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We obtain the distribution function F(E)  of the electric field produced by charged donors and acceptors on 
neutral impurity centers in a weakly doped compensated semiconductor at absolute zero temperature. For the 
case of a low degree of compensation of the main impurity (K (I), when the charged impurities are situated in 
the crystal in the form of individual pairs comprising an ionized donor and an ionized acceptor, we obtain an 
analytic expression for F(E). At higher degrees of compensation (up to K = 0.95) the function F (E)  is 
obtained with the aid of computer experiments. The method of Efros et al. [J. Phys. C: Solid St. Comm. 22, 
623 (1977)l is used to realize in the computer the ground state of the model of a weakly doped compensated 
semiconductor. It is found that up to the highest investigated K the most probable electric field at the neutral 
impurity, a field corresponding to the maximum F(E),  is much less than the value that would be obtained if 
the charged impurities were disposed relative to each other and relative to the neutral impurities in a 
completely uncorrelated manner, so that F (E)  would correspond to a Holtsmark distribution. This result 
points to a a strong correlation between the charges in the considered disordered system. 

PACS numbers: 71.55.Ht 

I. INTRODUCTION 

In weakly doped compensa ted  s e m i c o n d u c t o r s  at low 
t e m p e r a t u r e s ,  when all t h e  carriers are f r o z e n  out  
(we cons ide r  f o r  t h e  s a k e  of a r g u m e n t  an n-type s e m i -  
conductor  with a donor  dens i ty  N, and  an a c c e p t o r  den-  
s i t y  N,< N,), t h e  uncompensa ted  e l e c t r o n s  are s i tua t -  
e d  on  t h e  donors ,  so that a uni t  vo lume  con ta ins  N ,  
- N A  neu t ra l  donors ,  N, posi t ively  c h a r g e d  donors ,  a n d  
N A  negatively c h a r g e d  acceptors. T h e  static e l e c t r i c  
f i e lds  produced by  t h e  ionized d o n o r s  a n d  a c c e p t o r s  
c a u s e  a S t a r k  shi f t  a n d  a spl i t t ing  of the  l e v e l s  of 
t h o s e  impur i ty  centers that had r e m a i n e d  n e u t r a l  a n d  
contr ibute  to t h e  impur i ty  optical abso rp t ion .  S ince  t h e  
e l e c t r i c  f i e lds  at t h e  di f ferent  impur i ty  c e n t e r s  are 
dif ferent ,  t h i s  ef fect  l e a d s  to a b roaden ing  of t h e  s p e c -  
tral l i n e s  of the  impur i ty  op t i ca l  abso rp t ion  a n d  of the  
photoconductivity;  t h i s  l i n e  broadening m e c h a n i s m  i s  
dec i s ive  in  many  cases (the analogous  effect  of S t a r k  

b roaden ing  of spectral lines in a g a s  p l a s m a  i s  w e l l  
known). 

