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A two-band model is proposed for a metal-insulator transition with lattice distortion, with account taken of 
the intraband and interband Coulomb interaction, as well as of the anisotropy of the Fermi surface. The phase 
diagram of the system as a function of the degree of band occupation is constructed by solving the system of 
self-consistency equations for the chemical potential and for the gap. It is shown that two dielectric phases 
exist, and one or the other is stable, depending on the band occupation. The results are compared with 
experiments on oxides and sulfides of transition metals. 

PACS numbers: 7 1.30. + h 

1. INTRODUCTION 

It is that a narrow-band metal whose elec- 
tron spectrum satisfies the condition 

e, (k) -p=-ei (k+Q) +P (1) 

where the wave vector 2Q coincides with the reciprocal- 
lattice vector, is unstable to doubling of the period of 
the cell and goes over into the insulator state. At the 
same time, the band structure of narrow-band transi- 
tion-metal compounds is characterized by the presence 
of several bands that intersect in the vicinity of the 
Fermi level. Therefore more general is a two-band 
model, in which band 1 satisfies condition (1) while band 
2 does not satisfy it. Such a model was proposed in 
Ref. 3, and i t  was shown that allowance for the second 
band greatly broadens the class of possible solutions 
of the self-consistency equation for the order parameter 
A =g(Q)(b,+ bf,)/m, where b, is the annihilation oper- 
ator of a phonon with wave vector q, and g(q) is the el- 
ectron-phonon interaction constant. In particular, 
several nontrivial solutions appear, thus indicating the 
presence of metastable states. 

In Ref. 3, however, no account was taken of the Coul- 
omb interaction. More accurately, account was taken 

of only that part of this interaction which leads to a re- 
normalization of the interaction constants. In the two- 
band case there appears also a coupling between the 
bands on account of the self-consistent occupation num- 
bers,  and this changes the self-consistency equation. 
In addition, i t  was assumed in Ref. 3, in the course of 
the solution of the system of self-consistency equations 
for the chemical potential p and for the gap A ,  that p 
depends little on the temperature T, and p(T =0) was 
substituted in the equation for A. 

The aim of the present paper is a fully self-consis- 
tent description of the metal-insulator transition (MIT) 
in the two-band model, with account taken of the Coul- 
omb interaction. In addition, we consider the influence 
of the anisotropy of the Fermi surface, of the pressure, 
of doping, and of the magnetic field on the MIT. 

2. HAMILTONIAN AND GREEN'S FUNCTIONS 

We consider a system of electrons and phonons des- 
cribed by a Hamiltonian 

where 
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%c= (en-p) ,~rr"+ C bn (h) ai.ar+h,Ao, nrho=a$oaao, 
f i o  fhAa 

Here a;,, i s  the operator for the creation of an electron 
in a state described by a Wanier function localized on a 
site f of the lattice in the band X = 1,2 with spin projec- 
tion a; a re  atom-like energy levels, which smear 
out, a s  a result of electron hopping with a hopping in- 
tegral b,(h) between the nearest neighbors, into narrow 
tight-binding bands 

The &P, describes two independent bands, and des- 
cribes the Coulomb interaction. In view of the tight 
binding of the electrons we retain in & only the intra- 
atomic and interatomic (with z nearest neighbors) 
terms. U and V a re  the matrix elements of the intra- 
atomic Coulomb interaction on one orbital and on dif- 
ferent orbitals, and J are  the matrix elements of the 
exchange interaction. K,,,(h) is the matrix element of 
the interatomic Coulomb interaction. 

