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Second-harmonic generation by incidence of an electromagnetic wave of frequency o on a metal situated in a 
magnetic field parallel to its surface is considered under conditions of the anomalous skin effect. The case of 
diffuse reflection of the electrons by the surface is investigated, as well as the case of near-specular reflection. 
In diffuse reflection, the second-harmonic amplitude has singularities at the frequencies o = 1/2152, where 52 
is the cyclotron frequency and 1 is an integer. In the case of almost specular reflection, the cyclotron resonance 
becomes weaker, and the amplitude of the second harmonic depends substantially on the surface state of the 
sample (i.e., on the specularity parameter). 

PACS numbers: 76.40. + b, 73 .20.C~ 

We consider nonlinear reflection of an electromag- 
netic wave, a t  the second-harmonic frequency, from 
a metal situated in a magnetic field parallel to the 
metal surface, in the case of the anomalous skin effect, 
when the following inequalities a r e  satisfied 

d/rPt<<i, Go/ur<l, 6/rk<l, (1) 

where 6 i s  the depth of the skin layer, vF is the Fermi  
velocity, r, is the Larmor radius, 7 is the relaxation 
time, and w is the frequency of the wave. We assume 
a non-quantizing magnetic field H, but one that can be 
classically strong, i. e .  , the inequality 

nr> I (2) 

some ea r l i e r  results. ' The point is that in Ref. 1 we 
calculated the nonlinear response of an unbounded met- 
al, and allowance for the reflection of the electrons 
by the surface was reduced only to a certain modifica- 
tion of the linear and nonlinear conductivities. In the 
linear theory this approach is justified i f  we a r e  not 
interested in factors close to unity. ' 13  In our case,  
however, i t  yields an incorrect behavior of the ampli- 
tude of the second harmonic in an odd resonance w = ( 1  
+ $)a a s  521 - m. At even resonance w = I O ,  the asymp- 
totic relation obtained in this manner for the second- 
harmonic amplitude as a function of the parameter 521 
turns out to be correct .  

The f i r s t  experiment on the observation of nonlinear 
may be satisfied, where 51 is the cyclotron frequency. 

cyclotron resonance in bismuth was recently performed 
As shown earl ier , '  the magnetic field increases in by Leviev, Ikonnikov, and Gantmakher . 

this case the coefficient of nonlinear reflection by many 
orders.  This uncovers a possibility of experimentally NONLINEAR CONDUCTIVITY OF SECOND ORDER 
investigating second-harmonic generation in the micro- FOR A SEMI-INFINITE CONDUCTOR IN A 
wave range in typical metals with f ree-carr ier  den- MAGNETIC FIELD 
sities n - loz3, in which nonlinearity in the absence of Let the conductor occupy the half-space y >0, and let 
the magnetic field is extremely small. In Ref. 1 was 

the magnetic field H be directed along the z axis. We 
considered diffuse reflection of the electrons by the 

calculate the second-harmonic nonlinear current pro- 
surface. In the present paper we study both diffuse 

duced by the electromagnetic field E(y, t ) ,  H(y, t ) :  
and near-specular reflection. In the lat ter  case i t  is 
assumed, however, that surface scattering of grazing E(y,  t )  =e-'"'E(y) + c.c., H ( y ,  t )  =e-."'H(y)+c.c. (3) 
electrons predominates, i . e . ,  that the following in- We write down the kinetic equation for the electron 
equality holds 

distribution function: 

df ~f ( / e a t  af 
-+u , - i - - - f  e E ( y . I ) \ -  
u t  dy dt  u v  d E 

where p i s  the specularity parameter.  1 .if f - f ~  
~ ~ ( y , t ) + - [ v x  H ( Y , ~ ) I * )  -=--, 

In near-specular reflection, awing to the large con- dp. (4) 

tribution made to the linear and nonlinear conductiv- 
ities by the grazing electrons, the amplitude of the re-  
flected second harmonic depends essentially on the 
state of the surface of the metal, (i.e., on the specular- 
ity parameter p), and its oscillations, which a r e  con- 
nected with cyclotron resonance a r e  small. It i s  also 
shown that the value of the specularity parameter can 
be determined by measuring the oscillations of the 
phase of the second harmonic. 