T h e  u s u a l  a p p r o a ~ h l - ~  in t h e  calculation of the  S t a r k  
b roaden ing  of t h e  spectral l i n e s  in weakly doped com- 
pensa ted  s e m i c o n d u c t o r s  r e d u c e s  to t h e  following. It 
i s  a s s u m e d  that  t he  c h a r g e d  donor  a n d  acceptor d i s t r i -  
but ions  are pe r fec t ly  r a n d o m  (uncor re l a t ed )  r e l a t ive  to 
the  radia t ion-absorbing neu t ra l  donors .  In t h i s  c a s e  
t h e  f i e ld  d i s t r ibu t ion  tha t  d e t e r m i n e s  the  s h a p e  of the  
s p e c t r a l  l i n e s  i s  w e l l  known: i t  i s  d e s c r i b e d  by t h e  
H o l t s m a r k  formula,gv15 i n  which the  concentra t ion of the  
cha rged  p a r t i c l e s  m u s t  be t aken  t o  b e  equa l  to 2N,. 
T h i s  approach  i s  va l id  when t h e  c r y s t a l  t e m p e r a t u r e  i s  
m u c h  h ighe r  than  t h e  c h a r a c t e r i s t i c  scatter of t h e  levels 
i n  t h e  impur i ty  band.  A t  not too large a compensat ion 
t h i s  s c a t t e r  is of the  o r d e r  of the  Coulomb ene rgy  of the  
in t e rac t ion  of the  c h a r g e s  o v e r  t h e  a v e r a g e  d i s t ance  be- 
tween  t h e  i m p u r i t i e s ,  i. e. , -e21vz3/x, w h e r e  x i s  t h e  
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dielectric constant of the crystal. Usually, however, in 
the measurements of optical and photoelectric spectra 
of shallow impurities, the opposite inequality holds, 
i. e .  , k T  << e'~;'~/x. Under these conditions the state 
of the remaining uncompensated electrons, with concen- 
tration ND-N,, i s  close to the ground state and is  de- 
termined by the minimum of the Coulomb energy, so 
that the relative disposition of the neutral and charged 
impurities is  strongly correlated. The role of this 
correlation in the problem of Stark broadening of lines 
was pointed our earl ier  in Refs. 10 and 11. In Ref. 
11 they observed an appreciable line broadening in the 
photoconductivity spectra of n-GaAs and n-CdTe with 
shallow donors when the sample temperatures were 
raised from 4 to 10 K. The authors have attributed 
this effect to a transition from a correlated to an un- 
correlated disposition of the electrons on the donors. 

We examine first the nature of the correlation be- 
tween the charged and neutral impurities in the limit- 
ing cases of weak andvery strong compensation, using 
the known ideas concerning the structure of the ground 
state of the electrons on the donors in these two limit- 
ing cases. '' In the case of weak compensation of the 
main impurities K = N JN,<< 1 and at T = 0 the only don- 
o r s  ionized a r e  those which a r e  nearest neighbors of 
acceptors. As a rule, near each (negatively charged) 
acceptor there i s  one positively charged donor. Only 
near a small fraction of the acceptor (-2.6%) we have 
either no donor o r  two charged donors per acceptor. 
If we neglect these relatively r a r e  charge configurations, 
then we assume that al l  the charged donors a r e  grouped 
into dipoles with displacements on the order of the 
average distance between the donors. The greater part 
of the neutral donors, the field a t  which i s  the value 
of interest for the calculation of the Stark broadening 
of the lines, i s  located a t  distances on the order of 
Nilt3 >> N2I3 from these dipoles. A typical value of the 
electrostatic field acting ona neutral impurity i s  in this 
case E,= eNA/~Nht3.  At the same time, at high tem- 
peratures when the ionized donors a r e  "torn away" 
from the acceptors and have positions uncorrelatedwith 
the latter, the characteristic value of the Holtsmark 
field i s  ~ , - e p , / ~ / x .  The ratio of the characteristic 
fields at low and high temperatures is of the order of 
E,/E,=K'/~. At K<< 1 this ratio i s  small. Thus, the 
correlation between the charged donors and the ac- 
ceptors, which manifests itself in the dipole formation, 
leads at K << 1 and T =  0 to a strong decrease of the 
characteristic value of the electric field, compared 
with the value that wouldbe obtained if the locations 
of the positive and negative charges in the semiconduc- 
tors  were disordered. 

Attention was called inRef. 10 to the fact that in a 
very strong compensated semiconductor (1 - K << 1) 
the correlation can lead to an opposite effect. At very 
strong compensation, the carr iers  that have remained 
uncompensated a r e  concentrated on the impurity pairs,  
i .  e . ,  on donors that have close to them, a t  a distance 
R << N:l3, another charged donor. " The concentration 
of the electrons on the donors is  in addition modulated 
by the large-scale potential produced by the statistical 
fluctuations of the concentrations of the charged donors 

and acceptors. If we do not consider a large-scale 
potential then, for a given value of K, the electrons a r e  
situated only on pairs having R GR,= (3/2n)'I3 
(1 - K ) ' ~ N - ~ ~ .  For these pairs, the electric field pro- 
duced by a charged donor on a neutral one 

i. e . ,  is larger than in the case of a disordered distri- 
bution of the charged impurities relative to the neu- 
trals.  Thus, in the limit of a very strong compensa- 
tion, the correlation should increase rather than de- 
crease the characteristic fields in which the neutral 
donors a r e  located. 