In the insulator phase, the Bose condensation of the 
phonons with the wave vector Q reduces the electron- 
phonon interaction to an external field acting on the el- 
ectron~:,~ and we therefore add to go 

%a= Ar exp (- iQf)  nrre. 
;;d 

The term XA singles out the sublattices A and B: 

To find the spectrum of the excitations and of the oc- 
cupation numbers, we introduce two-dimensional anti- 
commutator Green's functions 

<afA,( t )  la:,.,* (0) ))=-i0 (t) ( [ n f r . ( t ) ~ ~ A ' o .  ( 0 )  I +), 
' (4) 

where the angle brackets denote the thermodynamic 
mean value. For the Fourier transforms of the Green's 
functions (4) (the vector k i s  defined in half of the ini- 
tial Brillouin zone) 

G:: ( k ,  E )  =C exp[- ik(a-a')  ]<a,r.la:,r.)~, 
a-a, 

G;:' ( k .  E )  = c\p[-tk(P-a') ]((a~no~fl;'>o))~ 

@-a' 

we obtain in the mean-field approximation by the stan- 
dard method 

G'l, -E-eLB+ A+ p  GcLl - E-elA-A+p 
4.4 - D ( k , E )  W E -  D (k ,  E)  

Here 

The Green's function (5) and the spectrum of the band 1 
differ from the corresponding expressions of Ref. 3 by 
the substituting & f a  - &, , and agree with them at U = V 
=J=K=O. 

So far we have made no assumptions concerning the 
symmetry of the lattice and of the hopping integrals 
b,(h), other than the condition (1). This condition can 
be satisfied in the one-dimensional case only in high- 
symmetry three-dimensional lattices of the primitive 
cubic and bcc type. We consider the three dimensional 
case, and if the symmetry of the integrals b,(h) coin- 
cides with the symmetry of the lattice for both bands, 
then band 2 should also be described in the decreased 
Brillouin zone, and its spectrum and Green's functions 
a r e  obtained from (5) by simply replacing the band in- 
dices. More interesting from the point of view of the 
applicability of the model, however, is the anisotropic 
case, when the hops in band 1 a re  along one direction 
(the z axis), and in band 2 perpendicular in this direc- 
tion. This anisotropy is connected with the anistropic 
character of the wave functions of the d electrons. The 
sublattices A and B are  then separated along the z axis, 
and the hopping across this axis have an intra-sublattice 
character. Therefore A, = O  and 

*,B E : ' ~  ( k )  =c2 +bz (k ) -p .  
(7) 

The expression for c:,B i s  obtained from (6) by the band 
index interchange 1 = 2, 

As shown in Refs. 1 and 2 ,  allowance for deviation 
of the spectrum in band 1 from the condition (I),  for 
example a s  a result of hops between the nearest neigh- 
bors, leads to anisotropy of the Fermi surface. We 
shall assume that the spectrum in band 1 is [in place of 
(311 

e,(k)=e,+b,(k)  -6e , (k ) .  

In addition, we wish to consider the influence of a mag- 
netic field on the MIT. To this end it is necessary to 
take into account the splitting of all the bands in spin. 
Therefore the spectrum of the electron in the insulator 
phase is given not by (5) and (7), but by 

El* (k ,  a )  ='I2 (e lA+ E,') =tv ( k )  -6ei(k)  -q ( a )  &)H-p. 

A.B E P . ~  (k ,  a )  =ez + b2(k)  -. ( o )  pf; '  H-p, (8) 

where p:' is the Bohr magneton for the electron in band 
X with mass m,. 

3. SELF-CONSISTENCY EQUATIONS 

From the Green's functions (5) and (7) we obtain the 
occupation numbers: 
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2 
n:'" = -x f (E:" (k ,  a ) ) ,  

ke 

f ( E )  = (eZ1=+l) -'. 

The self-consistency equation for the chemical potential 
is of the form 

1 
p = -x [ f  (El+ (k ,  a )  ) +f (El-&, a ) )  + f  (EzA(k, a )  ) +f (EzB(k, a )  ) 1. 

ka 

(10) 
where p is the number of electrons per cation. 

