
ture of the transition from the quantum region to the 
classical region, and is obtained from the relation 

In order of magnitude we have 

The quantity J,, (O), which determines the smallest 
jump amplitude a t  which superconductivity is possible, 
is of the order of T,,. In the considered region 
B,,(O)>>T, the value of J&(O)-TCl is much less than 
that of J,(O) -Bll(0). Therefore in the case of B,,(O) 
>> T, two phase transitions can take place in a very 
wide range of J. 

All the calculations a r e  valid a t  sufficiently low jump 
probabilities, such that the inequality (17) is satisfied. 
From this inequality we obtain the value J,i,, above 
which the developed theory is not valid: 

where S is the junction area. 

We have investigated the phase transitions s o  f a r  
within the framework of the self-consistent field (27). 
This analysis does not prove the existence of the transi- 
tion. To check on the statements made, we calculate 
((p2) in the superconducting region a t  T =O. Simple cal- 
culation yields for J>>Jc=B,,/2 

Expansion a t  small J yields an expression for the free 
energy a: 

where Y is a number of the order of unity. 

Formulas (43) and (44) shows that the self-consistent- 
field approximation gives the correct order of magni- 
tude of the critical Josephson energy J, 

In the superconducting region a t  J >> J,, owing to the 
smallness of the fluctuations of the phase, we obtain 
the usual formula of the current through the junction: 

where A i s  the vector potential and c is the speed of 
light. 

In the opposite limiting case J<<J, the fluctuations of 
the phase a r e  strong and the coherence is violated. The 
properties of the incoherent state will be investigated 
in the next section. 

5. INCOHERENT STATE 

We consider the properties of the incoherent state in 
the limit of small Josephson energies J << J,. In this 
limit, al l  the averagings can be carried out over the 
states of the free Hamiltonian H$) (29). At B,, << T, 
the lowest contribution, in the low-temperature region, 
is made by the dipole excitations described in the pre- 
ceding section. Taking the contribution of only one 
dipole into account, we obtain for the specific heat C 

where m is the number of nearest neighbors and El is 
the energy of the dipole (35a). Only a t  large values of 
the Coulomb energy, B,, >> T,, is a substantial con- 
tribution made by single-electron excitations above the 
superconducting gap. Expression (45) shows that a gap 
exists in the spectrum of the collective excitations in 
the incoherent state. 

To calculate the response to an external electric 
field, we note that the current j through the junction is 
equal to  the sum of the Josephson current j(" and the 
normal current j(2); 

FIG. 1. 
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The current j(') in (46) i s  expressed in terms of the 
phases of the neighboring grains with the aid of the 
following expression: 

The angle brackets in (47) denote averaging over the 
states of the effective Hamiltonian in (26), expressed 
with account taken of the external field A. As before, 
only phase fluctuations a re  considered. 

The normal current j(,) is expressed in terms of the 
state densities vl and u, of neighboring granules": 

where V,,, is the difference between the potentials on 
the barrier 

I 0, e< A. 
The state densities vi(&) depend only on the modulus 

of the order parameter and do not depend on the phase. 
The double angle brackets denote averaging over the 
fluctuations of the modulus. This averaging is neces- 
sary,  for otherwise the integral in (48) diverges. Also 
important is the smearing of the state density on ac- 
count of the inhomogeneities. The current j ( ' )  varies 
little a t  the point of the phase transition described in 
the preceding section. At low temperatures this current 
is exponentially small in AJT, in both the supercon- 
ducting and in the coherent state. The behavior of the 
current j(') is more interesting. Taking into account 
only the response linear in A and carrying out the 
corresponding expans ions, we reduce expression (47) 
a t  J << J ,  to the form 

j ; i )  =Q:*) A", (50) 

where Q(w) is expressed in terms of the retarded 
Green's function of the currents K(w): 

The function K(w) is an analytic continuation of the 
Matsubara Green's function, and after transformations 
similar to those made in the preceding section, it is 
expressed in the form 

(B,,+B,,-2BIz) exp (--Zc,jBIjnlnd2T) 
K(a)=Z-'  1,,(~,,+~~-2~,.)'-(2~{~~~n,-B,,q)+eti6)' ' (52) 

11, ) I r ,  . I)\ 

Expression (52) was written for an arbitrary ratio of 
B,, and B,,. This form gets around the difficulty con- 
nected with the vanishing of the denominator in (52) a t  
n l = 0 , n , = ~ 1 ; n l = ~ 1 , n 2 = O a n d  Bll=B2,,w=0. It canbe 
verified that the terms that diverge a s  Bll-B, cancel 
each other. It is therefore convenient to  put Bll =B, 
already in the final answer. At zero temperature, a 
substantial contribution is made to (52) only by the 
ground state. Substituting (52) in (51) we obtain 

o2 
Qtl) (a) =4e2a1;, 

E,(E,Z- (o+i6)')  ' 
(53) 
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where el = (B,, +B,, - 2B1,)/2 is  the energy of the transi- 
tion of a Cooper pair from the first  grain to the second. 

The form of the response ~ ( " ( w )  (53) is typical for 
insulators. At low frequencies ~ ( " ( w )  is proportional 
to  the square of the frequency. Separating the imagi- 
nary part of (531, we can easily write down an expres- 
sion for  the conductivity ~("(w): 

Expressions (53) and (54) show that there exists a 
resonance corresponding to a transition of a Cooper 
pair from one grain to  a neighboring one. At nonzero 
temperature, other resonances ar ise  and correspond 
to  higher excitations. A highly peaked resonance is 
possible only in the case of identical grains packed to 
form an ideal lattice. Inhomogeneities lead to  smear- 
ing out of these resonances. 

