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A microscopic model is considered of an excitonic dielectric consisting of oscillators at crystal-lattice sites, the 
interaction between which decreases exponentially with distance. Account is taken here of the influence of the 
surface on the constants of the interaction between the oscillators. This model is used to construct a 
macroscopic phenomenological theory of an excitonic dielectric. An integral equation is obtained, describing 
the coupled oscillations of a semi-infinite chain of oscillators. A boundary problem equivalent to this integral 
equation is formulated. In particular, a boundary condition is obtained, which must be superimposed on the 
polarization. It is inhomogeneous in this model. The solution of the problem of light reflection from the 
considered semi-infinite dielectric is solved. The coefficients of reflection and transmission of light through 
the boundary of the medium are obtained. It is shown that the obtained reflection and transmission 
coefficients satisfy the energy conservation law. 

PACS numbers: 77.90. + k, 71.35. + z, 78.20.Bh 

1. INTRODUCTION 

There a re  a number of papers'-8 in which an exciton- 
ic dielectric is regarded as an aggregate of oscillators 
situated at the si tes of a crystal lattice and interacting 
with one another. In such models the analysis is us- 
ually limited to the interaction of the nearest pairs of 
neighbors,21%r to N nearest neighbors. * 1 5  However, 
the question of the interaction of light with the oscilla- 
tor model can be solved exactly if the interaction is not 
confined to the N neighbors, but decreases exponen- 
tially with distance between the oscillators. The 

lattice can be reduced to one-dimensional. The equa- 
tions that describe the oscillations of the polarization 
in such a lattice a re  of the form 

where p, is the dipole moment of the oscillator in the 
site with index n, won is the natural frequency of the os- 
cillator in the site n, En is the field acting on the os- 
cillator, and V,,, a re  the constants of the interaction, 
which in an infinite lattice would depend on the differ- 
ence n- n'. alone. 

authors of Refs. 5 and 6 obtained the dispersion rela- When account i s  taken of the nearest neighbors, i t  is 
tions and light-reflection coefficients in this model. assumed that all Vnn.=O, with the exception of those for 
However, no account was taken by them of the influence which I n-n' 1 = 1. Allowance for the boundary in this 
of the surface on the constants of the interaction be- model manifests itself only in a change of VI2 for one 
tween the oscillators, and the boundary condition was edge cell. However, if all the Vnn, differ from zero, 
obtained for a particular solution of the equations and then in principle the presence of the boundary should 
not in general form. Reference 8 suffers from this perturb only Vnn, in the chain. In the model with ex- 
same shortcoming. ponential interaction, considered in Ref. 5-7 i t  was 

In the present paper the modeling question is sup- 
plemented and takes phenomenologically into account 
the influence of the surface on the interaction con- 
stants. Within the framework of this model, a micro- 
scopic analysis is made, on the basis of which a mac- 
roscopic theory of light interaction with a semi-infinite 
crystal is obtained. The boundary-value problem is 
correctly formulated and, in particular, an additional 
boundary condition is obtained. For  simplicity we 
consider the one-dimensional problem. As the final 
result, the coefficients of reflection and transmission 
a re  obtained for the case of normal incidence of light 
on the boundary of the crystal, and i t  is shown that 
they satisfy the energy conservation law. 

2. FORMULATION OF PROBLEM 
We consider a crystal in each site of which a re  lo- 

cated oscillators that interact with one another, with 
natural frequency won that depends on n. We confine 
ourselves here to a one-dimensional lattice. It is 
knowns that the problem of the three-dimensional cubic 

assumed that v,,, =ge-"n-n" , where g and y are  para- 
meters of the model. It is clear, however, that this 
representation is valid only when the force constants do 
not change in the medium in which they act. Other- 
wise, besides the direct interaction of the oscillators, 
there should appear an additional interaction due to 
Image force and then the interaction constants take the 
form 