The self-consistency equation for the gap A is ob- 
tained by the same method a s  in Refs. 2 and 3, but be- 
cause of the renormalization of the gap it turns out to 
be more complicated and we present therefore a new 
derivation. Averaging the Heisenberg equation of mo- 
tion 

and taking the Fourier transform with respect to time, 
we obtain 

After taking the inverse Fourier transform and using 
Eqs. (9) we have 

On the other hand, in accord with the definitions of A 

and A, 

were a constant quantity, then it  would play the role of 
the external field that induces nonzero values of in 
the entire temperature interval, or  that lead to a jump 
of ii at T s T,, depending on the sign of v ( a similar 
equation was investigated in Ref. 5). In our case, the 
nonzero value of n, is due to the difference between the 
occupation numbers nt and n: . It is natural to assume 
that this difference i s  proportional to the splitting of the 
level E,, and then 

IT,='/, (n,*-nZe) ='/,a (e lA-eP) . 
This is in fact a power-series expansion, since the 
zeroth term of the series i s  equal to zero at 4 =E:. On 
the other hand, from Eqs. (6) we have for band 2 

elA-~2B='/2U (n,*-n,') +I/,V (nlA-n,') =2JJIIz+28&11,, 

Therefore 

and the self-consistency equation i s  written in the form 

which shows that the interband Coulomb interaction has 
been reduced to a renormalization of the coupling con- 
stant, and that this renormalization does not depend on 
the sign of v. We present below results of a numerical 
solution of Eq. (ll), which shows that actually the role 
of the interband term consists in an inessential shift 
of the transitions temperatures; the phase diagram re- 
mains qualitatively unchanged. 

We change from summation over the quasimomentum 
in Eqs. (10) and (11) to integration with respect to ener- 
gY: 

-=- 
I 

Q I [ A - ~ ( ~ ! A - ~ , ' )  . 
N'" 2g,(Q) 1 The function 6g1(k) on the Fermi surface i s  replaced, 

It follows from (6) that 
just a s  in Ref. 2, by the step function +u in one half of 
the solid angle of each octant of the Fermi surface and 

E ~ ~ - E , ~ = ' / ~ U  (nlA-nIB) +L/2V (n,*-nta), -u in the other. As a result, the system of self-consis- 
U=U-2zlK, V=V-11zJ-2z1K. tency equations takes the form 

Therefore, using (9) once more, we obtain the self- 
consistency equations p - z  ($~l(e~de~f(~I+(u,a))+f(~l+(-~,o)) 

A[ I+ ( ~ ~ , Z ( Q ) ~ W , - U )  n , ~  -vn,, (11) 

where 

1 n2 = Fa [ f  (E2A(k ,  a ) )  - f (EZn(k ,  a ) )  I .  
k0 

Equation (11) contains two effective Coulomb para- 
meters: intraband 8, and interband v. The intraband 
interaction actually only renormalizes the effective 
coupling constant') 

g=4gt2(Q) /OQ-U+2Z,K, 

while the interband interaction changes the structure 
of the equation. We note also that the interaction be- 
tween the atoms facilitates greatly the condition for the 
existence of nontrivial solutions of (11) g> 0, since 0 
<U. In the absence of interband terms we have the us- 
ual equation 1 +gH1 =0, which has been considered pre- 
v i o u ~ l y ~ . ~  and describes MIT of the second kind at 6&, 
=H = O  a t  the point T =T,. If the right-hand side of (11) 

(14) 
We shall use two expressions for the state density: 

the model of a rectangular band for analytic calcula- 
tions at T = 0: 

and the model of elliptic bands for the numerical calcu- 
lations: 
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at I E  1 < WA and 

K(e)=O at lel>WI. 

