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We investigate the possibility of transferring a narrow line-shape singularity from one of the transitions of a 
three-level gas system to an adjacent transition via coupling through a common level. The density matrix is 
detennined at arbitrary saturation with respect to both resonant fields, neglecting higher spatial harmonics. 
Explicit expressions are obtained for the nonlinear susceptibilities at small saturation in the Doppler limit. 
The contrast and width of the transferred singularity (formed by an absorbing cell) in two-frequency 
generation on standing waves are detennined. The system He-Ne/CH, is considered by way of example. 

PACS numbers: 42.65. - k, 5 1.70. + f, 33.70.Jg 

1. INTRODUCTION 

It is k n ~ w n ' ' ~  that the use of narrow nonlinear reson- 
ances which arise when a low-pressure absorbing cell 
is placed inside the resonator, makes i t  possible to 
form on the broad (-kuO) Doppler contour an amplifica- 
tion peak (an inverted Lamb dip) with a width deter- 
mined by the homogeneous broadening y of the absorp- 
tion line. A classical system of this type is the amp- 
lifying medium He-Ne with a methane absorbing cell 
(X  = 3.39 ym) . An attempt can be made to get around 
the difficulties of producing such a system for shorter 
wavelengths, for example in the optical band, which 
a re  connected with the absence of such narrow absorp- 
tion lines, by using the idea3 of transferring the narrow 
Lamb detail to an adjacent high-frequency transition in 
a three-level active medium. Owing to the presence 
of the common level, the adjacent transitions compete, 
therefore a narrow resonance on one of the transitions 
should appear also on the adjacent one. 

This possibility is theoretically investigated in the 
present paper. Expressions a re  obtained for the den- 
sity matrix, describing the gas three-level system in a 
resonant field,'** in the case of waves with arbitrary 
amplitudes and standing-wave coefficient. The non- 
linear susceptibilities averaged over the velocities a re  
obtained for small saturation parameters. In the 
Doppler limit kuo >> y, expressions a re  obtained for the 
line shape, and they a r e  analytically investigated for 
small detunings from resonance. It is shown that the 
appearance of a narrow (less than the homogeneous 
width) singularity on one of the transitions can lead to 
the appearance of a singularity on an adjacent transi- 
tion. It is useful to employ two-frequency lasing for 

this purpose. 5-10 The contrast and width of the "trans- 
ferred" singularity in two-frequency lasing on the stand- 
ing waves a re  determined. It is shown that for the sys- 
tem He-~e/cH,  the transferred singularity is a dip 
rather than a peak, in contrast to the assumption made 
in Ref. 3. 

2. DENSITY MATRIX I N  RESONANT FIELDS 

The equation of motion for the single-particle density 
matrix, which is an operator in the internal variables 
and a classical distribution function in the coordinates 
of the center of gravity of the particles, takes the 
form1. " 

where i=i0 + C(z,  t )  is the Hamiltonian of the part- 
icle; ? is the matrix of the relaxation constants, 

p0 is the stationary density matrix in the absence of a 
field. In the presence of resonant fields, the matrix 
elements of the perturbation a re  equal to 

where cm = -d,,E:,, d,, is the dipole moment, Ek is 
the amplitude of the resonant field on the n - m trails- 
ition, the superior index @ = *l distinguishes between 
waves traveling in opposite directions; Q,, a re  their 
frequencies, and k,, a re  the wave numbers, with a,, 
= -a,,, k,, = -k,,. As follows from the structure of 
(2 .I), stationary solutions in the resonance approx- 
imation with allowance for the lower spatial harmon- 
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icsl  can be sought in the form 

p., ( z ,  t )  = z on,@ exp {i (aknmz-Q, , t ) ) ,  (onmu) '=omna, 
a-*l 

(2.3) 

where a h  depend slowly on the coordinates and on the 
time. The quantities k,, and a,, are  defined such that 
the following equations hold: 

with corresponding analogous equations for the detun- 
ings 

AO,,=O.~-Q., (2.5) 

from the Bohr frequencies w,, of the transitions. The 
use of this notation is quite convenient in the resonance 
approximation. Substituting (2.3) in (2 .l) and taking 
(2.4) and (2.5) into account, we obtain 

(2.6) 
and 

Regarding (2.6) as a system of equations for the off- 
diagonal elements of the matrix, we express them in 
terms of the diagonal elements that include the unper- 
turbed values =a:, a,, z a,. It is important here that 
(2.6) splits into two subsystems, each of which des- 
cribes (at given 0,) the response of the system to waves 
traveling in the same direction. 