In the case of the diffuse reflection, we analyze in 
greater detail the form of the resonance line and refine 

where (D is the angle variable, E is the energy, P, is 
the projection of the momentum on the z axis, fo is the 
equilibrium distribution function, and e is the electron 
charge. For  simplicity we confine ourselves to the 
case of an isotropic and quadratic electron dispersion 
law. Then 

where 8= (eH/mc ( i s  the cyclotron frequency 
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We write the boundary condition for the distribution 
function f in the form 

We shall solve the kinetic equation by an iteration 
method. In the linear approximation 

The solution of Eq. (8) can be easily obtained by the 
method of characteristics. It can be represented in 
the form 

e  a f o  e+zn 

f 1 - ----[ erxBt - I ]  -' I dcp' exp ( p ,  ( 9 ' - q ) )  
Q ae 

w 

~ v ( c p ' )  E (y - r ,  (sin cp-sin cp') ) , 

at y o  > H .  Here 

r,=u,/Q, yo=y-rH sin cp, 

In the next approximation there appears an increment 
to the distribution function a t  the second harmonic fre- 
quency, f2exp(-2iwt) + c. c . .  For the function f 2  we ob- 
tain 

1 a f l  a f i  
- ~ ( E , ( Y ) +  T [ * ~ ~ ( u ) ~ z )  G - e ~ ( y ) v - .  a e  (11) 

Solving Eq. ( l l ) ,  we can calculate the nonlinear cur- 
rent at the second-harmonic frequency j'2'(y, t) and ob- 
tain an expression for the nonlinear conductivity tensor 
Qaer(k, kl, k2), defined in the following manner: - 

j a r )  ( k )  = j dk,  dkr Q,,,(k, k , ,  k 2 ) E , ( k I ) E , ( k d ,  (12) 
0 

where 

j,(') ( y ,  t )  = e-"" j:' ( y )  + c.c. 

In our case i t  turns out that the main contribution to 
the nonlinearity is due to the Lorentz force. Leaving 
out the very cumbersome calculations, we present only 
the asymptotic expressions for the nonlinear conduc- 
tivity tensor QaBr(k, ki, kz) in diffuse reflection and in 
near-specular reflection. 

If the reflection is diffuse ( p  = 0) and 

then we obtain for  the nonlinear conductivity 

where Pz = -i(2w + irm')/51, p ,  is the Fermi momentum; 
the function K(k, kl, k2) is defined by the expression 

the function L(k, kl, kz) is of the form 

k," 
L ( k .  k , ,  k2)= - 1 + 1 

a [ ( k + k r ) ~ i ~ ( k + k r - k , )  I - I 1 ( k - k - k  I ('5) 

and finally 
1 

N ( k ,  i,, k z )  = - ------ - + '+:"*' ( k-k , -k ,  

The tensor b,,, in (13) is symmetrical in all the in- 
dices a, p ,  and y,  with b,,,= b,,= b,, = b,,,= 1, and 
all i t s  remaining components a re  equal to zero. 

As seen from (13), the nonlinear response exhibits 
singularities of the cyclotron resonance at the frequen- 
cies w = 152 (even resonance) and w = ( 1  + $)a  (odd res- 
onance), where 1 is an integer. We note that satisfac- 
tion of the condition W T  << (~, , /6)"~,  which ensures the 
applicability of expression (131, is possible only near 
the resonance w = 151. 

