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The formation of Mott excitons in quasi-two-dimensional semiconductors (quantized films or layered 
systems) situated in strong magnetic fields is considered. The exciton energies are calculated for various 
Landau levels and arbitrary values of the momentum. In all but the ground state, the dispersion laws are 
found to be nonmonotonic. The interaction between two excitons is considered and it is shown that formation 
of a biexciton in the system is impossible. The spectrum of an electron on an impurity is calculated and is 
found to differ qualitatively from the spectrum of an exciton even in the case of a Coulomb impurity. 

PACS numbers: 71.35. + z 

1. The problem of a three-dimensional exciton in a conductors and a t  & -10 to 20 the conditions (1) and (2) 
strong magnetic field H is dealt with in detail in a num- a r e  satisfied a t  H z  lo5 Oe and d 5 100 A. These con- 
ber of theoretical papers.'-' A magnetic field in which ditions can be made weaker by choosing a substrate 
the free-particle spectrum is quasi-one-dimensional with higher values of c. 
alters qualitatively the of an electron-hole To  simplify the exposition, we consider next the 
(e- h, pair 'Ompared with the case 

strictly two-dimensional problem. It is shown in Set, 5 
a t  H =O. This paper considers the properties of a Mott that allowance for the quantized motion along the field H 
exciton in a quantum film in a strong transverse mag- 

does not alter qualitatively the two-dimensional results. 
netic field. The spectrum of the free particles in such 
a film is completely discrete (quasi-zero-dimensional) The motion of the mass center of the electron and 
because of the size quantization and of the action of the hole in the magnetic field was separated for the three- 
magnetic field. This is the cause of the singularities dimensional case by Gor'kov and Dz yal~shinski i .~  
of the exciton in the considered system. Thus, the in- They have shown that the operator 
ternal motion of the e - h pair can only be finite, and a e a e 

+(-iG-T strictly speaking no free e or  h state exists. The mo- *(p2))-f I H X ( P , - P ~ ) I  (3) 

mentum dependences of the exciton energies of different 
Landau levels were calculated; in a l l  but the ground 
state these dispersion relations a re  nonmonotonic. With 
increasing momentum, the binding energy of the e - h 
pair tends asymptotically to zero, and the radius of the 
state tends to  infinity. States with sufficiently large 
momenta can therefore be disintegrated by any weak 
perturbation. The interaction of two excitons is con- 
sidered and it is shown that no biexciton can be pro- 
duced in the system. The spectrum of an electron on a 
Coulomb impurity is also calculated and is found to 
differ qualitatively in this system from the exciton 
spectrum. We note that the exciton problem is of in- 
terest for problems dealing with phase transitions in 
I' quasi-zero-dimensional" e - h  system^.^-^ 

We consider here strong magnetic fields 
mga.,  h (1 

and sufficiently thin films 
d2aae,  ATH, 

where a,,, =c/me,,e2 a r e  the effective Bohr radii of e 
and h, a r e  the effective masses (at H =O), 
c = (cl +c2)/2, a r e  the dielectric constants of the 
media surrounding the film, r,  = ( c / e ~ ) ' ~  is the mag- 
netic length and d is the film thickness (& is  assumed 
equal to unity). The condition (1) ensures, a s  will be 
made clear by the exposition, smallness, of the inter- 
action energy E compared with the distances between 
the Landau levels, while condition (2) ensures small- 
ness compared with the spacing of the transverse-quan- 
tization levels. At the effective masses usual for semi- 

plays in a magnetic field the role of the two-dimensional 
exciton-momentum operator. The exciton wave function 
(in a symmetrical gauge) take the form 

where P is the eigenvalue of the operator (3), 

and the relative-motion wave function @ b) satisfies 
the following Schrodinger equation: 

(The notation is that of Ref. 3.) 