where r is a phenomenological constant characterizing 
the properties of the boundary that separates the media 
in our model. In the particular case r = 0 we obtain 
the model considered in Refs. 5- 8. In addition, we 
assume that the natural frequencies won a re  constant 
in the volume of the medium and a re  perturbed near the 
boundary, and that this perturbation is described by 
the same parameter r: 
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The last  assumption is not obligatory and was chosen 
here only to simplify the manipulations that follow. In 
principle, the dependence of won on n can be arbitrary 
and to be able to write down the form of this depen- 
dence we must make the model more specific. Sub- , 

stituting (3) and (2) in (1) and carrying out partial 
summation, we obtain the equation 

in which the off-diagonal elements of the matrix L,,, a re  
equal to - V,,,, and the diagonal elements a re  of the 
form 

Equation (4) can be solved by the method described 
in Ref. 3. Then r is connected with the parameter 6 
introduced in that paper by the relation r = (5 + e7)/ 
(5 +e-Y). We shall not do this, however, and change over 
in this stage to the continuous-medium approximation. 
We introduce for this purpose new parameters, the dis- 
tance a between the oscillators, r = ?/a, G =g/a, x =  an, 
and change over from (4) from summation to integra- 
tion with respect to x. In addition, assuming that the 
time dependence is determined by the external field 
and takes the form a e - j u t ,  we obtain an equation for the 
macroscopic polarization P: 

where w, is the "plasma" frequency and the kernel of 
the integral transformation takes the form 

K ( x ,  2') =esp ( - r  Ix-x'I ) +r exp ( - r ( x f  x') ) 

We have obtained an inhomogeneous integral equation 
of second kind, which describes our system. It must 
be solved simultaneously with Maxwell's equations, 
which reduce in the one-dimensional case to a single 
equation 

-- 

aZE/ax'+~ok,lE=4nk,ZP, (6) 

where ko = w / c .  

We emphasize that in a system (5), (6) boundary con- 
ditions must be imposed only on Eq. (6). Equation (5) 
contains the necessary boundary conditions. In a num- 
ber of cases i t  may turn out that i t  is more convenient 
to solve not integral but differential equations with 
boundary conditions, i. e.  , a boundary-value problem. 
To change over from Eq. (5) to the corresponding 
boundary-value problem, we proceed as follows. We 
apply to both sides of Eq._(5) the differential operator 
0, = (a2/8x2 - r Z )  . Since U,K(x, x') = -2r6)x - x'), the 
integral in (5) degenerates and the following equation 
holds for the region x>O: 

In contrast to (5), Eq. (7a) calls for specification 
of the boundary condition. To obtain it, we proceed as 
follows. We consider the function 

where T = r ( r -  l) /ko(r+ 1); q(x- x')= 1 at  x-x'>O and 
q(x- x') = -1 at  x- xJi<O. This function vanishes for 
all positive x' and a t  x=O, i.e., f(n=O,x'>O)=O. 
Noting this, we apply the operator 

to both halves of (5) and put x =  0 in the obtained equa- 
tion. Then the integral in this equation vanishes ident- 
ically for all functions P(x) and E(x), and we obtain the 
boundary condition 

The differential equation (7a), jointly with the boundary 
condition (7), constitute a correct formulation of the 
boundary-value problem that is equivalent to the inte- 
gral equation (5). 

The boundary condition obtained by us  is inhomogen- 
eous and contains in the right-hand side both the value 
of the field E and the derivative of the field with respect 
to the coordinate. This possibility was already dis- 
cussed in Ref. 1. The considered boundary condition 
was obtained for a concrete model. We note also that 
although the inhomogeneity of the boundary condition 
does reflect in this case the specifics of our model, 
we did not introduce in the latter any surface charges 
o r  currents. Therefore, in contrast to the case con- 
sidered in Ref. 10, the surface in our model does not 
disturb Eq. (6), and the boundary conditions imposed 
on (6) remain the same a s  before, i. e . ,  they stipulate 
continuity of the tangential components of the fields 
on the boundary. 