If we disregard the reflection of the electrons by the 
surface of the sample, and assume that the fields a re  
excited in an infinite medium by a current sheath, then 
the nonlinear conductivity QaBr(k, kl, k2) can also be 
represented in the form (13). We must put here N=O, 

On the other hand, if the reflection is close to specular 
and the following inequalities hold 

I B 1 .  2 1  ( 6 / r , ) " c l - p ~ : l t h  p,, ,n1, 1 ,  (17) 

then the asymptotic expression for Qa,,(k, kt, k2) takes 
the form 

where the function P(k, kl, kz) is defined by 
1 1 1 

P ( k .  k , ,  k , ) =  - -[-+ 
2 k-kt -k ,  k-lki-k21 

R(k. kl, k2) is given by 

and the function S(k, k l ,  k2) is given by 
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As seen from the foregoing formulas, the kernel 
Qosy(k, k,, k2) has singularities of the type k * k, r kz)-'. 
In the calculation of the Fourier component of the non- 
linear current, these singularities should be integrated 
in the sense of the principal value. 

NONLINEAR REFLECTION FROM THE SURFACE 
OF A METAL 

Assume that an electromagnetic wave is normally in- 
cident on a metal occupying the half-space y >O. We 
calculate the amplitude of the reflected electromagnetic 
wave at the second-harmonic frequency . We consider 
f i rs t  the polarization properties of the reflected sec- 
ond harmonic. Since the law governing the penetra- 
tion of the field into an isotropic metal, both in diffuse 
reflection and in near-specular reflection, is indepen- 
dent in the linear approximation of the polarization of 
the field,5*%t follows that the polarization of the elec- 
tr ic field of the reflected second harmonic coincides 
with the polarization of the nonlinear current jL2'(y). 
If the incident wave is linearly polarized then, as seen 
from (13) and (18) and from the explicit expression for 
the tensor boar, the reflected second harmonic also has 
nonlinear polarization. 

Let the incident wave be linearly polarized, and let 
$l be the angle between the electric field of the incident 
wave and the constant magnetic field. We specify sim- 
ilarly the polarization of the reflected second harmonic 
by means of the angle +2. It is easy to establish that 
the angles $, and z,bz a re  connected by the relation 

It follows from (22), in particular, that ($2 I ln /4  at all 
$1, we assume for the sake of argument that Ql and $2 
lie in the interval (-n/2, a/2)]. If the electric field of 
the incident wave is parallel to the z axis = 0) or  to 
the x axis = n/2), then the electric field of the se- 
cond harmonic is polarized along the x axis ($2 = n/2). 

The equation for the second-harmonic field ~ " ' ( y )  is 
of the form 

where ;;(2w) is the operator of the linear conductivity at 
the frequency 20. We have left out of (23) certain in- 
dices, since the operator CUB is proportional to the unit 
tensor 6,, both in diffuse reflection and in near-spec- 
ular reflection. 

Equation (23) should be solved with the boundary con- 
dition 

We continue the solution of Eq. (23) into the half-space 
y < O  is even fashion. We then get in place of (23) 

d'E'" Bnio .,,, 4io 
--=- (! (lyI)+^o(20)E"")+-EC'(0)6(y). (25) 

dy2 c' 

We introduce now the current sheet I(y, t )  = 1 , , 6 ( ~ ) e - ~ ~ ~ ~ ,  
which produces in the linear approximation a field 

$ (y)e-2i"t, with I (0 )  = 1. Applying the reciprocity 
theorem for the fields 1'2'(y), %' (y) and for the corres- 
ponding currents, we obtain the following expression 
for the amplitude of the reflected second harmonic: 

where [ ( w )  is the surface impedance. The function 
%' (y) describes in the linear approximation, in accord 
with the foregoing, the penetration of a field of fre- 
quency 2w into a metal. 

