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In two-dimensional space-time a fermion isotopic model of field theory with zero rest mass is investigated in 
the case of broken isotopic symmetry. It is shown that the quantization can be carried out exactly for 
arbitrary ratios of the constants which determine the isotopic interaction. For the case of U(1) symmetry the 
eigenvalues and eigenfunctions of the energy operator in the space of pseudoparticles are found. 
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1. INTRODUCTION 

A remarkable property of many nontrivial physical 
models in two-dimensional space-time is that they a re  
completely integrable. There is a broad class of such 
models, including among others well-known ones des- 
cribed by the nonlinear Schradinger equation and by 
the sine-Gordon equation. The classical solution of 
these equations is obtained by means of the method of 
the inverse scattering problem. There has recently 
been much development of methods for quantizing such 
models. ~ e l a v i n ' ~  has considered a massless SU(2) 
symmetric model of a Fermi field. He showed that 
the additional y, invariance of this model leads to a 
factorization of the scattering 3 matrix and makes i t  
possible to determine all the eigenstates and the spec- 
trum of the Hamiltonian in the language of pseudopart- 
icles. An analysis of ~ e l a v i n ' s  equations shows that 
because of the filling of the pseudo-particle states the 
interaction in the system results in giving the physical 
particles a mass determined by the isotropic interac- 
tion constant g and the cutoff parameter A .  

The present paper proposes the solution of a more 
general problem, namely the case in which the SU(2) 
symmetry is broken. The isotopic interaction is de- 
termined by three different constants g,(A= 1,2,3).  
The interaction Lagrangian is 

Here $r(x) is an isodoublet of Fermi fields ( i  is the 
spinor index taking the values i1, and a is the isotopic 
index), y ,  a re  the Dirac matrices [yo = or, y1= -zuy, ~5 
=d), and P a re  the isotopic matrices for the group 
SU(211. 

In this paper i t  will be shown that for arbitrary con- 
stants ga there is an infinite s e t  of integrals of the 
motion; their existence indicates the presence of a 
hidden symmetry of the system. The existence of this 
symmetry enables us to find-the exact quantum solu- 
tion. The case of V(1) symmetry, i. e . ,  with gl =gz 
#g3, is treated analogously. For this case all the 
eigenstates and the spectrum of the Hamiltonian in the 
language of pseudoparticles are  found. 

2. THE EQUATIONS FOR THE EIGENFUNCTIONS 
OF THE HAMILTONIAN 

The original Lagrangian is 

In constructing the eigenfunctions of the Hamiltonian 
operator we let the res t  mass go to zero; that is, we 
actually consider the massless case. We subject the 
operators J ,  to the commutation relations 

and then the Hamiltonian of the system in the second- 
quantization representation can be written 

We denote with 10) the pseudovacuum eigenstate of 
the Hamiltonian, which satisfies the conditions 

Because the total number of particles N = ~#*J,dx is 
conserved, we can look for an arbitrary eigenstate of 
the Hamiltonian in the form 

S 
8 ,  i y  +a# +"N 

I = x .  d ,  , x . .  I .  (6) 

The fun~t ions  9 satisfy the condition 

';, ( x i . .  .x,,)=ENQf;, ';, (x,. , x,) (7) 

with the Hamiltonian &, which acts in the N-particle 
sector of Fock space and is given by 

The indices n and rn on the matrices o and T indicate 
the number of a particle. 

Sinee the operators J,;"(xf and $I?(%) anticommute, 
the functions 9 are  antisymmetric: 

where qQ is the parity of the permutation Q = (ql, . . . , 
qN) of the numbers from 1 to N. 
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Let us restrict  our system to a length L and assume 
that the functions Qi satisfy periodic boundary condi- 
tions in each argument 

Accordingly, the functions Qi that define eigenstates 
(6) of the Hamiltonian operator (4) must satisfy the 
conditions (71, (9), and (10). 

3. CONSTRUCTION OF EIGENFUNCTIONS 
OF THE HAMILTONIAN 

In the one-particle sector (N= 1) we have the free 
Dirac equation 

with i ts  solution in the form 

where k is the wave vector, 8 is the rapidity of the 
particle, and u(0) is a Dirac spinor of the form 

We note that when 0 in Eq. (12) is replaced with in 
- 0, the solution changes from one with positive en- 
ergy into one with negative energy. 

To look for a wave function Qi in a sector with N 3 2, 
we break up the region of the variables xl, xz, . . . , XN 

into N !  regions. We denote by P = (Pi, P2, . . . , pN) the 
region which satisfies the conditions x <xP2 < . . . <xpN, 

91 and by QiP the wave function in this regon. Inside 
each of the regions P Eq. (8) does not contain any 6 
functions and is a Dirac equation for N free particles. 