We note that band 1 is not one-dimensional, and there- 
fore the state density vanishes on the edges of the band. 
Thus, for example, in the rutile lattice condition (I)  is 
satisfied for Q=n[~- l ,O,c-~] .~  

4. SOLUTION OF THE SELF-CONSISTENCY 
EQUATIONS IN LIMITING CASES 

In view of the large number of the parameters of the 
theory, the construction of the complete phase diagram 
in the parameter space is difficult. In this section we 
consider some limiting cases in the absence of inter- 
band Coulomb interaction, ? = 0. 

a) u =O,H =O. In this case we obtain the equations of 
the two-band model, the solutions of which a r e  given in 
Ref. 3 for p = l  and in Ref. 7 for p=2,  3, 4, and 5. An 
important difference from the single-band is 
the onset of metastable semimetallic states, at which 
the Fermi level passes near the top of the band E; and 
near the bottom of the band E,. 

b) H = 0, W, < d = E, - cl . The quantity d i s  the splitting 
of the d-level by the crystal field. In this case the bot- 
tom of the second band lies above the center of the 
first, and at p = 1 we have p =c, and the model becomes 
single-band. Equation (14) is then reduced to the cor- 
responding equation of Ref. 2 [here X =gN,(O)]: 

and a s  at T = 0 and u = 0 the solution 
A=Ao=2W,e-'IL, h<l .  

At A0/2 <u <Ao there exists another nontrivial solution 
of Eq. (15): 

there are  no nontrivial solutions at u> A,.' 

A state is realized with the largest gain in the ther- 
modynamic potential compared with the metallic phase. 
This gain is8 

For the phases a, and A, we obtain respectively at T=O 

Thus, the phase A, forms the ground state, and A, 

i s  unstable. The same results were obtained in similar 
problems concerning the antiferromagnetism of chro- 
miumg and charge density waves in one-dimensional 
systems." It was also shown in Ref. 9 that at  T = O  
the transition relative to the parameter u can be of 
either first or  second order. 

Figure 1 shows the temperature dependence of A(T) 
obtained by us from (15). A new result compared with 

I T / W ) X I D ~  

FIG. 1. Temperature dependence of the gap at d >  W 2  for dif- 
ferent values of the interaction constant A. Here u = 0.03; 
curves 1, 2. and 3 correspond to k = 3 . 5 0 ,  3.70, and 3.80. At 
K' > 4.11 there are  no nonzero solutions. 

T = 0 is the division of the region A,/2 < u < A, into two: 
a0/2 <u <uo and uo <u <Ao. In the first  of them the phase 
A, has its own transition temperature T, < To, where 
To is the transition temperature of the phase A,, with 
a second-order transition at the point To. In the second 
region T, =To and the transition is jumplike, of first 
order. A critical point exists a t  u =uo. 

5. SOLUTION OF THE SELF-CONSISTENCY 
EQUATIONS IN THE GENERAL CASE 

In this section we a r e  interested in the case W2>d, 
when the model is essentially two-band. The problem 
of finding the chemical potential from (13) now becomes 
complicated, since it is necessary to solve (13) and (14) 
simultaneoulsy. These equations were solved numer- 
ically in the following manner: from each equation we 
obtained the explicit dependence of p(A) at a given value 
of T and p, and then sought the intersection of the two 
plots pl(A) and p,(A), see Fig. 2. The chemical poten- 
tial was reckoned from the level c,, i.e., c, = O .  The 
pl(A) plot obtained from (13) depends little on the tem- 
perature, and therefore Fig. 2 shows only one such 
line. It is seen from Fig. 2 that there exist two solu- 
tions for A at low temperatures and no solution at all at 
T > T,. A first-order phase transition connected with 
the discontinuity of A takes place at the point T,. In 

FIG. 2. Scheme for the solution of the system of self-consis- 
tency equations for the chemical potential and the gap at W 2  
> d. Curve 1 shows the explicit dependence of p(A) for Eq. (13) 
at p = l ,  curves 2 ,  3, 4 show the same for Eq. (14) at different 
values of the temperature: T 2  <T3 <T4. 
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FIG. 3. Temperature dependence of the gap and of the chemi- 
cal potential at ~ - ' = 3 . 5 0 ,  W i =  0.5 eV, W 2 =  0.7 eV, d =  0.69 eV, 
u=0.015  eV, V =  0 ,  and H =  0 .  Curves 1 ,  2 ,  3, and 4 corre- 
spond to p =  1, 0.990, 0.982, and 0.980. The solid and dashed 
lines correspond to the phases A, and A2, respectively. 

addition, with the aid of Fig. 2 i t  is possible to com- 
pare directly the chemical potentials of two phases 
corresponding to different A .  At the first-order transi- 
tion point p(A,, T,) = p(A,, Tc) = p(0, T,). 