In the zeroth approximation in the Coulomb inter- 
action, Eq. (5) goes over into the Schrodinger equation 
for a free particle of mass p in a field H,' provided that 
y =(m, - me)/(mh +me) =*l, i.e., if m, =a or  me 
(this corresponds to motion of one particle of mass 
p =me (or m,) around an immobile impurity. The rela- 
tive-motion wave function is nevertheless independent 
of r and is given by7 

here L," a r e  Laguerre polynomials. The zeroth-ap- 
proximation energy, however, turns out to be strongly 
dependent on y: 

S.,=W~ (n+'lr ( I m l-yrn+ i )  (7 ) 
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(w, = e ~ / p c  is the cyclotron frequency). This energy 
is degenerate in the angular momentum m only a t  
I =I. For an exciton (which consists of particles of 
finite mass), I y (  < 1, i.e., there is no degeneracy with 
respect to the angular momentum m of the relative mo- 
tion. In this representation, however, the exciton ener- 
gy is degenerate in the momentum P (in other words, the 
exciton mass is infinite in the zeroth approximation).') 

The unperturbed spectrum (7) is completely discrete, 
and the Coulomb corrections for it can be obtained un- 
der condition (1) by perturbation theory (in contrast t o  
the three-dimensional case, where the free-particle 
spectrum is continuous in the z-component of the mo- 
mentum). Since the Coulomb operator is  diagonal in the 
P quantum number, with respect to which the energy i s  
degenerate, the Coulomb corrections E,,(P) to the lev- 
e ls  (7) a r e  obtained by ordinary perturbation theory for 
nondegenerate systems): 

The spacing of the unperturbed levels (7) is  -w,, and 
the energy is  En, - e2/cr, [see (ll)], s o  that the higher 
order corrections a re  

- (eZlerH) I ~ ~ ~ - r ~ l a . ,  h ,  

i.e., they a r e  small in the parameter (1). At the end 
of this section we shall consider the situation when the 
distance between some of the levels (7) is less than E ,  
(or-in the limit-these levels a r e  degenerate) and Eq. 
(8) i s  not directly applicable. 

The dispersion relations (8) can be calculated analy- 
tically for a112'n, m ,  and P but these expressions a r e  
extremely cumbersome. We shall present exact ex- 
pressions only for the dispersion laws for several 
lower Landau levels; Eq. (8) will be next analyzed 
qualitatively for arbitrary n and m. In the ground 
state (at n = m  =0) the dispersion law is (see the figure) 

FIG. 1. Dispersion curves of exciton in various states: a )  
n = m = O ;  b) n=O, m = 1 ;  C) n = l , m = O .  At ywH>>Eothe curve 
with n = 0 and m = 1 coincides in form with curve b, and is 
shifted relative to it  in energy by yw,. At y r * ~  E,, when the 
levels n = 0 and m = +1 are  quasi-degenerate, the shapes of 
both curves remains qualitatively the same a s  in the figure, 
albeit somewhat distorted. 

with asymptotic forms 

In@) a r e  modified Bessel functions, 

is the exciton binding energy, and 

is the effective mass of the exciton a t  low momenta. 

In the states n =O,\ml =1 the dispersion relation is 

En, ( P )  ---tI,Eoe-e[ (1+28) I , @ )  -281, ( p )  I. (1 3) 

At Pr, >> 1 the asymptotic form (13) (as well a s  of all 
other dispersion curves) agrees with the asymptotic 
form of (10) apart from a numerical factor. At P = O  
the dispersion law (13) has  a maximum (the exciton 
"mass" is negative a t  low momenta). The minimum 
corresponds to a momentum Pol =1.194ri1 (see the 
figure). Near the minimum we have 

EOL ( P )  =-En,+ (P-Poi)Z12Moi, (14) 

where E ~ ~ = - E ~ ~  ( p o i )  --0.5'i4Eo, 

(1 5) 

In the state n =1, m = O  the energy 

has,  besides a maximum at  P, ,  =2.145ri1 (see the fig- 
ure). The parameters of the expansion of the energy 
(16) near the maxima a r e  

