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The experimental results of Deaver and Fairbank [Phys. Rev. Lett. 7,43 (1961)], and Doll and Nabauer [ibid ., 
p. 511, Little and Parks [ibid. 9 ,9  (1962) and Phys. Rev. A133,97 (1964)l on the penetration of a longitudinal 
magnetic field in a thin hollow superconducting cylinder are discussed on the basis of the Ginzburg-Landau 
theory. It is shown that an important role is played here by the screening factor p =r,d/6, ' (T)  (r ,  is the 
inside radius of the hollow cylinder, d is the wall thickness, and 6, (T) is the London penetration depth). It is 
shown that in the casep < 1 the states of the cylinder are single-valued functions of the external field (there is 
no hysteresis). If p > 1 ambiguity appears (on account of states with frozen-in flux) and hysteresis is possible. 
It is shown that as T+T, the hysteresis reported by Deaver and Fairbank and by Doll and Nabauer should 
vanish. On the other hand in the case considered by Little and Parks hysteresis may appear with increasing 
distance from T,. The effect of the sample resistance oscillations observed by Little and Parks in magnetic 
field near T, is discussed, as is also the parabolic growth of the resistance with the field. 

PACS numbers: 74.30.Ci. 74.20.De 

1. The question of penetration of a magnetic field in 
a hollow superconducting cylinder was discussed within 
the framework of the Ginzburg-Landau theory1 in a 
number of theoretical  paper^.^-^ It was observed that 
in view of the doubly connected geometry the magnetic 
field penetrates into the cavity in individual batches 
containing an integer number of flux q ~ a n t a . ~  It was 
noted in addition that hysteresis states a r e  present and 
give r ise  to "superheating" and "supercooling" fields 
in the magnetic f ieldBv3 We recall in this connection 
the experiments of ~ o n t a r e v , ?  who observed analogous 
effects in thick-wall cylinders. 

We point out that the screening properties of a hollow 
cylinder differ greatly from those of a flat film in a 
magnetic field. Thus, the behavior of a flat film is 
determined by the ratio v = d2/52 (T), where d i s  the 
film thickness and 6,(T) i s  the Londonpenetrationdepth. 
In the case of a thick-wall cylinder with wall width d 
<< 6,(T), a s  shown for example in Ref. 5, the equations 
contain a screening factor p =rld/62 (T) (rl  is  the inside 
radius of the cylinder). This factor i s  much larger in 
the case rl >> d than the factor v of a flat film of the 
same thickness d. As a result, the characteristic di- 
mensions and the field values corresponding to first- 
and second-order transitions differ substantially in a 
cylinder3 and in a flat film.6*8 

proportional to H: on the R(H,) plot, of unexplained 
origin. The experimental data were discussed in Refs. 
11-15 on the basis of the Ginzburg-Landau theory, but 
the screening factor p mentioned above was not taken 
into account in due manner. Under the experimental 
conditions of Refs. 9-12 this factor can be  large; this 
leads, a s  will be shown below, to substantial pecu- 
liarities in the manner in which the field penetrates the 
cavity of the cylinder. 

We present here formulas that describe the pene- 
tration of a field into a thin-wall cylinder, with 
screening taken into account, and discuss on the basis 
of these formulas the experimental results  of ~ e a v e r , ~  
 airb bank," ~011," and Nabauer." It will be shown that 
the jumplike penetration of the field observed by 
Deaver et nl.9.10 changes when T, i s  approached because 
of the change in the screening factor p, and becomes 
smoother, while the hysteresis vanishes and the state 
of the cylinder becomes a single-valued function of the 
external field. Under the conditions of the experiments 
of Little and Parks,"*12 however, with increasing dis- 
tance from T ,  and with increasing p, ambiguity appears 
in the states and hysteresis becomes possible. In 
addition, it will be shown that allowance for the terms 
of order of d2 in the formulas leads to the appearance, 
in the free energy of the cylinder, of a t e r m  proportional 
to the square H: of the external field, a term that must 