Figure 3 shows the temperature dependence of A(T) 
and p(T) obtained in this manner fo r  different values of 
p with the remaining parameters fixed, in the absence 
of a magnetic field and of interband Coulomb interac- 
tion. In the elliptic state density model A, is of the 
form 

At kml =3.50 and W, =0.5 eV we have A, = 0.0222 eV. We 
note that for all  p the MIT is of first-order. This is 
due to the large value of u , u / ~ ,  s 1. In fact, a t  u = O  
a similar soultion of Eqs. (13) and (14) yields an MIT 
of second order and absence of metastable states in the 
indicated range of parameters. 

At T = O  the plane (A, g) breaks up into a number of 
regions in accordance with the different variants of the 
location of the Fermi level relative to  the four bands 
E,(u) and E,(-u). A true insulator state, when the E- 
bands a r e  filled, and the E+ bands a r e  empty, and the 
chemical potential l ies in the gap is possible a t  a > u - p 
(p < 0, see Fig. 3). If A <u + 1 pl (region I) ,  then the 
Fermi level crosses the E-(u) bands, a t  A<u - ( p ( ,  
u >  Ip 1 (region 2) i t  does not cross  the bands E-(u), 
E-(-u) and E+(-u), and finally a t  u <  I p I and A < ( p I - u 
(region 3) it crosses the bands E_(u) and E-(-?A). Cal- 
culation of the thermodynamic potentials shows that the 
conditions for the stability of the obtained two phases 
A, and A, a r e  determined by the region in which the 
point (A ,, u,) lands. The phase A, =Ao is insulating a t  
p =l and the energy gain is determined by Eq. (16). 
The phase A, lands in this case in region 2 (to compen- 
sate for the holes in the E- bands i t  is necessary a t  p 

=1 to fill in part the E+ bands); i t  is easy to show that 
for  region 2 we have 

1 --- [ ( ~ + ~ ) ~ - - A ~ ] " + u + p  1 [ ( ~ - p ) ~ - A ~ ] ' " + u - p  
- In- A--1n 

2 A h 2Wi 

from which it follows that 651(A,, pz, 0)> 0, i.e., the A, 

phase is unstable. 

With decreasing p, when holes in the bands E - ,  the 
points (A, p) can land in regions 1 and 3. Thus, for 
region 1 

1 2W, 1 [ ( U - ~ ) ~ - A ~ ] " ' + U - ~  
-= I n - -  In 

A A 2 A (17) 

i.e., the state of the degenerate p-type semiconductor 
is more favored in this region than that of the initial 
metallic state. At the same time, solutions of the 
metallic type a r e  possible also a t  p < 1 (region 2), but 
they a r e  unstable, just as for p = 1, with 651> 0. 

Curve 2 on Fig. 3 corresponds to the case when the 
point (A,, p,) lands in region 1 and is stable, while 
(A,, 1,) lands in region 2 and is unstable. It is possible 
however, that the solution (A,, p,) lands in the region 1. 
In fact, i t  follows from (17) that A is obtained in this 
region a s  the solution of the equation 

A'-2 (u-p) AoZA+Ap'=O. (18) 

Equation (18) can have several real  solutions, each of 
which is more favored than the metallic phase. Thus, 
the condition for the stabilization of the phase A, is 

u+p=Az. (19) 
Physically this condition means that the semimetallic 
phase A, is unstable, while the semiconductor phase is 
stable. Curves 3 of Fig. 3 correspond to this case. 