The question of the structure of the ground state of 
the electrons on the donors at an arbitrary degree of 
compensation can not be solved analytically. A direct 
numerical method for numerically solving this prob- 
lem was recently developed.13 

We shall describe briefly the calculation scheme. A 
random-number generator produces in a cube of length 
L = ( N / N D ) ~ / ~  the coordinates of N donors and KN ac- 
ceptors. This i s  followed by distributing (1 -KIN elec- 
trons randomly over the donors and calculation of the 
Coulomb energies on all  the donors. A succession of 
electron permutations that lead to a lowering of the 
energy of the system then yields the ground state of 
the system at  a given realization of the donor and ac- 
ceptor coordinates. In order words, it i s  found which 
of the N donors a r e  occupied and which a r e  empty, i.e., 
ionized. 

The idea of the present paper is  to use the so-ob- 
tained ground state of a compensated semiconductor to 
calculate directly with a computer, by summing the 
fields from all the charged centers, the electric fields 
a t  al l  the neutral donors for each given realization of 
the donor and acceptor coordinates, and then find the 
distribution function of the electric fields at the neutral 
donors by averaging over the various realizations. The 
results of these calculations a r e  the subject of Sec. 3. 

In the limiting case of small compensation K << 1, when 
the charged donors and acceptors form dipoles that a r e  
randomly disposed in the crystal, the distribution func- 
tion of the electric field at the neutral donors can be 
calculated analytically. The calculation of this function 
is  dealt with in Sec. 2. 

2. DISTRIBUTION FUNCTION OF ELECTRIC FIELD 
IN  A WEAKLY COMPENSATED SEMICONDUCTOR 

In the case of weak compensation me energy of in- 
teraction of each dipole with other dipoles is of the 
order of (~'N;'~/X)K. AS a r u l e  this energy can not 
lead to rotation of the dipole o r  to an increase of its 
separation distance, since such a process ionizes not 
the donor closest to the acceptor but, say, the next 
farther away. This would require energies on the order 
of e2Nk/3 /~ ,  i .e. ,  much higher than the energy of in- 
teraction of the given dipole with the others. Thus, de- 
spite the interaction between the dipoles, practically 
each of them i s  oriented in the direction from the ac- 
ceptor to the nearest donor. This means that the di- 
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poles are  randomly oriented, and the distribution func- 
tion with respect to their separation distance r i s  

f ( T )  =4i7ci'ND exp (-'/,nND?). (1) 

Since the acceptor impurities a r e  randomly distributed 
in the crystal, the dipole centers are  distributed in the 
same manner. 

Let W(E)dE be the probability that the vector of the 
electric field a t  the neutral donor lands in the element 
d E ,  and F(E)dE = ~ ~ E ' W ( E ) ~ E  i s  the probability that the 
absolute value of this field lies in the interval from E 
to dE. 

We calculate the distribution function Fd(E) of the field 
produced in a crystal by the randomly disposed and ran- 
domly oriented dipoles with concentration N, and with a 
distribution function (1) with respect to the separations. 
We use well known Markov method (see, e.g. ,  Ref. 
14) of finding the distribution functions of quantities that 
constitute the sums of the contributions from randomly 
distributed sources. As a result we get 

Here R i s  the radius vector of the center of the dipole, 

3 (nd) n-d 
E (R, d) = 

r.R3 

i s  the field produced by the dipole at the origin, d = e r  
i s  the dipole moment of a pair made up of an ionized 
donor and an ionized acceptor, n =  R/R, and 9 and p 
a r e  the angles that determine the dipole orientation. 