For N=2 the wave functions G " ~ '  and a re  de- 
fined by the same set  of wave vectors kl and k2, since 
the total energy E2 = mocosh8, + mo c0sh8~  and the 
total momentum K2 = k1 + k2 = mo sinhOl + me sinhOz a re  
conserved. Following Bethe's hypothesis13 that for 
N >2 the set  of momenta is the same in all the regions, 
and remembering the antisymmetry condition (9), we 
write the wave function in an arbitrary region P in the 
form 

where kl, . . ., kN is a fixed se t  of momenta, 01, . . . , 8, 
is the set  of rapidities of the particles, PQ is the prod- 
uct of the permutations, and u,(8) includes the spinor 
indices of the n-th particle. For example, for N =  2 
we have 

( 1 2 )  ( x , ,  x2) = A:,,U, (Oi) u2 (0 , )  e x p  ( ik ,x ,+ik~xd 

0::;; ( I , ,  s,) = ~lb,,,,u, ( 0 , )  uz(BZ) e x p  (ik,x,+ik2xz) 

- A;,~,U, (OZ) u2 (6 , )  e x p  (ik2x,+ilc,x,). (15) 

Clearly, the hypothesis about the form of N-particle 
wave functions shown in Eq. (14) requires verification 
for N >2. It will be shown subsequently that for the 
res t  mass mo = 0 i t  is valid. 

The functions 9' must be matched at the boundaries 

of the regions P. The matching conditions can be ob- 
tained from Eq. (7). For  N = 2 we introduce linear 
combinations of wave functions defined by the relations 

For the spinor components 6;- Eq. (7) takes the form 

with I= O,1,2,3. The constants f, a r e  given by the 
equations 

The matching conditions a t  the boundary xl = x2 that 
follow from Eq. (17) a re  

Replacing i with -i gives the matching formula for the 
components G:. The remaining components of the 
function ~ j 1 ' 2  a re  continuous, since the equations for 
them do not contain any 6 functions. 

From the matching conditions (10) we can obtain the 
connection between the coefficients A and A" of the 
wave function. We write 

then, using Eqs. (15), (161, and (191, we get 

where e12= $(oI - 821, and the quantities y,(8) a re  de- 
fined as follows: 

cth O+iL 
~ ~ ( 0 )  =- a= 1,2,3;  

cth 0-ih. ' 

l+iho cth 0 
yo ( 0 )  = - cth @ ' L=tg  f,. 

For the coefficients Ai2 and A2' we get from Eq. (21) 

The operator K is of the form 

where we have used the notations 

Let us derive the corresponding formulas which con- 
nect Ai2 and A" in the. case when the res t  mass van- 
ished, mo = 0. In taking the limit mo -0 we replace 8, 
with o,Qo for  states with positive energy and with in  
- anOo for states with negative energy. We let the para- 
meter @,, go to +- together with mo -0 in such a way 
that k, = mo sinhe, remains constant. The variables a, 
will play the role of the helicities of the particles; they 
take the values i1. In the limit we get 
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where un, = $(an - 0,). The connection between the co- 
efficients A" and A" will be of the form 

We write the matrix S in a form analogous to that of 
the matrix K: 

w0 + w3rn3; w1~,,l - iw2zne s"," (0 )  = Id' (a )  +,,"z," = 
d z n l  + i w ~ t n 2 ;  wQ - w"znS 

with the matrix elements 

In the case >2 we also get from the matching con- 
ditions for N-particle wave functions 

-- 

A (% -2"qn+l) qn+iqn... A:::~~,;.:.. = sn, n+l A:::c+,+lc+,... . (30) 

Applying these relations repeatedly, we can express 
any coefficient A:,...,, in terms of ~f,~;::.,~, which 
we hereafter denote by the symbol 0. This relation is 
unamJiguous i f  the factorization conditions on the ma- 
trix S, 

where a =  ut2, u' = 023, u + ul=  ul3, a re  satisfied. 

The factorization conditions (31) can be derived easily 
for the case N = 3  if we note that there a r e  two ways to 
express the coefficient in terms of 

and 

Setting the two results equal to each other, we get the 
condition (3 1) 

4. PROOF OF THE FACTORIZATION CONDITIONS 

The factorization condition (31) is identical with the 
factorization condition for the scattering matrix given 
by Zamolodchikov. l5 According to Refs. 14 and 15, 
to verify that i t  is satisfied i t  is sufficient to verify 
that the ratios cd/ab and (a2 + b2 - c2  - d2)/2ab do not 
depend on the variable u, which takes the values 0, * 1. 
This is indeed so, since 

This concludes the proof of the factorization condi- 
tions. In what follows, however, we require that 
these conditions hold for arbitrary vgues  of u and a', 
so that we shall continue the matrix S(u) from the in- 
teger points 0, *1 to arbitrary values of a in such a 

way that the conditions (31) a re  not violated. The gen- 
era l  solution of the equation (31) for arbitrary u and 
v is given in Refs. 14 and 15; i t  is 

a=p ( u )  sn (u+2q) ,  b=p ( u )  sn (u! , 

c=p(u)  sn ( 2 q ) ,  d=kp(u)  sn ( 2 q )  sn ( u )  sn ( u f 2 q ) .  
(33) 

Here g is an arbitrary parameter, sn(u) is the Jacob- 
ian elliptic function of modulus k (k is arbitrary), 
and p(u) is an arbitrary function. 