We confine ourselves to the case when the 2 - 1 trans- 
ition is forbidden (Fig. I), i. e .  , V2, = 0 (this situation 
is realized, for example, in neon for the transition 
2p4 - 3p4 in the system 2p4 - 3p4 - 3.~2). At Vzl = 0, these 
subsystems (of sixth order) split into two subsystems 
(of third order) for uFl, ug, u$ and a t ,  uPz, a$, where 
cu = *l . Waves traveling in opposite directions already 
turn out to be coupled in Eqs. (2.7). The solution for 
arbitrary fields is given in Appendix I. In the case 
of weak fields we can expand a& in the saturation para- 
meters G:,: 

G ~ ~ ~ =  1 Vnma I z I f i Z y m m Z ~ I ,  ~ n m s = ~ ~ n m ~ n ~ m /  ( y n + y m ) .  (2.8) 

In accordance with the results of Refs. 4, 6, and 11 we 
have 

where 6:,= Awn, + cuk,,v - iynm are  the complex detun- 
ings with allowance for the Doppler effect and the 
damping, y;, = (y, + ym)/2;n:, =pi, - p:, a re  the sta- 
tionary differences of the populations in the absence of 
the field. 

FIG. 1. 

The first  terms in (2.9) and (2.10) describe the linear 
response, the second terms describe the saturation due 
to the transitions under the influence of the intrinsic 
field. The third and fourth terms a re  due respectively 
to a steplike and two-photon (coherent) transitions. ' 
Owing to the absence of an external field for the 2 - 1 
transition, a nonzero matrix element url appears in 
second order perturbation theory in the field on account 
of two-photon processes. 

Equations (2.9) and (2.10) contain the denominators 
68 and 6?2, which a re  responsible for the nonlinear res- 
onances that occur when the detunings AwQl 5 k31v and 
A ~ 3 ~ f  kS2v vanish simultaneously, i. e . ,  in the case when 
both fields interact with one and the same group of 
particles from the Maxwellian distribution: 

A O S l  A052 
7=+- 

Li kt2 ' 
(2.12) 

The plus (minus) sign in (2.12) corresponds in this case 
to resonance with the co-moving (opposing) waves. 

3. NONLINEAR SUSCEPTIBILITIES IN RESONANT 
Fl ELDS 

To determine the nonlinear susceptibilities X, we 
must find the polarization of the medium p(i; t )  

where the angle brackets denote averaging over the vel- 
ocities of the particles with Maxwellian distribution 

Taking (2.3) into account, we obtain 

P ( 2 ,  t )  = Prima exp{i(ak, ,z-Q, , t )} ,  
n.m 

=-*I 

with 

Assuming for simplicity that all waves a re  plane-po- 
larized, we shall omit the tensor indices from now on.  

In the general case of strong fields (see Appendix I), 
averaging of the density matrix over the velocities calls 
for numerical integration. For weak fields, however, 
this averaging can be carried out analytically. At an 
arbitrary ratio of the homogeneous and Doppler widths, 
the result of the averaging is expressed in terms of the 
tabulated probability integral ~ ( ( A w  + iy)/ku,). In the 
Doppler limit I k,, 1 uo >> y,, the result of the integration, 
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as is well known, is expressed in terms of elementary 
functions.' We note, however, that in neon this re- 
lation between the thermal and homogeneous widths 
is not always valid. For  example, i t  is satisfied for 
the 3s2 - 2P4 transition, but not fo r  3sz - 3P4. 