We change to the dimensionless variables 

and choose in the integrand of the exponential a coor- 
dinate frame in which the polar axis is directed along 
u. We denote by 6 the angle between R and u,  5 = cos6, 
and q = c o d .  Then the expression in the second expon- 
ential in (2) takes the form 

where J ,  i s  a Bessel function of zero order.  

After straightforward but cumbersome calculations 
we obtain 

where 

E ~ ~ = ~ E ~ = ~ K ~ N :  / x  

i s  the field corresponding to the maximum of the dis- 
tribution function Fd(E), and 

The distribution of the field in the system of dis- 
ordered and randomly oriented dipoles with fixed spac- 
ing length d/e was obtained by Holtsmark. l5 It takes the 
same functional form a s  (31, but the characteristic field 

It i s  seen that the characteristic field in (31, which 
equals Em,, coincides with E,, is we assume in the lat- 
ter that the effective separation distance of the dipole is 

i. e . ,  the average distance from the acceptor to the 
nearest donor. l4 

3. RESULTS OF COMPUTER EXPERIMENTS 

As already indicated in the Introduction, the proced- 
ure  used to find the distribution function of the electric 
field a t  the neutral donors, in a wide range of degrees 
of compensation K, was to find the ground state of a 
compensated semiconductor, a method developed by 
Efros et a1. l3 The calculations were performed for the 
valuesK=O.l,  0.3, 0.7, 0.9, and0.95. F o r e a c h K  
the total number of donors was assumed to be N =  100, 
200, 400, 800, and 1600. The number of realization 
of the donor and acceptor coordinates, over which the 
averaging was carried out, depended on N  and de- 
creased from 400 to 15 when N increased from 100 to 
1600, inasmuchas calculations with larger N  required 
longer computer time. Figure 1 shows the distribu- 
tion functions F(E) for an aggregate of donors N= 1600 
and various degrees of compensation. Each curve is  a 
smoothed histogram with more than 40 intervals on the 
abscissa axis. The deviation of the smoothed curve 
from the calculated points of the histogram does not 
exceed 10% at  K 60 .9  and 15% at  K=0.95. 

The simplest characteristic of the F(E) curves i s  the 
most probable field E m  corresponding to the maximum 
of this function. To ascertain the extent to which the 
results obtained a t  the donor numbers N employed in 
the work enable us  to assess  F(E) for an infinite sys- 
tem, Fig. 2 shows the values of E: corresponding to 
various N. It i s  natural to assume that the size effect, 
(i. e . ,  the dependence of the results on N) i s  due to the 
fact that in the regions near the faces of the cube the 

FIG. 1. Distribution function of electric field at neutral donors 
at various degrees of compemationK. The field E i s  plotted 
in units of eiVY3/x and F ( E )  in units of [e~Y~/xl- ' .  The val- 
ues of K are: 1-0.1, 2-0.3; 3-0.5; 4-0.7; 5-0.9; 6- 
0.95. 
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FIG. 2. Dependence of the most probable electric field E: on 
the total number of donors N in a computer experiment for 
different degrees of compensation K.  The field E: is mea- 
sured on the ordinate axis in units of e ~ Y ' / n .  

neutral donors have a smaller number of charged neigh- 
bors than the donors deep inside the cube, and the char- 
acteristic field a t  them i s  weaker. The fractionof these 
"near-surface" neutral donors should be proportional 
to rd3, therefore the abscissa scale is in fact N - ~ ~ .  It 
k seen that the dependence of E: on N- d3 i s  really lin- 
ear  with good approximation. It i s  also seen that the 
relative magnitude of the size effect i s  most appreciable 
at small degrees of compensation K. The reason is that 
at K c  1 the thickness of the "near-surface" layer, 
which determines the size effect, is equal to  the average 
distance between the acceptor-donor dipoles 
= K-"~N-,"~ and increases with decreasing K. 