The penetration of a magnetic field in a thin-wall 
be taken into account when the aforementioned parabolic cylinder was studied also in a number of experiments. 
effect i s  d i s c u s ~ e d . ~ ~ * ' ~  Thus, Deaver and  airb bank^ and Doll and N'sibauerl0 

observed, far from T,, a jumplike penetration of the 
magnetic field into the cylinder, and measured the flux 
quantum ch, = hc/2e  = 2. lo-? G-cm2. Little and  park^,".'^ 
using thinner cylinders near 'I7,, observed an oscil- 
latory dependence of the cylinder resistance R in an 
external field H, at  a low measuring current. This ef- 
fect, also due to successive penetration of individual 
flux quanta into the cylinder, was attributed in Refs. 
11-15 to an oscillatory dependence of the film critical 
temperature on the magnetic field. Besides the resis-  
tance oscillations, Little and Parks  observed, with 
increasing field, an additional parabolic background 

2. According to the Ginzburg-Landau theory,' the 
f ree  energy of a superconductor can be expressed in 
the form 

where F,,  i s  the free energy of the metal in the normal 
state in the absence of a field, \k is the wave function 
(order parameter) of the superconductor, ff < 0 and 
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@ > O  a re  temperature-dependent coefficients, and A 
is the vector potential of the magnetic field. As shown 
in Ref. 16 (see also Refs. 2 and 6), for  a cylinder placed 
in an external magnetic field H,,, the thermodynamic 
potential 

i s  a minimum (V, = n<l, i s  the volume of the cylinder 
cavity, r, and r, a r e  i ts  inside and outside radii, and 
H, i s  the field inside the cavity. We shall assume that 
the fields H,, and H, a r e  directed along the cylinder axis 
z. Since the problem i s  homogeneous along the z axis, 
a unity integration length (I,= 1) i s  implied in (I), (2), 
and everywhere below. 

Using Maxwell's equations and integrating in (2) by 
parts, in analogy with the procedure used in Ref. 6 for 
the case of a solid cylinder, we arrive at the following 
expression for the thermodynamic potential of a hollow 
cylinder: 

where a, is defined in (2) 

dino=Fn0-VHoZ/8n, V=nrz21,; 

V, = T(T;  - r:)l, i s  the volume occupied by the supercon- 
ductor, and M i s  the magnetic moment of the cylinder 
per unit length. It i s  taken into account in (3) that in 
the case of a cylinder O =I *I p ine ,  where 6 i s  the az- 
imuthal angle in a cylindrical coordinate frame and n 
is an arbitrary integer that determines the number of 
flux quanta "frozen" into the cylinder. Equation (3) 
differs from that obtained by Ginzburg6 in the last term, 
which i s  due to the presence of the cavity. 

In Eq. (3) we have changed over, a s  i s  c~s tomary , ' "~  
to reduced variables, introducing the quantities 

with 

where €(T) i s  the temperature-dependent coherence 
length of the superconductor; the parameter n of the 
Ginzburg-Landau theory i s  equal to the ratio 

For $(T) we shall use also a relation that follows from 
the microscopic theory15: 

where €, i s  the pair-correlation length in the super- 
conductor. 

We shall consider the case of sufficiently thin cyl- 

inders, with a t h i c h e s s  defined by the condition 

The condition €,< 6,(T) actually defines the region of 
applicability of the Ginzburg-Landau theory. For type- 
1 superconductors (x < l/m this region turns out to be 
quite narrow1': T, - T << u'T,. 

By virtue of the conditions (8) we can regard the order 
parameter I + I  a s  a constant independent of the coor- 
dinates. Under these conditions the solution of the 
electrodynamic problem for the ~ y l i n d e ? ~  leads to the 
following expression for the internal field H, and for the 
magnetic moment (we use the notation of Ref. 3): 

n D o  2H,  [I,= [ -i nr: ~ ~ ~ K o ( t l ) ~ o ( ~ 2 )  - I 0 ( ~ , )  K o ( t 2 )  1 

2 K 0 ( e 2 )  2 ,  (E,) +I2 (t2)K1(E1) -' 
1 

x [ li- t i  Ko(t~)Io(Es)-L~(Et)K~~t2) I 

where 5 ,  = r , / F ,  t 2  =r2/5,  5 = 6 L ( ~ ) / l $ l ,  and A, and I, 
a r e  Bessel functions of imaginary argument. Equa- 
tions (9) a r e  valid for arbitrary dimensions of the cyl- 
inder. 