Inasmuch as in our case I [I << 1 we have 

oz) ( 0 ) =  j d k d k ,  d k , Q ( k ,  k , ,  k ; ) a ( k ) E ( k , ) E ( k , ) .  (28) 
C 

0 

where I (k )  is the cosine-transform of the function q v ) .  
In the derivation of (28) we have also assumed that the 
incident wave is polarized parallel o r  pendicular to the 
magnetic field. The quantity Q(k, kt, k2) in (28) should 
be taken to mean one of the components Q ,,,, Q,,(Q,,, 

Q,,) . 
There is a known6.' asymptotically exact-expression 

for the functions E(k) and $(k) in the two situations of 
interest to us.  The kernel Q(k, kl, k2) was calculated 
by us in the preceding section, so that the problem of 
second-harmonic generation has in principle been sol- 
ved. However, the Fourier component of the field E(k) 
is represented in the form of rather complicated con- 
tour integrals, so  that the exact calculation of the in- 
tegrals with respect to k, kl, and k2 in (28) is quite 
difficult. 

We investigate first  the case of diffuse reflection. 
We represent the function E(k) in the form 

where E(0) is the electric field of the f i rs t  harmonic 
on the surface of the metal, and 

is the depth of the skin layer at the frequency w, CjO(w) 
2 2 -2 -1 1 / 2  = ( c e - p , o  ) . 

For the function $(k) we have similarly 

w i  
6" ( 1 ; )  = i -- ----6,'c2(k6?), 

c ~ ( 2 0 )  (30) 

where ti2= 6(2w) is the depth of the skin layer a t  the 
frequency 2w. Substituting (29) and (30) in the integral 
equation5 for E ( k ) ,  we obtain equations for the func- 
tions el ,  2(k): 

I - e i '  I ( 6 :H ' 
-- 

2 
k%,.2 ( k )  - i I r - ' x j , .  

J d k t A i ,  : ( k ,  ,+,)el ? ( k r ) )  = - -, 

(31) 
where 

( l -? - - - f l<  : ) z  1 
-1, ? ( k .  k ' )  = 

'tn ( k k ' )  ( k f k ' )  
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The dimensionless functions elVz(k) satisfy the nor- 
malization conditions 

S ( o ) c  i dk e ,  ( k )  = - i -  - 4, 
6 , ~  

0 

It follows from the solution obtained by the Hartmann 
and ~ u t t i n ~ e r '  that the functions el, 2(k) vanish in 
power-law fashion as k -0, and tend to zero in in- 
verse proportion to k2 as k - a. In the region k - 1 
the characteristic values of the functions elq2(k) a re  
also of the order of unity. 

Substituting (13), (29) and (30) in (28), we obtain 
1 eZpF20 a 6,'& E'" (0) = - -- 

H c b  c 2 ( 0 )  
[ C Z  cth pln+cl cth i3,x+c0l (E (O) ) ' ,  (34) 

where 

c2 = J dk dk ,  dk2 e ,  ( k g )  e ,  ( k , ) e , ( k ) K ( a k ,  k , ,  k , ) ,  (35) 
0 - 

c ,  = j dk dk ,  dk ,  el  ( k , )  e , ( h  ) :?(I.) L(ok ,  k,, k , ) ,  
0 

We assume next that fir>> 1. Far  from resonance, 
and also in the case of even resonance w = 112 we have 
a -1. In formulas (35), in the essential region of inte- 
gration k s 1, klS2 s 1, the characteristic values of the 
integrands a re  of the order of unity, and consequently 
( c z ( - I c l I - I c o I - O . l - l .  Takingthisinto accountwe 
obtain an estimate for the amplitude of the reflected 
second harmonic1: 

Inasmuch as 61 near the resonance decrease by a fac- 
tor (62r)lf2, the amplitude of the reflected second harm- 
onic a t  resonance increases in proportion to ( r 2 ~ ) " ~  a t  
a fixed value of the first-harmonic field on the surface 
of the metal, and decreases in proportion to ( f i ~ ) - ' / ~  at 
a fixed value of the amplitude of the incident wave. 