The expression for the conductivity a t  arbitrary tem- 
perature, determined by the imaginary part of (52), 
can be reduced to a more convenient form. After mak- 
ing simple transformations in (52) we obtain 

(l-exp (-oI2T) ) 
19') ( a )  =2e'a1:,12-~ 

0 C 

Using (55) and letting the frequency w go to  zero, we 
obtain a formula for the conductivity a t  zero frequency: 

The bar over the delta function in (56) denotes averag- 
ing over the inhomogeneities. The explicit form of 
u(')(o) in (56) is  difficult to obtain. Expression (56) 
shows, however, that the conductivity a t  zero frequency 
differs from zero a t  nonzero temperatures. At tem- 
peratures much lower than the characteristic Coulomb 
energies, the conductivity is exponentially small. 

Only kinetic quantities obtained in this section a r e  
applicable a t  T<< T,. The expression for the con- 
ductivity (56) describes the contribution made by the 
motion of the Cooper pairs. Also important is the con- 
tribution of the single-electron current (48), (49). 
Carrying out the calculations in (48) with allowance for 
the fluctuations of the modulus of the order parameter 
we obtain a t  T<< T, 

If the inhomogeneities in the system a r e  strong, then 
the logarithm obtained by calculating the integral in 
(48) is  cut off not by the temperature fluctuations, but 
by the fluctuations due to the inhomogeneities. 

The total conductivity is equal to the sum of a(" and 
u"'. Depending on whether the Coulomb energy is 
larger or  smaller than the temperature T,, the pre- 
dominant contribution a t  low temperatures is that of 
d2' or  u(l), respectively. 
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6. CONCLUSION 

In the preceding sections we have investigated the 
influence of the fluctuations of the phase on the tem- 
perature of the superconducting transition. The analy- 
sis was carried out a t  sufficiently large amplitudes of 
the jumps of the electrons from grain to grain, such 
that the inequality (13a) was satisfied. When this in- 
equality is satisfied, the system in the absence of 
superconducting pairing would be a metal. At zero 
temperature, there exists a critical value of the 
Josephson energy J,, equal in order of magnitude to the 
Coulomb energy, below which superconductivity is 
impossible. In the region of low Josephson energies 
the system is an insulator. The role of the dielectric 
gap is played by the Coulomb energy or by the super- 
conducting gap, depending on which of these quantities 
is smaller. If the Coulomb energy is larger than the 
superconducting gap, the main contribution is made by 
normal electrons. At nonzero temperatures, supercon- 
ductivity is possible also a t  J<J, This restoration of 
the superconductivity is due to the screening of the 
Coulomb interaction a t  finite temperatures. This 
screening is produced either by low-lying collective 
interactions, or  by normal electrons. The latter 
mechanism is more effective if the Coulomb energy is 
larger than the Cooper gap. Of course, screening by 
normal electrons is possible only when the condition 
(13a) is satisfied, when these electrons can flow over 
freely from grain to  grain. The superconducting pairs 
can in this case be trapped, since the critical value J, 
is proportional to the square of the amplitude \Ti,I2 and 
can be both larger and smaller than the Coulomb energy 
if (1 3a) is satisfied. 

The existence of a critical value J, was qualitatively 
predicted in Ref. 8. In the same paper a re  given esti- 
mates of the characteristic parameters of granulated 
aluminum. Aluminum has a critical temperature 
T, =2 K, and a gap A, = 3x  lo-* eV. The characteristic 
dimension of the grains is d = 30 A ,  the thickness of the 
insulator is 5 A, and the dielectric constant of the in- 
sulator between granules is &, =8.5. An estimate 
yields for the Josephson energy Jij =5.4X10-5 eV, and 
for the Coulomb energy Ec=1.5 x ~ O - ~  eV. These esti- 
mates show that the Coulomb energy is much larger 
than the superconducting gap. At this ratio of the pa- 
rameter a t  finite temperatures, screening by normal 
electrons is essential. The critical temperature is 
calculated from formulas (38)-(40). The lowest energy 
J,, =mJi j  a t  which superconductivity is possible is of 
the order of A,. Taking the number of neighbors to  be 
m =8, we obtain the estimate J =mJ,,-4.3 lo-= eV. 
This is of the same order of o r  even larger than Jmh. 

Therefore superconductivity is possible in this system, 
a s  was in fact observed in experiment. It should be 
noted a t  the same time that the theory developed is 
applicable t o  grains with dimension d = 30 A only quali- 
tatively, since the conditions (12) and (13) a r e  not 
satisfied for such small granules. This leads to strong 
fluctuations d the modulus of the order parameter. 

If the proposed picture is indeed applicable to granu- 
lated aluminum, then when the temperature is suf- 
ficiently lowered a transition should take place from 
the superconducting t o  the insulating state. Measure- 
ments at low temperatures would therefore be of in- 
terest. However, to the author's knowledge, no such 
measurements were performed. It is also of interest 
t o  investigate the frequency dependence of the con- 
ductivity in the incoherent state, and in particular the 
observation of resonance corresponding t o  the energies 
of the transitions of Cooper pairs from one grain to  
another. 

All the results were obtained for  a regular lattice of 
identical grains. The influence of the scatter of the 
dimensions and positions of the grains on the proper- 
ties of the system is the subject of further study. 

In conclusion, the author thanks A. I. Larkin and 
D. E. Khmel'nitskii for  discussions in the course of the 
work. 
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