We set  u =  -go; then by choosing the parameters g, 
k, f and the function ~ ( u )  we can produce a solution of 
the given problem. The parameters a re  determined 
from the equations 

k sn2 (211) = (A,-A,) (Ao-h3)/ ( l+h,h,)  ( 1 + h h 3 ) ,  (34) 

where cn and dn a re  Jacobi's elliptic cosine and delta 
function of modulus k.  

The function p(u) is of the form 

p(u) =a(o ) / sn  (2q+u) .  (37) 

Accordingly, the matrix 3(u) with the elements 

oz+A1A2 b  ( o )  = - a ( o )  sn( i fa)  
a  ( 0 )  = 

(a-ih,) (0-ihz) ' sn(2q-i fa)  ' (38) 

satisfies the factorization condition (31) for arbitrary 
a, and is identical with our earlier matrix a t  the points 
0, i l .  

EquationsA(38) show that for arbitrary constants g, 
the matrix S differs only by a factor from Baxter's 
local matrix for the eight-vertex model (the XYZ model 
in field theory). If rno #0, the ratios cd/ab and (a2 
+ b2 - c2  - d2)/2ab a re  not constant; they depend on the 
variable 8 ,  and the conditions (31) a re  not satisfied. 
Only in the case when all the g, are  zero do we get 
trivial agreement with these conditions. The isotopic 
spin then plays no part; the corresponding model with 
mo +O has been considered by Berezin and Sushko. l6 

We note two special cases: 

1) If we takegl=g2=g(X1=Xz=X), i . e . ,  consider the 
case of U(1) symmetry of the original Lagrangian (21, 
we have from Eqs. (34)-(36) 

k=O, cos ( 2 q )  =I -20-Lo)  (A-hs) l ( l+Az)  ( l+h3ho) ,  (39) 

A 

The elements of the matrix S are  

o+ih 
u  (5) = -- b ( o ) = a ( o )  

sh  ( lo )  
o-ih ' s11(fo+2iq) ' 

i sin (211) 
c  ( 0 )  = a ( a )  d ( o ) = O .  

sh(fo+2iq)  ' 

In this case the matrix 5 differs by a factor from the 
corresponding matrices for Baxter's ice model and the 
model described by the sine-Gordon equation. '0'1' 

2) In the case of Su(2) symmetry, i. e.  , when g,  
= g 2 = g 3  =g (Xi = X2 = Xg = x), we have 
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It follows from Eq. (40)  that f  also goes to zero, and 
that also 

For the elements of the matrix S  we get 

.. 
In this symmetric model the matrix S, ,  can be expres- 
sed simply in terms of the permutation operator P,, 
which interchanges the isotopic indices a, and a,: 

which is the form in which this matrix was used by 
Belavin. l2  Here the matrix S  differs by a factor from 
that in the model described by the nonlinear SchrGdin- 
ger equation. l1 

5. APPLICATION OF THE BOUNDARY CONDITIONS 

Up to now we have made no use of the periodic bound- 
ary conditions ( 1 0 ) .  Substituting the wave function (14)  
in Eq. (10)  and using Eq. ( 3 0 ) ,  we get a system of equa- 
tions for the isospin vector b l :  

F,Q=e'h"LB; 
(46)  

Fn=Sn  "+ ,... SnN8  .,,... 8,.,"-,. (47)  

The argument of each matrix in, in Eq. (47)  is a,, 
= $(a ,  - a,). All of the N equations (46)  are  compatible, 
since [T,T ,] = 0 by virtue of the factorization conditions 
( 3 1 ) .  These equations determine the isotopic vector D 
and the eigenvalues of the set  of momenta kl, kz, . . . , k,. 

We shall carry  out the solution of Eqs. (46)  by a 
method like that used in a number of papers. 8-12e"*18 

We introduce an auxiliary operator 

u-a, u-a, 
s o p  (T) = wu (T) TonTnp. 

The operator L(u) acts in a space of 2," dimensions, 
with an additional particle numbered 0 .  

We use a symbol for the trace of the operator over 
the indices of the additional particle: 

F ( u )  =spa L ( u ) ,  (50)  

?(u)  is analogous to Baxter's transfer matrix. l4  As 
he showed,14 i t  follows from the factorization conditions 
( 3  1)  that 

for arbitrary u ,  v .  Besides this, i t  is easy to verify 
that 

P (a,.) = T n .  (52)  

We represent the operator i ( u )  in the form 

where 
u-a,, 

wnV=wb (1) . 