3. THE DIELECTRIC CONSTANT 

We rewrite the integral equation (5) in standard form 

- 
P ( x )  -h ~ ~ ( x , x ~ ) ~ ( x ' ) d x ~ = f  ( x ) ,  

0 

where 

Equation (8) has a continuous eigenvalue spectrum 

where the wave vector k varies in the interval 0 i k  <-. 
Corresponding to the eigenvalues (9) is a complete sys- 
tem of orthonormalized eigenfunctions 

~ ( x )  = (e-'"+R(k) e") ( 2 n R ( k )  ) -", (10) 

where R(k) = (ik - koT)/(ik + koT). The functions (10) 
a re  the solutions of a homogeneous equation, i. e .  of 
Eq. (8) in whichf(x) =0, and describe "mechanical" 

- 
excitons.' Their dispersion is given by the relation A(k) 
= A ,  which is shown by the dash-dot line in the figure. 
It is seen from the figure that in the considered model 
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4. REFLECTION AND TRANSMISSION 
COEFFICIENTS 

FIG. 1. Excitonic dispersion curves. The dash-dot curve 
shows the dispersion of the mechanical excitons. The solitl 
curves show the dispersion of the excitonic polaritons. 

the exciton band has a finite width even in the limit of 
a continuous medium, so that t as k -a, the frequency 
tends to a finite limit w2 - w i  = W: + 2G/ro determined 
by the parameters of the model. The effective mass 
of the exciton is expressed in terms of the same para- 
meters rn? = fiw0r3/2G. 

The solution of the inhomogeneous equation (8) can 
be written in the form 

- 
P ( X )  = I ( , )  + A  J R ( ~ ,  x', a ) f ( x C )  d ~ ' ,  (11) 

0 

where the resolvent R(x, x', A) of Eq. (8) is defined in 
terms of the eigeniunctions and eigenvalues of the hom- 
ogeneous equation 

where = ( r 2  - = ~ ( A x / G ) ' ~ ~  and A = w t  - w2. 
The integral in (12) can be easily calculated by residue 
theory. Account must be taken here of the fact that 
Ir 1 <l  and T <O. Substituting (12) in (11) we can re- 
write the solution of Eq. (8) in the form 

where 

has the meaning of the nonlocal susceptibility of the 
considered medium. The nonlocal dielectric constant 
is connected with the susceptibility in the usual manner: 

where EO is the "backgroundv dielectric constant. For 
an infinite medium, the last term in this formula, 
which contains x + x r ,  vanishes and we can introduce 
the Fourier transform of the dielectric constant, in the 
form 

& ( a ,  k )  = E ~ + o ~ Z ( ~ ~ + ~ ~ ) / [ A  ( k Z + r Z )  +2Gk2/I'l. (16) 

We shall seek the solution of the system of equations 
(6) and (7) in the region x >O in the form of a sum of 
two waves: 

Substituting (17) in Eqs. (6) and (7a), we obtain a sys- 
tem of algebraic equations with respect to the ampli- 
tudes E j  and PI: 

from which follows the dispersion relation for the po- 
laritons 

At each fixed w i t  has two solutions for k j :  

where u= k;(A% + 2Gco/I'+ wif. In the frequency region 
w%< w2 < WE, where 0% + W; + w$ /zO, the two wave vectors 
kj a re  real. Outside this interval one is real  and the 
other imaginary. The dispersion branches of the ex- 
citonic polaritons defined in (19b) a re  shown in the fig- 
ure  by solid lines. 

Substituting (17) into the boundary condition (7b) and 
using (l8b), we obtain an equation that connects the 
amplitudes of the two waves: 

,-I 

A relation equivalent to (20) with r = 0 was obtained 
in Refs. 5, 6, and 8, and was called by their authors 
the supplementary boundary conditions. It is seen from 
the foregoing analysis, however, that relation (20) 
follows from the boundary condition (7b) only for a 
particular solution of (17). If, however, the solution 
differs from (17) in form, for example, a t  a definitely 
specified right-hand side of (5), then Eq. (20) is also 
changed. Equation (20) can therefore not be used in 
the general case a s  the boundary condition in the 
boundary-value problem. In addition (20) is valid in 
the entire volume of the medium, and not only on the 
boundary. It is clear therefore that (20) is not a bound- 
ary condition and constitutes in fact, jointly with (17) 
and (19), a solution of a boundary-value problem. 