We present here the polarizability for the most in- 
teresting case of small detunings of the field relative 
to the centers of the Doppler contours ) AW,, ) 
<< I k,,[ uo. The main contribution to the integrals of 
(3.1), which determined the nonlinear susceptibilities, 
is made by the region of low velocities k,,v - Aw,, 
and y,, << I k,, 1 u,,; the exponential in the Maxwellian 
distribution can therefore be se t  equal to unity. Under 
this assumption, the integrals can be calculated ex- 
plicitly. In terms of the type 

i dv 

-, (u-v , )  (v-v*) (v-us) 

a nonzero contribution is made by those which have 
poles on opposite sides of the real  axis in the complex 
velocity plane. After averaging, we obtain for the 
susceptibilities, a t  an arbitrary ratio of the amplitudes 
of the opposing waves, 

where we have left out the index 3 corresponding to the 
common upper level, x,O EX!,, E r  = E!,. The coefficients 
x.qbb 3 Xf,"3b have the symmetry property =x$\ and 
a re  equal to: 

for the "opposing and co-moving" waves on one trans- 
ition; 

Idrl' 1 1 
&:b-=OL - - ; a f b  

h y, AaL--irW,, 

for "opposing" waves on adjacent transitions; 

for "co-moving" waves on adjacent transitions. In this 
case 

In the particular case of standing waves E: = E;= E, 
and, as follows from (3.4), the dependence of the sus- 
ceptibility on the propagation direction of the wave 
vanishes: 

Additional averaging over the orientation of the mol- 
ecule can be carried out directly in expressions (3.5)- 
(3 .a). For example, a t  identical polarization of the 

field on both transitions i t  is necessary to make the 
substitutions Ld, I -?  1 dm 1 ', I dm,, 1 ' 1  dn 1 
-$ldmn121drrl 

4. TWO-FREQUEN& LASING IN THE PRESENCE 
OF AN ABSORBING CELL, AND TRANSFER 
OF SINGULARITY TO AN ADJACENT TRANSITION 

The transfer of a narrow singularity produced by an 
absorbing cell on the transition 3 - 2 (Ref. 1) to the 
adjacent transition 3 - 1 can be effective in the two- 
frequency lasing regime. Confining ourselves to the 
case of standing waves and small saturation, we write 
down the equations for the intensities Z,(t) 
= (c/4n)lEa(t)I2, assuming that a single-mode regime is 
realized on each transition 

Here x,= -4rk,,Im~, is the gain of the three-level sys- 
tem on the transition 3 - a, x,, = -(4rk,, /c) [see 
(3.4')], x(Aw) is the absorption coefficient introduced 
by the two-level system,' with 

x ' ( A r ) - $ [ l f ~ ( ~ ) ] ,  - L ( z ) = ( i + z l ) - I ,  (4.2) 

where Aw = a, - w, is the detuning of the lasing fre- 
quency from the transition frequency w,,, y  is the hom- 
ogeneous absorption line width ( y  << y,,,,), Q, is the Q of 
the mode, and the quantities in (4.1) a re  assumed aver- 
aged over the resonator length. 

The solution of the system (4.1), corresponding to 
the stationary regime of the two-frequency genera- 
tion, is of the form 

al (xu-x'  ( A m )  ) - o ~ x I ~  Dl ( A r )  > O, I , y A m )  - _ = - 
x, ,  ( x , , - x ' ( A r )  ) - X ~ ~ X Z I  D o ( A r )  (4.3) 