We proceed now to study the odd resonance w = (1 
+ $)a. In this case, as seen from (34), to determine 
the character of the singularity of the amplitude of the 
reflected second harmonic it is necessary to know the 
behavior of the coefficient cz near resonance. At the 
resonance w = (1 + $)S2, the parameter a >> 1, so that we 
need to obtain the asymptotic expression for c2  at large 
values of a. From the formulas obtained above i t  fol- 
lows that 

,, = +j dk dk ,  d ~ ,  e ,  ( k , ) e , ( k , ) e z ( k )  
( a k )  " 

0 

We rewrite the integral of (37) as follows: 

(k ,+k, )"  + lki-kzl'lx 1 - F ( a )  - -. x k - a ( k , + k )  k - a - k  a''' (38) 

The behavior of F(a) as a -m depends on the behavior 
of the function ez(k) a t  small k [we recall that a t  large 
k the function elV2(k) always decreases like k-2]. As 
follows from the solution of Hartmann and ~ u t t i n ~ e r , '  
a t  the exact resonance o = (1 + $)61 the following asymp- 
totic expansion is valid for  the function ez(k) as k -0: 

where v = (2/7rfi7)lJ2 and the constant d - 1. The para- 
meter a in this case is equal to (52~/n)"~. Taking the 
foregoing into account, we can verify that the integral 
F(a) remains finite a s  S27 - m. Consequently 

Thus, from (34) and (40) we find that the amplitude of 
the reflected second harmonic at odd resonance in- 
creases in proportion to (52~)' '~. 

We note that if we calculate the nonlinear current 
j")(y) by using the nonlinear response of an infinite 
medium and taking into account the reflection of the 
electrons by the surface only by modifying somewhat 
the resonant factors in the linear and nonlinear conduc- 
tivity (this method is valid in the linear theory293), then 
we can find that there is no resonance at the frequency 
w = (1 +$)LA. In fact, we have for C; in this case 

- 
c ,  =J o dk dk ,  dkz e , ( k , ) e , ( k ? ) e , ( k )  

el.  l ( k ) - k / ( k 3 - i ) .  

At large a this yields c z a  a-'. We see thus that ~ ' ~ ' ( 0 )  
remains finite a t  w =(1+ $ ) & 1 .  We have shown above, 
however, that this is not the case, and that E"' in- 
creases a t  w = (1 + $)fi in proportion to ( 5 2 ~ ) ' ~ ~ .  Near 
an odd resonance i t  is therefore necessary to take cor- 
rect  account of the boundary condition for the distribu- 
tion function even in the case of diffuse reflection. 

On the other hand, far  from the resonance, w = (1 
+ $52, and also near the even resonance w = 152, the 
calculation of the nonlinear current j'2'(y) without allow- 
ance for the reflection of the electrons by the surface 
yields an incorrect estimate of the amplitude of the 
reflected second harmonic. This is not at all surpris- 
ing. The point is that when no account is taken of the 
reflection of the electrons, the obtained estimate for 
the density of the nonlinear current j"'(Y) is valid only 
a t  v - 6,. On the other hand, in the case of the odd re- 
sonance w = 62 << 61, the inequality 62 << 61 is satisfied 
and, as seen from (27), an important factor in the cal- 
culation of the amplitude of the reflected second 
harmonic is the behavior of the nonlinear current j'2'(y) 
a t  distances y - 62 << 6*. To obtain the correct expres- 
sion for the density of the nonlinear current j'2'(y) a t  
y <<61 i t  is necessary, as i t  turns out, to take correct 
account of the reflection of the electrons from the 
sample boundary. 