3. In the case of a thin wall cylinder (d<<5), formulas 
(9) take a simpler form. Expanding the Bessel functions 
in powers of the small parameter d/6 << 1 at d/r, << 1 and 
retaining terms of order d3 inclusive, we obtain for the 
thermodynamic potential (3) the expression 

where 

The magnetic field H, in the cavity takes accordingly the 
form 

Equations (10)-(12) are  our fundamental formulas and 
will serve as the basis of the exposition that follows. 
We note first  that expression (10) for the thermodynamic 
potential goes over into the expression used in Refs. 
13-15 if one neglects the small terms d/r, << 1 and puts 
p = C = 0. The resultant expression, cited by Tink- 
ham13*14 and by de Gennes,15 was obtained by them within 
the framework of the Ginzburg-Landau equations under 
the assumption that the screening properties of a thin 
cylindrical film a r e  the same a s  those of a flat film in 
a magnetic field parallel to their surface. In fact, as  
seen from (10) [as well a s  from the exact formula (31, 
cf. Refs. 2-41, a screening factor that can in general 
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by large1' appears in a cylindrical film. The same fac- 
tor enters in (12) and leads to a strong screening of the 
internal field (H, = 0 at n = 0 and r ~ .  >> 1; cf. Ref. 3). 

The presence of the last term proportional to Cib2 in 
(10) i s  also understandable from simple physical con- 
siderations. In fact, with increasing field %, the in- 
ternal field becomes comparable with the external field, 
H I - & ,  i.e., n=@/@,* [see (12)j. Under these conditions 
the term with the coefficient A in (10) becomes small, 
and a cylindrical film in a magnetic field having the 
same value on the inside and outside behaves like a flat 
film in a field H, parallel to i ts  surface. We note that 
the last term of (10) coincides exactly (at r, >> 6,) with 
the corresponding expression for the thermodynamic 
potential of a flat Thus, this term ensures the 
transition to the limit of a flat film in a strong field. 
The presence of the term -CH; that increases quad- 
ratically with the field in (10) causes the supercon- 
ductivity of the film to become suppressed, sooner or 
later, by the external field. We shall see below that 
this term makes a substantial contribution to the para- 
bolic effect observed in Refs. 11 and 12. 

The number n in (10) i s  a function of the state of the 
system and can be determined from the requirement 
that the stable state of the system correspond to an ab- 
solute minimum of the thermodynamic potential f in the 
given external field H,. With increasing field, transi- 
tions n - n +  1 should take place, and therefore the fac- 
tor CP,, = I - tzj  in (10) i s  a bounded (0 c cp,, c 1/2) 
periodic function of the field. Thus, the periodic dep- 
endence i s  described by the terms -@/@,* - n)' in (10). 

To clarify the foregoing, we present several diagrams 
plotted with the aid of Eqs. (10)-(12) for the geometric 
parameters Y, and d corresponding to the experimental 
conditions of Refs. 9-12. Figure 1 shows plots of the 
thermodynamic potential f [Eq. (10)l a s  functions of G2 
and H, (3 = n< H,). It i s  clear that the possible state of 

FIG. 1 .  Plots off ( I )~)  at various $ = a / * :  according to (10) .  
The values of q5 are marked on the curves. The solid linee 
correspond to the state n= 0 and the dotted ones to n= 1. Ihe 
circles on the curves mark the extremum points off (at 8 
= $02). In Fig. b the minimum and the maximum coalesce at 
b= 1.69 at the inflection point $Bo = 0.52. The curves were 
plotted for a cylinder with the set of parameters VDF (see 
footnote 2 ) ,  a-at t=  1 x l o 4 ,  b-at t =  5 x l o 4 .  

the system corresponds to the minimum of the thermo- 
dynamic potential, i.e., 

(@ f/W2>0). Equation (13) enables us to obtain the val- 
ue of $,(H,) at the point of the minimum off. This equa- 
tion, according to (lo), reduces to an equation cubic in 

and can be solved in principle analytically with the 
aid of the Cardan formulas. This solution, however, 
i s  quite unwieldy, and for the sake of clarity we pres- 
ent the values of $,@I,) and HI(%) obtained from (10) 
(13) by numerical means (see Figs. 2-4). The figures 
show also the difference A = f,,, - f,,, between the 
thermodynamic potentials a t  the extremal points corres- 
ponding to the minimum and maximum of f. An exam- 
ination of the curves in Figs. 2-4 makes obvious both 
the periodic field dependence contained in (10) and the 
important role of the parabolic term *Ca2. In the ab- 
sence of this term the curves would be strictly periodic 
at all values of the field. 