A comparison of the energies of the two semiconduc- 
tor phases in region 1 can be easily made by using 
(17). If the chemical potentials of the two phases a r e  
the same, p(Al) = p(A,), then 

p(At)=p(A~),  TO 

Q(A2, p, O)-Q(A,, p, O ) < O  

a t  A, > A, and 

i.e., the phase with the smaller gap is realized. This 
case corresponds to curve 4 of Fig. 3. Stabilization of 
the phase A, means that a triple point exists on the 
phase diagram of the system in the plane (T, p). We 
note also that allowance for the interband Coulomb in- 
teraction with 8 = 0.05 eV hardly changes the form of 
the curves on Fig. 3. The values of p corresponding 
curves 1-4 change only in the fourth decimal place. 
This agrees with the conclusions of Ref. 2 _of a simple 
and furthermore small renormalization (aVZ) of the 
effective coupling constant X. 

The modulation of the Fermi surface, which is re- 
sponsible for the first-order character of the MIT, 
leads also to another effect, a possibl2 transition into 
an incommensurate phase. This question was investi- 
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gated in detail in a similar modelg and it was shown that 
the high-temperature paraphase goes over either di- 
rectly into a commensurate phase, or  else first  into an 
incommensurate phase and then into a commensurate 
phase, depending on the relation between the param- 
e ters  u, A,, and W,/W,.  We shall not pay much at- 
tention to this question, however, since later investi- 
gations have shown that the fixing of the phase of the 
displacements in the incommensurate structure upon 
scattering by impurities and other defects (the pinning 
effect) makes i t  unstable compared with the commen- 
surate lattice. Our purpose is to consider the MIT in 
pure and doped substances such a s  vanadium oxide, 
where the incommensurability effects have not been ob- 
served; we confine ourselves therefore to transitions 
of the doubling type. 

The phase diagram of the system is shown in Fig. 4. 
All the lines a r e  first-order transition lines. On the 
line that separates the normal metallic phase N and the 
phase A, the jump of A decreases with decreasing p, 
so that one can apparently reach either a second order 
transition o r  a first  order transition close to second 
order. This region of p, however, was not investigated 
by us. Figure 4 shows also the phase diagram in a 
strong magnetic field, from which we see that the low- 
ering the temperature To, that corresponds to the triple 
point proceeds more rapidly than the increase of p,. 
On the contrary, an increase of W, hardly influences 
To, but po increases noticeably. 

We do not show in Fig. 4 the phase diagrams obtained 
when varying X. They a r e  similar in form, and shift to 
the right a t  A" = 3.45 and to the left a t  k-' = 3.55. 

Since the theory describes a first-order transition, 
the critical fluctuations near the transition point do not 
play any role and the mean-field approximation, in 
which all  the results were obtained, is valid in the en- 
t i re  temperature interval. 

6. DISCUSSION OF RESULTS 

Our model is applicable to narrow-band substances 
in which an MIT accompanied by a structural transition 
with doubling of the period and not accompanied by mag- 

FIG. 4. Phase diagram of the system at the parameter values 
indicated in Fig. 3,  but with V =  0.05 eV-solid line; the same 
but in a magnetic field h H =  0.001 eV ( H -  100 kOe)-dashed 
line; H = 0, Wz = 0.705 eV, and the remaining values the same- 
dash-dot line. 

netic transformations is possible. These include both 
oxides and sulfides of transition metals. All these 
compounds have uniaxial symmetry, band 1 ensures 
hopping along the z axis. Therefore the use of the sin- 
gle-band model will lead to an incorrect description 
of the metallic phase-to anisotropy of the metallic 
properties. At the same time the conductivity and the 
paramagnetic susceptibility a r e  in fact almost isotrop- 
ic?' In these substances the MIT is as a rule of first- 
order, but the two-band modef,  which does not take 
into account the anisotropy of the Fermi surface due 
to violation of condition (I) ,  describes an MIT of second 
order. Only allowance fo r  this anisotropy in the two- 
band model, i.e., a synthesis of the two models of Ref. 
2 and 3, which was carried out in the present paper, 
has made i t  possible to describe qualitatively correctly 
both the properties of the metallic phase and the jump 
of the gap, and consequently also the conductibility at 
the transition point. 