In the foregoing discussion of the cyclotron reson- 
ance we have assumed the parameter W T  to be large. 
However, satisfaction of the condition 527>> 1 is not 
essential in our case. In fact, the condition for the 
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applicability of the expression obtained by us for the 
nonlinear conductivity Qosr(k, kl, kz) [ ~ q s .  (13)-(1611, 
and also for the applicability of the expression for the 
amplitude of the reflected second harmonic (341, which 
bounds the magnetic field from below, is the following 
inequality: 

The inequality (42) means that the time required for 
the electron to pass through the skin layer is much 
shorter than the free path time o r  the period of the 
electromagnetic field. In metals with skin-layer depth 
-lo-' cm, at frequencies w/2n - 10 GHz, this inequality 
is satisfied up to magnetic fields of several dozen oer- 
steds. The parameter S L T  in such fields is quite small. 

On the other hand, i f  the parameter S ~ T  is not very 
large, the dependence of the amplitude of the second 
harmonic on the magnetic field near the resonances 
w = ls1/2 can differ substantially from that obtained by 
us on the basis of the asymptotic expansion in the para- 
meter (517)-'. 

For a more detailed study of the dependence of the 
amplitude of the second harmonic on the magnetic field 
i t  is necessary to calculate the values of c2, ci, and co, 
which enter in expression (34). Inasmuch as an analy- 
tic calculation of these quantities is hardly possible, 
we have employed numerical methods. We have not 
used for the functions el, ,(k) the expressions obtained 
by Hartmann and ~ u t t i n ~ e r , '  but solved the integral 
equations (31) directly by quadratures. To verify the 
solutions obtained in this manner we used the normal- 
ization conditions (33). After finding the Fourier com- 
ponents e,,?(k), we calculated c2, cl ,  and co as func- 
tions of the magnetic field. At W T =  5 and w = 51 we 
obtained 

(the e r ro r  is approximately 0.003). 

Figure 1 shows the power of the reflected second 
harmonic (in arbitrary units) against the constant mag- 
netic field a t  a constant amplitude of the f i rs t  harmon- 
ic incident on the sample, i. e. ,  a t  a constant first- 

FIG. 1. Dependence of the second-harmonic power on a mag- 
netic field in the case of diffuse reflection at a constant am- 
plitude of the first harmonic incident on the sample. The 
parameter WT = 5. 

harmonic magnetic-field amplitude on the surface of 
the metal. The parameter wT = 5. It is seen from the 
figure that there is a rather large maximum in the odd 
resonance 0 = 3Q/2 and a much smaller maximum on 
the fundamental resonance w = 9. According to the 
results obtained above, however, which a re  based on 
an asymptotic expansion in the parameter (s~T)", a 
minimum of the intensity of the second harmonic 
should be observed near the fundamental resonance, 
for in this case the depth of the skin layer and the 
amplitude of the electric field of the f i rs t  harmonic 
on the surface of the metal decrease. 

The shape of the resonance curve observed in the 
experiment on bismuth4 differs substantially from that 
shown in Fig. 1. Namely, strong spikes of the in- 
tensity of the second harmonic appeared in Ref. 4 for 
the even resonances, and weaker one for the odd res- 
onances. This difference, as noted in Ref. 4, can be 
attributed, on the one hand, to the fact that the linear 
theory used by us (in the case of diffuse reflection) 
yields a stronger change of the surface impedance and 
of the skin-layer depth than a re  observed in experi- 
ment, and on the other hand to the different values of 
the parameter wT. We recall that, as shown in Ref. 1, 
when the inequality WT>> (r,/6)'" is satisfied the non- 
linearity has a much stronger singularity in the even 
resonance than in the odd one. This situation will be 
considered by us separately. 

We proceed now to the case of near-specular reflec- 
tion, i .e. ,  we assume that the inequalities (17) a re  
satisfied. In this situation the main contribution to the 
linear and nonlinear conductivity is made by electrons 
that graze along the surface. 

We represent the Fourier component E(k) of the first- 
harmonic field in the form 

For  the surface impedance ~ ( w )  we have according to 
Kaner et al. 