It i s  clear from Fig. l b  that the minima on the f(+) 
curves at +f  0 vanish at the inflection point + = +,,, where 

To find the simultaneous solution of Eqs. (13) and (14) 
i t  is necessary to consider two cases, p < 1 and p > 1. 
In the case r ~ .  < 1 the solution of (13) and (14) yields 
+:, = 0, 6 = +==, where + = d/@, while cD,, = o,,/@$ i s  the 
root of the equation 

The superconductivity of a hollow cylinder thus vanishes 
gradually a t  y < 1 via a second-order phase transition 
(+, =0, see Fig. l a )  when the field reaches the value 
6 = +,, from (15). 

In the case y > 1, solution of Eqs. (13) and (14) yields 

FIG. 2. Dependence of the internal field a /ao*, Oi i = T Y ~ ~ H ~ )  on the applied field (9= a/@,,*, @ = sri Ho) in states 
with different n for a cylinder with the parameters YDF: a-at 
t = l -  l o 4  C = 1 . 2  n ,=4) ,  b-at t = 5 . 1 0 4  ( ~ = 5 . 6  n,=10),  c-at 
t = 2  . l o 4  @ = 2 . 2  n ,=6) .  
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FIG. 3. Dependence of qo2 and A on @ in states with different n 
for a cylinder with the parameters PDF. The curves of Figs. 
a and b-at t= 5 x lo4, c and d-at t= 1 x lo4. 

where @,, is the root of the equation 

Thus, if p >1 we have $:,> 1 (at 1 /p  < 1 - 1/2C@:r) and 
the superconductivity of the hollow cylinder (in the n 
state) vanishes via a first-order phase transition (jump- 
wise a t  finite $,,, see Fig. lb )  when the field reaches 
the value @ = @,, from (17). In essence, the values of 
$,, and @,, from (16) and (17) determine the points of the 
maximum "superheating" and " s u p e r ~ o o l i n g " ~ ~  in a 
magnetic field [the extreme points on the I$,($) curves 
in Figs. 2 and 41. 

In the case p = 1 and @,,= 1 the roots of Eqs. (15) and 
(17) coalesce. Obviously, the value p =r, d/62,= 1 sep- 
arates the regions of the first  and second order tran- 
sitions (Ref. 2).2' 

- 

FIG. 4. Plots of and A against @ in states with different n 
for cylinders with the parameters PLP bee footnote 1). Curves 
of Figs. a and b-at t=l-T/Tc=5 x 10-~(p=0.32,n,=7), cand 
d-at t=2X lom2 (p=1.3,nm=15). 

We determine also the slopes of the <h,(@) curves on 
Figs. 2 and 4 at the points @ = n  (the points of inter- 
section with the straight line @,= @). From Eqs. (13) 
and (12) we obtain at @ = n +  b(b << 1) 

g;=l-'/2Cnz-Cnc, +,=nSS tg a, (18) 

where t am =d@,/d5 i s  equal to 

From (19) and from Figs. 2 and 4 i t  i s  clear that the 
slopes of the GI($) curves depend on the dimensions of 
the cylinder and on the temperature [via p(T) and 
C ( T ) 1  and on the number n. At p >> 1 we have tan0 =0, 
i.e., for cylinders with a large screening factor p the 
curves @,($) a r e  almost horizontal (as was the case in 
the experiments described in Refs. 9 and 10). The 
@,(@) curves then overlap, i.e., in a specified external 
field the system has several possible states with dif- 
ferent values of n. This means that hysteresis is pos- 
sible under these conditions, When the dimensions a re  
decreased and a s  T - ~ , ( p  - 0) the screening properties 
of the cylinder become weaker and tancr - 1, B, i.e., 
@,=@. The hysteresis also vanishes in this case, since 
the states of the system become single-valued functions 
of the external field. 