~ Z ~ I ~ - ~ I ~ Z I  - 
I ? ( A o j -  -- Dl >O, 

x i ,  (xZl-X' ( A m )  ) - X ~ I X Z ~  DO ( A 0 1  

where a1 = x - k3,/Q1 o r  a2 = u2 - x0 - k g 2 / ~ 2  is the 
excess of gain over the loss. This solution is stable 
only in region III on Fig. 2, where 

as can be easily verified by investigating, with the aid 
of (4.1), the roots of the characteristic equation for 
small perturbations 6Za(t) - e-Pt. The mutual influence 
of the transitions2' is due to the nonlinear cross  co- 
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efficients x12 and x,,, which in accordance with (3.6)- 
(3.8) a re  different from zero only near the nonlinear 
resonances (2.12). Thus, the transfer of the singular- 
ity to an adjacent transition is possible in two "inter- 
action bands" 

(see  Fig. 3). The presence of a. nonlinearly absorbing 
substance leads, according to (4.3) and (4.2), to forma- 
tion of a narrow intensity peak ~ ( A w )  a t  A o  = 0 with 
width -y, just as in the case of single-frequency las- 
ing. "*' As seen from (4.3) besides the narrow peak 
on the long-wave transition a t  a,= w,, a narrow sing- 
ularity is formed also on the short-wave transition, if 
the frequency 52, satisfies the resonance condition. To 
determine the character of the transferred singular- 
ity, we introduce the contrast 

where I:(=) =I:( 1 Aw I >> y), andby virtue of y << r,,,,,, we 
can neglect the changes of Aw3, and Aw3z with changing 
Aw. From (4.3) we get 

1 - Do (m) h  - -2 !?I ,OOhr ,  h 2 = 1 - - ,  
XI, ZZo(0) Do (0) 

(4.6) 

or,  using (4.21, 

Taking (43)  intiaccount, we find from this that at x,, 
>O ("normal competition") the singularities on the 
coupled transitions a re  of opposite sign, while a t  xlz 
<O they have the same sign, i. e . ,  a dip is transferred 
to the adjacent transition a t  xi, >O and a spike a t  xi, 
<O. Incoherent processes make a positive contribu- 
tion to xi, [see (3.6) and the f i rs t  term of (3.711, while 
coherent ones make a negative contribution only a t  
( A ; ~ ) ~  >r31,32r71,32 [second term of (3.7)]. There- 
fore a t  small detunings compared with the homogen- 
eous widths of the transition, the transferred singular- 
ity corresponds to a minimum of the intensity. For the 
transitions 3.9, - 2p4 and 3.9, - 3P4 in neon, for example, 
the coherent processes make a small contribution to 
xi, (and xZi) a t  all detunings, by virtue of y,/r,,,,, 
<< 1, y3/r2,,,, << 1, since y3<< y,,, y,, and therefore in 
this case xi, >0, and a dip is formed on the short-wave 
transition, rather than a peak as proposed in Ref. 3. 

FIG. 3. I, 11-bands of interaction of co-moving and opposing 
waves, 111-absorption band, IV-resonator retuning line. 

The width of the transferred singularities a t  half- 
maximum 

is of the order of y, with Do(0)/Do(m) s 1. 

We consider now the line shape when the lasing fre- 
quencies a r e  changed by changing the resonator length 
1, disregarding both the linear and nonlinear frequency 
shifts, which in  the case of the He-Ne/CH4 system at  
a neon pressure 1 Tor r  do not exceed 5 x lo4 Hz, which 
is less  than the width of the singularity y/2rr= 5. lo5 
Hz. ' Since the wavelengths X, satisfy, a t  integer Z,, 
the condition Z,X, = 21, a = 1,2, i t  follows that the las- 
ing frequencies change in such a way that S2,/Z, = S2,/Z2 
(i.e., the retuning line goes parallel to  the interaction 
band of the co-moving waves). On the shortwave 
transition there will be observed a narrow intensity 
dip at the frequency a,= (Z,/Z,),,, with a width 
- ( k 3 1 / k 3 2 ) 6 w - ( k 3 1 / k 3 2 ) y .  Thus, under the conditions of 
single-mode lasing, the position of the transferred 
singularity can be calculated accurate to a value of the 
order of i t s  width. On the other hand, i f  the linear 
and nonlinear frequency shifts a re  taken into account, 
the position of the singularity can be established with 
a relative e r r o r  of the same order as on the long-wave 
transition. 