The quantity 6((d) is the depth of the skin layer without 
allowance for the small contribution of the resonant 
electrons: 

Substituting (43) in the integral equation for ~ ( k ) , ~  we 
obtain an integral equation for el(k). It is of the form 

We expand the function el&) in powers of the small 
parameter +(l-p)cothp,n. Confiningourselves to the 
f i rs t  two terms, we have 

In the zeroth order in the parameter +(l-p)cothplr we 
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get from (46) an equation for eo(k): the relation 

In (k lk ' )  k 2 e , ( k ) - i - + -  l i  1 dk'- k2-k,2 eo ( k f )  = --. 2 
k nZ 

Taking into account the terms of f i rs t  order of small- 
ness in the resonance parameter, we obtain an equa- 
tion for Z(k): 

From (48) and (49) we see that the functions eo(k) and 
~ ( k )  do not depend on the magnetic field o r  on any other 
parameters, and are  consequently un ive r se  functions. 

For O(k) we have similarly 
0 1  

eP(k)=z--- 6," ( 2 ~ )  e , (ks0  ( 2 0 )  ), 
c L(20, - - 

( I -p ) co thFzn  - 
e Z ( k )  =e ,  ( k )  ----- e ( k ) .  

I! (50) 

As follows from the solution obtained by Hartmann 
and ~ u t t i n ~ e r , '  the functions elPz(k) and eo(k) tend to 0 
like k1I2 as k -0, and decrease like k-' as k - w. Ob- 
viously, the function Z(k) also decreases like k'2 as 
k - 03, and tends to 0 no more slowly than k1I2 as k -0. 
In the region k - 1 the typical values of the functions 
eo(k) and g0(k) a re  also of the order of unity. 

Integrating (43) with respect to k from 0 to .o and ex- 
panding in powers of the small resonant increment, we 
easily obtain the normalization conditions for the func- 
tions eo(k) and e(k): 

Substituting (18), (43), and (50) in (28) and expanding 
in powers of the small parameters + ( I -  p)cothpl, zn we 
obtain for the amplitude of the reflected second har- 
monic 

where H(0) is the amplitude of the magnetic field of the 
f i rs t  harmonic on the surface of the metal, 

and the quantities X, A1, and X2 a re  defined by the fol- 
lowing expressions: 

2 '1s 
- 

A= - e+'"/' jdkdk,dk2p(2%k,  k , ,  k 3 ) e , ( k )  e , ( k , )  e , (k , ) ,  (53) 
I3 0 

2'1. - 
li, =---=-e"13 j d k d k , d k , ( ~ ( 2 ~ k ,  k , ,  k , ) e , ( k ) e , ( k , ) e , ( k , )  

LY3 

rP(Zibk, k, ,  k 2 ) e o ( k ) e ( k , ) e o ( k , )  +p (+k ,  k , ,  k , ) eo (k ) eo (k , )Z (k , ) ) ,  - 
L - ,, etnI3 j dkdk,dk, ( R  (2bk, k , ,  I;,) e, ( k )  e,  (2,) eo (k , )  

(54) 

A13 

+ ~ ( 2 " ' k ,  k,, k 2 ) Z ( k ) e o ( k , ) e J ( k 2 ) ) .  (55) 

By virtue of the foregoing, the quantities A, XI, and 
x2 are  constants independent of the magnetic field and 
of any other parameter of the problem. It is quite 
difficult to calculate these constants analytically. It 
is possible to show, however, that X1 and X2 satisfy 

In fact, le t  w = 10. We rewrite the Fourier compon- 
ents E(k) and %'(k) in a form somewhat different from 
(43) 

Here 6(w) is the depth of the skin layer with allowance 
for the resonant electrons: 

6 ( a )  = d o ( @ )  (1+'12 (I--PI c thpln)  -". 

Since w = 10, i t  follows that 6(w) is a real  quantity and 
furthermore 6(w)/6(2w) = 60(w)/60(2w) = 2'". It is also 
easy to see  that the functions el,2(k) satisfy the same 
integral equation as eo(k), so that el(k) = &(k) = eo(k) . 