Putting f =  0 in (18), we obtain the maximum value n 
=n,, a t  which a superconducting transition i s  still pos- 
sible ($: > 0): 

n c r = [ ~ ' Z l ,  
(20) 

where the brackets [ol denote the integer part of the 
number o. It i s  seen from (20) and from Figs. 2-4 that 
the number of oscillations of the curves @,(@I and A(@) 
is limited. With increase in temperature, T - T,, the 
number n=ncr  decreases in accord with (11) and (20). 

In the case p << 1 the cubic equation (13) becomes sim- 
pler and a more complete solution of the problem can be 
obtained: 

Equations (21) describe analytically the behavior of the 
curves q2, $,, and A given in Figs. 2-4 (at small values 
of PI. 

4. In this section we discuss in greater detail the ex- 
periments of Little and Parks."'12 The effect of pen- 
etration of the field into the cylinder was recorded by 
them not directly (as in Refs. 9 and lo), but indirectly, 
by observing the change of the resistance R of the 
cylinder in the transition region near '1', in a magnetic 
field H ,  at a small measuring ~ u r r e n t . ~ '  It was ob- 
served that R(H,) contained a component that oscillated 
with the field, against a background that increased with 
the field quadratically (and depended strongly on d ,  r,, 
T, and the sample orientation). The number of oscil- 
lations of the resistance was limited, and with in- 
creasing field the resistance became a monotonic func- 
tion of the field. 
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This behavior can be qualitatively explained on the 
basis of the thermodynamic analysis presented above. 
Indeed, i t  i s  intuitively clear that the appearance of a 
resistance in the transition region near T, might be at- 
tributed to a fluctuation-induced onset of normal regions 
in the superconductiig metal (cf. Refs. 20-25). How- 
ever, estimates of the fluctuation resistance of the films 
near T,, deduced from the formulas of Refs. 20-25, 
show that the temperature region in which these dyn- 
amic fluctuations a re  significant i s  very narrow (T 
- T,S  lo-'^). The smallness of this region i s  due to 
the following: 1) In our case we a r e  considering films 
that a re  thicker by one o r  two orders than in Refs. 20- 
25. 2) The case of pure superconductors (1 >> F,) i s  con- 
sidered. 3) The case of type-I superconductors (rel- 
atively large C,) i s  considered. It can therefore be 
assumed that the appearance of resistance in the tran- 
sition region T - T,- - lo'* K i s  due not to dynamic 
fluctuations, but more readily to structural fluctuations, 
i.e., to inhomogeneities that broaden also the phase- 
transition curve. 

As the measure of the proximity to the phase transi- 
tion we can use the difference A =  fmin- fm,, between the 
neighboring minimum and maximum of the thermody- 
namic potential (/A1 i s  the potential barr ier  that the 
system must overcome to go from the superconducting 
to the normal state). The increase of the resistance in 
the transition region can be interpreted here a s  an ap- 
proach of the system to a purely normal state (in which 
case / A \  decreases and the role of the structural fluctu- 
ations increases). Conversely, i t  can be assumed that 
the decrease of the resistance i s  due to the increased 
deviation of the system from the normal state ([A1 
increases and the role of the structural transitions i s  
suppressed). The plots of A(H,) (+ = n~H,,) shown in 
Figs. 3 and 4 show the characteristic features of the 
regularities observed in Refs. 11 and 12, namely the 
presence of oscillations, the parabolic background, the 
existence of a limiting value n,,, and the dependence on 
the dimensions. 

For a quantitative comparison of the theory with ex- 
periment, the intuitive arguments advanced above a r e  
of course insufficient. We need for this purpose a con- 
sistent theory in which the sample resistance can be 
directly expressed in terms of the free energy of the 
system, with account taken of the structuralfluctuations. 
There i s  still no such theory for a cylindrical system. 
However, the qualitative arguments advanced a r e  useful 
even in this case, so that greater attention must be 
paid to the role of the screening factor, and a number 
of effects that one can attempt to observe in experiment 
(for example, the specific dependences on the size and 
on the temperature, the interchange of the regions with 
and without hysteresis, and others). 