Our conclusion that the phase A, becomes stabilized 
with decreasing p agrees  with the experimental data1,-l5 
on V1_pe,3*O,, where Me =Al, Ga, C r ,  Fe. In this sys- 
tem there exist two phases with distorted lattice: MI 
and M,, and the phase diagram has a triple point. Our 
treatment of these compounds is based on the rigid 
band model, since the only parameter that is changed 
by doping is assumed to be the occupation of the band p. 
Since each impurity ion produces a V" ion for compen- 
sation, it follows that p = 1 - 2x ,  if the impurity is of 
the substitutional type. Favoring the applicability of the 
rigid band model is the result of Ref. 15, according to 
which the form of the phase diagram is identical when 
the doping is by either a transition o r  a nontransition 
metal, and also of Ref. 16, where the holes produced by 
the trivalent impurities were compensated by the extra 
electrons of Mo4+. As a result, p increased and in the 
experiment the phase M 2  (A, in our notation), which is 
stable in the absence of Mo, is replaced upon doping 
by the phase II.11 (A,). 

Thus, the rigid-band model describes qualitatively 
correctly the situation in V,_,Me,O,, but a more correct 
description of the phase diagram should include, for 
example, allowance for the scattering of the electrons 
by a random inpurity potential, the changes of the para- 
meters of the band structure by doping, etc. It is 
therefore meaningless to investigate Eqs. (13) and (14) 
at large deviations of p from unity. In addition, the 
symmetry of the phases M1 and M2 is actually more 
complicated. This is due to the presence of two cations 
per VO, cell. In a simplified model, the phases A, and 
A, have identical symmetry of the displacement of the 
cations along the z axis, and differ only in the value of 
the order parameter A. For the same reason, the the- 
ory does not include an intermediate T phase between 
M1 and M 2 .  

The anisotropic character of the band structure of 
substances of the VO, type makes i t  possible to alter 
the parameters of one band while changing little the 
parameters of the other, by applying different uniaxial 
pressures. Thus, for example, pressure in the plane 
perpendicular to the c axis should lead primarily to an 
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increase of the width of the second band W,. Figure 4 
shows that with increasing W, the triple point shifts to 
the left, therefore a t  high pressure it is possible to 
attain p, 2 1, and a s  a result the phase M2 (A,) which is 
metastable in VO, under normal conditions, becomes 
stabilized under pressure. This phenomenon is known 
from e~periment. '~ 

We have also considered the question of the influence 
of a strong magnetic field on the MIT. As follows from 
Fig. 4 ,  a t  p = 1 the shift of Tc in a field H - 100 kOe is 
practically zero, but the value of To corresponding to 
the triple point shifts noticably downward. The reason 
for the difference in the behavior of T, and To  is ap- 
parently the following: if the MIT were of second order, 
then near T ,  there would exist a temperature interval 
in which A(T) s p B  H, and i t  is in this interval where the 
influence of the field on the MIT manifests itself, a s  
a result of which the shift of T, in the second-order 
transition is bT,- p , ~  (see, e.g., Ref. 18). In a first- 
order transition the jump A in the region of the transi- 
tion is much larger than ~ B H ,  and therefore there is 
practically noinfluence of the field on T,. At the same time, 
in the A, -A, transition the jump of the gap is much 
smaller (see Fig. 3),  and a t  the triple point it is com- 
pletely absent. Therefore 6To-p,, appears here for 
the same reason a s  for the second-order transition. 
That the magnetic field has no influence on T, in V,O, 
was demonstrated experimentally in Ref. 19, while 
the displacement of the triple point with changing field, 
to our knowledge, was not investigated. 

The author thanks E. V. Kuz'min for a discussion of 
the results. 
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