At intermediate degrees of compensation, the thick- 
ness of the "near-surface" layer i s  of the order 
and the size effect remains of the same sign but has a 
smaller relative value. At the strong compensation 
limit, a s  seen from Fig. 2, the size effect i s  small and 
i s  apparently of opposite sign. The possible cause will 
be discussed below. 

The values of Em obtained by extrapolation to N -w 

in Fig. 2 a r e  shown in Fig. 3 a s  functions of K (curve 
1). The same figure shows a plot of Em,(K) corres- 

FIG. 3. Dependence of the most probable electric field on the 
degree of compensation K.  The field E is plotted in units of 
eA'Y3/n. Curve 1-result of computer experiment; curve 2 
corresponds to the Holtsmark distribution for randomly dis- 
posed charges [Eq. (5a)l; line 3 corresponds to Eq. (3a) de- 
rived for the limiting case K << 1. 

ponding to the Holtsmark distribution for randomly dis- 
tributed charges with concentration 2N,= 2KN,. In this 
case9. 14.15 

and 

E,n=1.6 En, 

where 

E, (K) = 2 . 6 0 ( 2 ~ ) " ' e ~ : l x .  

Figure 3 shows a t  K <  0.5 a plot of Em(K) obtained 
from Eq. (3a) for the limiting case K<< 1. 

It i s  seen from Fig. 3 that a t  all  K S O .  9 the most 
probable electric field E m  i s  considerably less than the 
value Em, that would be obtained if the impurity dis- 
tribution were uncorrelated relative to the neutral ones. 
The correlation effect i s  very strong. For example, 
at K=0 .5  we have a ratio Km$Em=4. 

At K << 1 the result of the computer experiment agrees 
with the result of the theory developed in Sec. 2. It i s  
important to note that the Em(K) dependence obtained in 
the computer experiment is  very close to the Em,(K) 
dependence [Eq. (3a)] for the field produced by accep- 
tor-donor dipoles, even a t  K= 0.5. This indicates that 
at so  appreciable a compensation the correlation that 
takes place in the considered system of charges mani- 
fests itself primarily in the formation of acceptor-donor 
dipoles. It is  possible that the cause of this effect i s  
the fact that even a t  K=0.5 the average distance from 
the acceptor to thenearest donor, 0 .55~; ' /~ ,  i s  some- 
what less than the average distance K-' /~N;/~ between 
the dipoles. 

At K >  0.9, the field E m  increases rapidly when K ap- 
proaches unity, in qualitative agreement with the con- 
c l ~ s i o n ' ~  based on the donor-pair representation. How- 
ever, even at K = 0.95 the field E m  i s  still weaker than 
the field Fm, corresponding a random distribution of the 
charges. This result seems somewhat unexpected, and 
will be discussed separately in Sec. 4. 

We have dealt so far with the position of the maximum 
of the field distribution function F(E). We now discuss 
the form of this function. To this end, the obtained field 
distribution functions for different values of K a r e  plot- 
ted in such a way that the positions of their maxima on 
the abscissa axis coincide, i. e . ,  the functions EiFN(E) 
a r e  plotted against  at N =  1600. For comparison 
the figure shows also the theoretical curves correspond- 
ing to the distribution (3) for the field of the randomly 
disposed acceptor-donor dipoles and to the Holtsmark 
distribution (5) for randomly disposed charges. 

It i s  seen in Fig. 4 that for all K S 0.9 the electric- 
field distribution functions a r e  very similar in shape and 
a re  close to the theoretical function (3) obtained for ran- 
domly disposed acceptor-donor dipoles. All these 
curves have a much larger asymmetry with respect to 
the maximum and a larger effective width compared with 
the Holtsmark distribution (5). 
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FIG. 4. Comparison of the field distribution functions obtained 
as a result of computer experiments (solid curves) with the 
theoretical distribution functions. The abscissas represent 
the field in units of Em. For the calculated plots we used F(E) 
and E, for a total number of donors N =1600. The calculated 
curves correspond to the degrees of compensation K :  1-0.1; 
2-0.3; 3-0.5; 4-0.7; 5-0.9; 6-0.95. Curve 7-distribu- 
tion described by Eq. (3), curve 8-Holtsmark distribution (5), 
which is normalized for clarity to 1/2, in contrast to the other 
curves, which are normalized to unity. 