With the aid of (20) and the condition of continuity of 
the tangential components of the electric and magnetic 
fields on the boundary, we obtain in the usual manner 
the amplitude coefficients of reflection Ro and trans- 
mission To, and To, of a light wave through the bound- 
ary of the medium: 
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where 
-- 

5. ENERGY CONSERVATION LAW 

We shall show that the obtained coefficients (21) sat- 
isfy the energy conservation law. To this end we as- 
sume that an electromagnetic wave of unit amplitude 
is incident on the boundary, and consider the energy 
fluxes propagating away from the boundary. We con- 
sider f i rs t  the case wi <wZ<w:, when the two wave 
vectors in the medium are  real. In the region x <O 
the energy is carried away by a wave of amplitude Ro. 
The energy flux carried away by this wave is given by 
the Poynting vector S, =(c/8n) I R~ 1 '. Energy is car- 
ried into the interior of the medium by two waves with 
amplitudes To,, each of which consists of an electro- 
magnetic-energy flux 

and a mechanical-energy' flux 

Since we neglect the losses in our model, the incident 
energy flux should equal the sum of the energies of the 
waves that move away from the boundary. After can- 
celling the factor c/8n, this condition takes the form 

where I), = (1 + 2~rw$i/@:). Substituting in this re- 
lation the formulas for the amplitudes and multiplying 
both sides by the common denominator I Q I ', we get 

Expanding the brackets and dividing both halves of the 
equation by four: 

where a;.= T/Oj, a;'= kj/@,. We gather like terms: 

Substituting here the expressions for the real  and im- 
aginary parts of a, and carrying the necessary can- 
cellations, we obtain the identity 

which can be easily proved by substituting in the right- 
hand side the expressions for and @ 2  with allowance 
for the formulas for the wave vectors k i .  A proof of 
an analogous identity for the model with nearest- 
neighbor interaction is given in Ref. 10. Thus, in the 
case when two waves propagate in the medium, the 
energy conservation law is satisfied. 

We consider now the case when the frequency w lies 
outside the frequency interval [w,, w,]. In this case 
one of the wave vectors, say kz, is imaginary, kz=ix2, 

and the energy flux in the interior of the medium is 
produced only by one wave. The equality of the energy 
fluxes is then given by 

ITo,12nlgl+IRo(2=l. (25) 

We substitute here the formulas for the amplitudes of 
the waves and multiply both halves by 1 Q 1 2 :  

We expand the brackets, divide both sides by four, 
and recognize that f f z  is real in this case: 

Substituting here the expressions for a, and making 
the necessary cancellations, we obtain again the iden- 
tity (24), which is valid also for imaginary kz. We see  
therefore that the energy conservation law is satisfied 
at all frequencies w. 

6. CONCLUSION 

We see that the model considered above permits 
formulation of an exactly solvable problem, and from 
this point of view it is of definite interest and is worthy 
of further study. The analysis presented here shows 
that the equations that describe a given medium, and 
in particular the supplementary boundary conditions, 
can be obtained only from a microscopic model of the 
medium and of i t s  boundary layer. At the same time, 
i t  is also possible to construct a phenomenological 
macroscopic theory, which proves to be more con- 
venient for actual calculations. The exponential model, 
in contrast to the model with the nearest-neighbor in- 
teraction, is of the two-parameter type. The spatial 
dispersion is characterized in i t  not only by the effec- 
tive mass m ~ = f Z w o r 3 / 2 ~  but also by the width of the 
exciton band w: - wi = 2G/r. In this sense, the model 
describes more accurately the process of light re- 
flection by a resonant medium and i t  is possible that 
for crystals in which the width of the band is com- 
parable with the longitudinal-transverse splitting i t  
leads to better agreement between theory and experi- 
ment than the effective-mass approximation. 
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