In conclusion, we consider i t  our pleasant duty to 
thank V. S. Solov'ev, who has called our attention to 
the considered problem. 

APPENDIX I 

The solution of Eqs. (2.6) and (2.7) for the off- 
diagonal matrix elements is of the form 

(61r"6rra-A-'I V,zal ') (oJ-o~) +A-'I VrlaI' ( O ~ - O ~ )  Vsza 
or," = - 

- (D") ' h ' (1.2) 

6rra(or-oJ +6;ia(o;-02) Vsla (VsZu)' 
02," = - 

I)" A2 ' 
(1.3) 

The differences of the diagonal elements, which enter 
in (1.1)-(1.3) a r e  equal to 

where 

Expanding (1.1)-(1.5) in terms of the small  saturation 
parameters, we obtain the expressions (2.9)-(2.11). 
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APPENDIX I I  ition 3 - 2, and the dip is transferred to the transition 

Transfer of Singularity at Arbitrary Saturation 
Parameters 

At G;3, GG 2 1, the gains in (4.1) a re  given by the 
exact expressions ua = u,(I1, 12, Sti, Q2), which can be 
obtained, for example, after averaging the expressions 
obtained in Appendix I over the velocities. The absorp- 
tion coefficient is u = %(A w, Iz). Assuming u << x7, we 
obtain the rapidly varying increments bI,(Aw) to the 
generation intensities, due to the nonlinear absorption: 

611 (Am)=-qc612(A~), 612 (Am) = 
x (Ao, 12) 
E,z(f-q1qz) ' 

where 

I, and I2 are  the stationary lasing intensities in the ab- 
sence of an absorbing cell, with x, taken to be func- 
tions of only I, after eliminating the frequencies a, 
with the aid of the equations for the phases. The con- 
trasts of the singularities 

h.=[6I.(m) -6I.(O) ]/I. (11.2) 

have opposite signs in the case of normal competition 
q1 >0, with 

From the condition of the stability of the generation 
when account is taken of the fact  that ti ,  5, < O  (satura- 
tion under the influence of the intrinsic field) i t  follows 
that 1 - q1q7 >0, SO that a peak is formed on the trans- 

'heglect of the higher spatial harmonics means smallness of 
the parameters ( F & / y h ) ~ ~ < < l ,  a=1 ,2  (cf. Ref. 12), where 
the saturation parameters G and T,,,,, are  given in (2.8). At 
y3a/y3a << 1, which is the case, e.g.. for neon,'*12 neglect of 
the harmonics is  permissible also for a saturation G 21 
which is not small. 

2 ' ~ i t h  the aid of (4.3) it  is  easy to investigate also the line 
shape for two-frequency lasing, in analogy with the proce- 
dure used by ~e lekhin '  for the transition scheme 3 -1, 
2 -1. 
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Reflection and refraction of a plane wave by the interface 
of two media, with allowance for positron polarization of 
the medium 

0. N. Gadomskil 
Elabuga State Pedagogical Institute 
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Integral equations are obtained for the propagation of electromagnetic waves in an atomic system in whose 
spectrum negative energy states are included as intermediate states (positron polarization of the medium). 
Additional terms that depend on the coherence properties of the medium are obtained in the Lorentz-Lorenz 
and Fresnel formulas for a plane wave. It is shown that they are likely to play an important role in systems 
with small inhomogeneous broadening of the spectral limes (for example, in a rarefied gas). 

PACS numbers: 42.10.Fa, 32.70.J~ 32.80. - t, 5 1.70. + f 

1. When optical radiation propagates in a medium, fields produced by the surrounding atom at the location 
the resultant field ac t5g  on an arbitrary j-th dipole is of the j-th dipole. Usually in the calculation of the field 
made up of the fields H,, E j  of the incident wave (which of the surrounding atoms one confines oneself to the so- 
propagates at the speed of light in vacuum), and the called dipole field H;,E;.' AS shown by us  in Ref. 2, the 
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