As to the aforementioned parabolic effect, i t  i s  desir- 
able here, too, to make a more detailed experimental 
investigation aimed a t  estimating the contribution made 
by the last term of (10) and the experimentally observed 
relations. It i s  probable that this term alone i s  in- 
capable of describing the parabolic effect [in particular, 
no account i s  taken in the free energy (10) of the impor- 

tant component due to the inaccurate orientation of the 
cylinder in the magnetic field, cf. Ref. 151. It i s  evident 
from the foregoing results, however, that the term 
-C+2 plays an essential role in (10) and must be taken 
into account. 

5. In this section we deal with an interpretation of 
the resistance oscillation observed in Refs. 11 and 12 in 
terms of the oscillation of the effective transition tem- 
perature4' (see also Refs. 13-15). This interpretation 
follows, in particular, from the formulas (15) and (17) 
above. In fact, these formulas establish the presence 
of a critical value @,,(TI a t  a specified measurement 
temperature T. At the point $J = $J,, the minimum of the 
thermodynamic potential (at $,PO) vanishes and the sys- 
tem should go over into the normal state ( J I ,  = 0). This 
transition can be effective at a given field @ by changing 
the sample temperature. Solving Eq. (15) for T [with 
account taken of (7) and ( l l ) ]  we obtain at < 1 

Here T* has the meaning of the effective transition tem- 
perature. (In Refs. 11 and 12, T* was chosen to be the 
temperature of the steepest part of the function R(T) in 
the transition region near T,). Equation (22) goes over 
into the equation given in Refs. 13-15 if we replace in 
(22) the renormalized value @,* by Qi, and discard the 
las t  term in the square bracket. The shift of the tran- 
sition temperature at I@/+,* - nl = 1/2 and n - 1 under the 
experimental conditions of Refs. 11 and 12 amounts 
according to (22) to T, - T* - (1 - 5) K .  

Equation (22) contains a periodic dependence of T*(d) 
with a period @,* = 0,(l +d/r,)", that differs from the 
flux quantum5' 3,. Let us explain why our equations 
contain the renormalized value +$. In experiment9'15 
the quantity studied i s  usually the periodicity with res- 
pect to the applied flux @ = OH,, where a = n rf. It i s  
clear, however, that the size of the region in which a 
field i s  present in the cylinder exceeds nri (owing to 
the penetration of the field into the superconductor). AS 
shown by a rigorous calculation in accord with (3), the 
expression (10) contains in fact the effective field-pen- 
etration region a,,,= nr,r, = a(1 + d/rl). The quantity 
$J = @/+* in (22) could then be written in the form @ 
= +*/a,, where 9* =u,,,H,. In this form i t  becomes 
obvious that allowance for the penetration effect re- 
normalizes in fact not the flux quantum @, (which i s  a 
fundamental constant), but the a rea  of the region in 
which a field is present, If the relations obtained in 
Refs. 11 and 12 a re  plotted not as functions of 9 but a s  
functions of the effective flux +*, then a str ict  perio- 
dicity should take place according to (22), with a period 
60. 

In analogy with the derivation of (22), in the case 
> 1 we get from (17) the formula 
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An estimate for the shift T - T* at  I I$ - nl = l / 2  and 
n- 1 yields according to (23) values close to the esti- 
mate obtained from (22). 

We present also a formula obtained for T, - T* ob- 
tained from the conditions f = 0 and af/all, = 0 (see foot- 
note 2). These conditions lead to the relation 4Al(@ 
- n)' = [I + ~ ( 1 -  1/2 c@')]', from which we get 

The estimate of T, - T* according to (24) differs little 
from that obtained from (22) and (23). 

We note that our analysis, based on Eq. (lo), i s  valid 
under the condition d/6 << 1, where 5 = 5,/ll , .  Using Eqs. 
(5)-(7) and (22), this criterion can be reduced to the 
form 

which differs from the criterion (d/2url << 1), given in 
Refs. 13-15 for the applicability of the theory. The 
presence of the factor J, in (25) (y, << 1 in the case of a 
second-order phase transition) extends greatly the 
region of applicability of the theory developed above. 
In the case of a first-order transition (0 < J, Q I), to ob- 
tain a criterion similar to (25) it i s  necessary to use 
(23) in lieu of (22). 