4. DISCUSSION OF THE STRONG COMPENSATION 
CASE 

In the theory of strong compensated semiconductors12 
it i s  shown that the principal part in the lowering of the 
Fermi level a s  K - 1 should be played by two character- 
istic spatial scales of the random potential. The first  
corresponds to the length (0 i s  a numerical coefficient) 

R~=~,v;"'/ ( I - K )  'I>, (6) 

representing the radius of the nonlinear screening of the 
charge-density fluctuations of the ionized donors and 
acceptors. The second scale i s  connectedwith the for- 
mation of compact donor pairs. If we neglect a potential 
with wave vectors smaller than N-kI3 then, a s  stated 
in the Introduction, in the case of strong compensation 
an ionized donor is  located near each neutral donor, 
a t  a distance R R,<<%'~, and lowers the level of the 
latter. Since the interaction of the neutral donor with 
the remaining charged impurities is  disregarded in this 
approximation, we shall call this approximation 
"paired. " 

In the paired approximation the Fermi level measured 
upward from the unperturbed donor level i s  equal to 
p,= -e2/'.tR,. In order of magnitude, an equal lowering 
of the Fermi level i s  made by potential of scale R. 
It turns out a s  a result that a s  K - 1 the Fermi level 
p = 2 .2  p,. l3 According to Ref. 12, potentials with 
scales intermediate between R ,  and R, have an ampli- 
tude smaller than Ip,l, and have a relatively small ef- 
fect on the position of the Fermi level. Unfortunately, 
the theory12 does not make it possible to calculate F ( E )  
a s  K -  1, with account taken of potentials of all scales. 
In the paired approximation, the calculation of the dis- 
tribution function of the electric field at the neutral 
donors entails no difficulty. It yields 

with the most probable field E m  coinciding with the mini- 
mal field E,. 

At K =  0.95 the field E,= 12 (the fields a r e  expressed 
here and below in units of eGl3/x) .  At the same time, 
a s  seen from Fig. 3, a t  K  = 0 95 we have the field Em 
= 4 .  This means that the potential whose scale of varia- 
tion i s  N d -  l2 plays a significant role in the distribution 
of the neutral donors in the crystal, and greatly weakens 
the electric fields at the neutral donors. It i s  natural 
to assume that the mechanism of the action of this po- 
tential consists in thefact that it modulates the depths 
of the levels produced in the donor pairs. The elec- 
trons flow over from the points where their energy i s  
increased into the potential-relief wells. By the same 
token, the pairs with R > R,, in each of which the 
charged donor produces a t  its neutral partner a field 
smaller than E,, turnout to be filled in the wells. 
This should shift the distribution function F(E)  to- 
wards weaker fields. 

To study the role of the different scales of the poten- 
tial in the decrease of the characteristic field at the 
filled donors, the following computer experiment was 
performed. In the entire computer program, both for 
the calculation of the ground state of the crystal and for 
the calculation of the electric fields at the impurities, 
the Coulomb potentials were multiplied by exp(-r/r,). 
At yo<< GI3 the introduction of this factor, naturally, 
suppressed the potentials with scales larger than GI3, 

and in the case of strong compensation it made it pos- 
sible to describe the ground state in the paired ap- 
proximation. In this case only the donor pairs with R 
< R, should be filled and the Fermi level should be 
lower than the isolated donor level E, by an amount 
equal to the energy of the interaction of the electron 
with the ionized donor located at a distance R,, i. e . ,  

The most probable (and a t  the same time minimal) field 
a t  the neutral donors should equal in this model 