Substituting (18) and (57) in (28) and taking also into 
account the relation 

we obtain for the amplitude of the reflected second 
harmonic a t  w = 10 

Expanding in this formula the impedance ~ ( w )  in terms 
of the small  resonant increment and comparing the re- 
sult with (521, we arr ive  in fact a t  (56). 

To calculate the constants X, XI, and X2, we have used 
numerical methods. Jus t  as in the case of diffuse re- 
flection, we solved first the integral equations (48) and 
(49) by the method of quadrature formulas, and verified 
the normalization conditions (51), after which we cal- 
culated the integrals (53)-(55). Within the limits of 
e r ro r ,  all three constants, A, XI ,  and X2 turned out to 
be real  (or more readily, the imaginary parts of A, 
XI, and X2 a re  exactly equal to zero). As a result we 
obtained 

(the relative e r r o r  is approximately 5%). It is seen 
that relation (56) is satisfied. 

We have thus shown that in the case of near-specular 
reflection, i .e . ,  when the inequalities (17) a re  satis- 
fied, the amplitude of the reflected second harmonic 
is described by the expression (52), and the values of 
constants A, Xi, and A2 in  (52) a r e  given above. It is 
seen from (52) that as a result of the large contribution 
to the linear and nonlinear conductivity of the electrons 
that glance along the surface, the power of the radiated 
second harmonic depends substantially on the specular- 
ity coefficient and therefore i t s  measurement can yield 
information on the character of the reflection of the 
electrons by the surface of the sample. In addition, 
i t  follows from (52) that in the principal approximation 
the second-harmonic power decreases with increas- 
ing magnetic field like H-', and i t s  oscillations, which 
a re  connected with cyclotron resonance, a re  small. 

It is also possible to determine the specularity coef- 
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ficient by measuring the oscillations of the phase of 
the second harmonic A ~ ' ~ ' .  In fact, from (52), recog- 
nizing that ( ~ c p ' ~ '  I << 1, we obtain 

From (59) we see that, measuring the oscillations of 
the phase, we can in principle determine both the spec- 
ularity coefficient p and the free path time T. In fact, 
the relaxation time can be determined from the damp- 
ing of the oscillations of the phase in the magnetic-field 
region where the parameter 5 2 7  is not large. After 
determining T, we obtain directly also the specularity 
coefficient. Figure 2 shows the dependence of the phase 
of the second harmonic on the magnetic field at W T = ~ .  

Thus, the second-harmonic generation method can 
supplement the presently employed methods of in- 
vestigating the electron spectrum and the surface prop- 
erties of metals. In addition, measurement of the 
second harmonic can yield also new information on the 
electron spectrum. In fact, in the case of a complica- 
ted dispersion law the nonlinear conductivity Qa,,(k, 
k l ,  k2)  can be obtained from (13) and (18) by making the 
substitution 

e 2 p 3  
hael 

where n, is a unit vector normal to the Fermi surface, 
K(cp) =K(O = n/2, cp) is the Gaussian curvature of the 
Fermi surface. 8 and cp are  the polar and azimuthal 
angles of the normal vector nu, and the polar axis co- 
incides with the y axis. 

In this case, for example for diffuse reflection, the 
nonlinear conductivity acquires tensors of the form 

Generally speaking, such expressions do not enter in 
the linear conductivity, so that observation of the sec- 

FIG. 2. Oscillations of the phase of the second harmonic in 
the case of near-specular reflection at a constant amplitude of 
the f i rs t  harmonic incident on the sample. The arrows mark 
the positions of the resonances n / w  = 1, 2/3, and 1/2. The 
parameter wr = 3. 

ond harmonic can yield additional information for the 
reconstruction of the electron dispersion law. We a re  
unable however, to dwell here in greater detail on the 
effects connected with the anisotropy of the electron 
spectrum. 

In conclusion, I thank I. N. Mol'kov for a discussion 
and checking some of the results. 
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