An important property of the operators i ( v )  and i ( u )  
is their commutation relations, which can be put in the 
form 

( ) (54)  R (y ) ( L ( u ) @ t ( u ) ) = ( L ( u ) @ L ( u ) ) R  - 
(cf. Refs. 10 and 11). The product i ( v )  @ i ( u )  is a 
four-row (sic) matrix made up of blocks: - 

k ( u )  is a four-row matrix with numerical elements: 

d (u )  0 0 a (u )  

Let us solve the equations (46)  in the case of the 
symmetry U(1). The solution for arbitrary constants 
g, is more cumbersome and is produced by a method 
analogous to that used for the solution for the XYZ 
model, which is explained in a paper by Faddeev. l1 

In our case (d  = 0 )  Eq. (54)  leads to the followin5 com- 
mutation relations for the operators 2, 5, and D: 

A ( u ) B ( u )  =a(u-u)B(u)A(u)-p(u-u)B(v)A(u), 

b ( u ) B ( u )  = a ( u - u ) B ( u ) b ( u )  -p(u-u)  B ( u ) b ( u ) ,  

[ B ( u ) ,  B ( u )  I = %  
(57)  

where 

C C ( U ) = ~ ( $ ) /  b ( ; )  =sh(!-2t2iq 

Let us denote by no a state in which all of the spins 
a re  directed upward, i. e. ,  

7.'Bo=Bo. (59)  
It is easy to verify that no is an eigenvector of the 
operators A, B, and and that 

., 

C ( u )  Po=0 
and, that consequently 

y e  shall look for other eigenvectors of the operator 
T ( v )  in the form 

Y 

~ ( v , ,  u,, . . . , v M ) =  JJB(U.)Q,.  
"-1 

(62)  

Applying the commutation relations (571, we find that 

r ( U ) B =  ( A  ( u ) + B ( u ) ) P = A ( u ,  u,, uz , .  . . , V M ) ~ ,  (63)  

if the se t  of numbers ql, q2, . . . , qN (qn= U ,  + 2 i q / f )  sat- 
isfies the system of equations 
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k = l , 2 ,  . . . , N. The eigenvalues of the operator T(v)  
are  given by 

Substituting here u = a, and recalling that a(0) = -1 and 
b(O), we get for the eigenvalues of the operator T, the 
expression 

(66) 
The system of equations (64) and (66) enables us to de- 

termine the possible values of the set  of momenta 
k,, k2, . . . , k, . Substitution of the expression (62) in 
the wave function (14) gives the eigenfunctions of the 
Hamiltonian operator in the case mo = 0. For the en- 
ergy and total momentum of the system we get 

N E( E.=Z o.k,, KN= k,. 
"-1 n=, 

The energy of these states can take both positive and 
negative values and has no lower bound. To obtain the 
physical spectrum i t  is necessary to define the physical 
vacuum of the system, i . e . ,  to fillup all the states with 
negative energies, introducing a cutoff momentum to 
remove divergences (the cutoff momentum A is a max- 
imum allowable energy of an individual particle). By 
considering the various excitations against the back- 
ground of this vacuum state, we can obtain the spec- 
trum of these physical states of excitation. 

6. CONCLUSION 

A model like that examined above has been investi- 
gated by Ansel'm. It was shown that there is no 
"zero-of charge" problem in the model and that i t  pos- 
sesses asymptotic freedom in the main logarithmic 
approximation of perturbation theory. In this same 
approximation Vaks and  arki in^' concluded that the 
particles spontaneously acquire a mass. An analysis 
of Eqs. (64) and (66) shows that the exact solution gives 
the particles a mass, and yields the same value of the 
mass. 

This model, a s  we have stated in the text, is equiv- 
alent to the sine-Gordon model for an arbitrary value of 
the coupling constant p2. The ~~(21- invar ian t  case con- 
sidered earlier by Belavin corresponds to b2= 811. In 

the sine-Gordon model with p2 <471 "fermion-antifer- 
mion" bound states appear. The exact solution allows 
us to trace this effect out in such cases. 

It is also necessary to note the important fact, re- 
peatedly emphasized by A.M. Polyakov, that two- 
dimensional models of the type we have considered here 
a re  analogous to four-dimensional gauge theories. As 
has been shown here, a particularly interesting prop- 
erty of our present model is the presence of an infinite 
ser ies  of conservation laws. This is extremely impor- 
tant in connection with the possibility of a similar phen- 
omenon in four-dimensional gauge theories in a less 
trivial aspect (absence of production of particles). 

In conclusion the writer is happy to express his grat- 
itude for helpful discussions and valuable comments to 
A. A. Belavin and D. E. Burlankov. 
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