In Fig. 5, formulas (8) and (9) a re  compared with the 
results of the computer experiment for K= 0.95 and 
N =  800 (such a comparison was first  carried out for 
the Fermi level p at  N =  100 in Ref. 13). It i s  seenthat 
with decreasing r, the calculated points approach the 
theoretical curves, thus attesting to the applicability of 
the paired model at small r, and confirms the correct- 
ness of the problem. With the aid of Fig. 5 we can es- 
timate the characteristic spatial scales 1, and 1, of 
the potential harmonics responsible for the deviations of 
p and Em from the values (7) and (8) corresponding to 
the paired model. We shall assume that I ,  i s  approxi- 
mately equal to the value of r, at  which the difference 
between the calculated value and (8) i s  half the differ- 
ence at ril = 0. We assume a similar definition also for 
1,. We then obtain I, = 2NdI3 and 1, = 0. 5N-,'I3. 
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FIG. 5. Dependence of the Fermi level p (curves 1 ,  left-hand 
scale) and of the most probable field Em (curve 2 ,  right-hand 
scale) on the reciprocal "screening radius" r;' of the model 
potential at K =0.5. The Fermi level is plotted in units of 
e ~ Y ' / n ,  the field in units of &X3/n, and rii in units of 
Solid curves-computer experiment at  N =800. The dashed 
curves correspond t o  formulas (8) and (9). 

The obtained value I, = 2N-:I3 agrees qualitatively with 
the statement that a s  K-  1 the difference between p and 
pp i s  connected with a potential having a characteristic 
scale much larger than N-:13, i. e . ,  with the general 
premisesL2 concerning the role of potentials with differ- 
ent scales. It i s  therefore natural to assume that 1, 
should be close to R,. Then the coefficient @ in (6) 
should be %0.3, which i s  not unlikely. 

On the other hand, the obtained value 1,= 0 . 5 ~ 2 ~ ~  
<< 1, i s  somewhat unexpected. This result means that 
the principal role in the decrease of Em, compared with 
the paired model, is  played by modulation of the den- 
sities of the pairs by a potential with a characteristic 
scale sNi113, and not with a scale much larger than 
GI3, a s  might have been assumed prior to the per- 
formance of the described computer experiments. More 
accurately speaking this means that an appreciable frac- 
tion of the electrons i s  located not on well isolated 
pairs,  but on small clusters consisting of three or  four 
donors, which ensure with the aid of the large-scale 
potential a lowering of the electron to below the Fermi 
level. The point i s  that in such clusters the fields pro- 
duced by the different donors can cancel eachother, 
whereas the potentials add up. The simplest example 
i s  that of three donors lying on a single straight line 
s o  that the two outer (charged) donors a r e  equidistant 
from the central neutral one. In such an impurity 
"triad," the field a t  the neutral donor is zero,  but the 
potential can be appreciable. As a rule, of course, 
the distances from the neutral to the charged donors 
a r e  different. Therefore when r ,  decreases and be- 
comes less than N;'~, the fields of the different donors 

cease to cancel each other, and the decisive action i s  
that of the field of the nearest charged donor, and this 
leads to an increase of the characteristic field. Furth- 
e r  decrease of r, leads to a decrease of the characteris- 
tic field [in accordance with (911 because of the expon- 
ential decrease ("screening") of the potential of the 
nearest donor. This explains the nonmonotonic charac- 
t e r  of the Em(l/ro) curveobtained in the computer exper- 
iment. 

Within the framework of the same concepts it is pos- 
sible also to exaplin the anomalous sign and the rela- 
tively small value of the size effect a t  K= 0.95 (Fig. 
2). In the case of strong compensation a decrease 
of the dimension of the system leads to an effective 
suppression of the large-scale potential. This de- 
creases the modulation of the pair density in space and 
the associate weakening of the field Em. AS a result, 
when N decreases the field E; increases. The size 
effect for E m  however, turns out to be very weak com- 
pared with the size effect for p ,  since, a swe  have seen 
above, the principal role in the weakening of the field 
i s  played by the relatively small scales of variation of 
the random potential, and the size of the system has 
little effect on these scales. 
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