From (17) can obtain also a formula for the tempera- 
ture TI at which a state with a frozen-in flux can exist 
inside the cylinder in the absence of an external field. 
Putting in (17) I$ = 0 and n = 1 (this corresponds in Fig. 
3a to the outermost-left-hand point of the curve with 
n = 1 falling on the ordinate axis) we get 

where a, i s  defined in (23). 

We note in conclusion that, a s  follows from the fore- 
going analysis, for type-I superconductors (u < 1/m, 
under the conditions of the experiments in Refs. 9-12, a 
change in temperature can be accompanied by either a 
first-order or a second-order transition. For type-II 
superconductors, on the other hand (n > l / C ) ,  in view 
of the smallness of the correlation radius f, (Ref. 15), 
the parameter 1 in the same temperature interval i s  
much smaller than in the case of a type-I supercon- 
ductor, so that only second-order phase transitions 
without hysteresis should be realized. This i s  seen, 
in particular, from the condition for the existence of a 
first-order phase transition in a hollow cylinder6': 
r,d/6:>lo3 This criterion can be reduced with the aid 
of (5)-(7) and (22) to the form 

Since d/rl < 1 and In - @/@,*I .; 1/2, the condition (27) 

can be satisfied only for type-I superconduztors. 

In conclusion we make the following remark: The 
foregoing picture of the behavior of a thin-wall cylinder 
in an external field i s  perfectly similar physically to 
that observed when a bulky superconducting ring with 
weak binding (a Josephson junction) i s  placed in an ex- 
ternal In the latter case the external field 
likewise penetrates inside the r ing through the weak 
link in individual batches (flux quanta), and regimes 
with and without hysteresis a r e  possible (for details 
see, e.g., Ref. 28). The role of the screening param- 
e ter  p in the case when rings with weak binding i s  
played in this case by the self-induction coefficient I 
of the ring, which i s  equal (in dimensionless units, see 
Ref. 28) to the product of the width of the junction by the 
ring area. At 1 < 1 there i s  no hysteresis, and at 2>1 
hysteresis appears, in full analogy with the situation 
in a thin-wall cylinder. 

" B ~  way of example we consider below cylinders with two sets 
of parameters YDF and yLP. The set  YDF corresponds to 
the conditions of the experimentssp10 on a tin cylinder: 
= 2 . 1 0 - ~ c m ,  d = 1 . 4 . 1 0 ~  cm, ~ ~ = 7 . 1 0 ~ c m ,  x = 0 . 2 .  Theset  
gLP corresponds to the conditions of the experiments of Refs. 
11 and 12:  t 0 = 2 . 1 0 "  cm, d = 0 . 7 .  cm, r 1 = 0 . 8 .  l o4  cm. 
For a cylinder with the parameters YDF we have p= 5.6 at 
t = l - T / T , = 5  x104 and p=1.1 at t = l  x 1 0 - ~ ;  for a cylinder 
with the parameters yDF we have p= 1.3 at t= 2 x lo",  i.e., 
the factor p is  important. 

''we note that the end of the superconducting state could be 
defined not by the conditions (13) and (14) but by the relations 
f = 0 and ?/a$ = 0. The formulas obtained thereby would lead 
to qualitatively analogous conclusions (see the end of Sec. 5).  

 h he influence of the measuring current in experiments of the 
type in Refs. 9 and 10 was discussed in a paper by Kolpazhiu 
and Shvets ?' 

4 ' ~ e  note that an analogous interpretation can be made in the 
case when the superconductivity of a flat film is destroyed by 
a magnetic field (cf. Refs. 2 - 4 ,  where they usually begin 
with finding the critical field at a given temperature T ) .  

"we note that the ratio d / r l  in the experiments of Refs. 11 and 
12 was -10 - 20%, and the measured period differed from the 
flux quantum +o by just 10 - 20 %. It is  possible that the ob- 
served deviation is  due to inclusion of terms of the order of 
d / r l  in @:. 

"when account is taken of the parabolic term, this condition 
takes according to (16) and (17) the form r l d / 6 t  > 1 - % ~ @ & .  
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