The dispersion laws a r e  nonmonotonic a t  all n and m 
(except n =m = 0). This can be verified by analyzing 
Eq. (a), which we rewrite in the form 

=-constj d z p e ~ . ,  ( p )  -5 
l ~ + ~ a l  ' 

This expression can be interpreted a s  the energy of 
the interaction of the charge distribution eN,,@) with 
a point charge e located at a distance p, =Pr; from the 
distribution center. When p, is  varied, the charge 
goes through n minima of the distribution N,,@), s o  
that n local maxima appear in the interaction energy. 
If m =0, then N,,(O)f 0 and the zero momenta corres- 
pond to energy minima; a t  m * 0 we have N,,(O) = O  and 
the dispersion curve has a maximum at  P =O. 

The exciton spectrum is thus a sequence of bands 
gnR,,(P) =GR,, +En,&') (of the type shown in the figure) 
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with width -E,. The dispersion laws in all the bands 
(except the lowest n =m =0) a r e  nonmonotonic: there 
a r e  n +l minima, with the main minimum a t  m = O  
corresponding to  a momentum P =0, and a t  m + 0 to a 
maximum a t  the point P =O. We note that the exciton 
binding energy in the ground state was obtained by us 
earlier4"15 (and for the analogous case of anisotropic 
semiconductors in a magnetic field by Beneslavskii 
and Buzdin).' 

We have disregarded s o  f a r  the fact that a t  certain 
- - -  

values of Y the spacing between some u n k 3 u r b e d  
levels (7) is less than E ,  (and a t  rational Y, i.e., when 
me and m, form a rational fraction, sufficiently high 
levels a re  degenerate). Levels with n =0, rn =*1 a r e  
mutually degenerate a t  y =0, and a t  y = (lm'l - 2)/m1 the 
energies of the levels n = m, m = 0 and n = 0, m' 2 2 a re  
equal. Therefore the conditions for the applicability 
of the equations derived above for the levels n =0, 
lml =1 and n = l , m  = O  a r e  respectively 

If these conditions a r e  not satisfied, then Eqs. (8), (13), 
and (17) do not hold.') 

We consider here the case y = O  (i.e., me =m,). The 
energy (7) depends now on the quantum number N =2n 
+Iml and the N-th unperturbed level (N +1) is multiply 
degenerate. The ground level N = O  is not degenerate, 
s o  that the dependence of the energy on the momentum 
is given a s  before by Eq. (9). The Coulomb interaction 
lifts (at P + 0) the degeneracy of the remaining levels, 
and the corresponding dispersion laws separate. The 
contribution made to the energy by transitions between 
levels with different N is small, since the distance be- 
tween neighboring levels is w, >> E,. 

The dispersion laws for the lowest excited level 
N = l  (i.e., n =0,m = * l )  is 

where E, (P) is given by (13). 

The shapes of the dispersion curves (18) do not differ 
qualitatively from that of Eol(P) (curve b in the figure), 
although the binding energies and the effective masses 
a r e  somewhat altered. The dispersion law for  the level 
N = 2 (which corresponds to the quantum numbers n =1, 
m = O  and n =0, m =*2) is triply split: 

1 E : ' . ~ ' ( P )  = - { (E, ,+Eo2+A2)  *[ (Eio--Eo~-Az)~+8A?l'"),  
2-- - 

EY' ( P )  =Em ( P )  -A2 ( P ) .  
(1 9) 

For the sake of brevity we do not present here the 
analytic expressions for  the matrix elements Em@') 
and h,,,(P) of the Coulomb operator V. We indicate only 
that Eq. (19) corresponds to three dispersion curves: 
one of them (which goes w e r  into the E,,@') curve in the 
nondegenerate case) has a minimum a t  P = O  and an ad- 
ditional lateral minimum, while the other two a r e  
shifted relative to the first  upward in energy (by an 
amount -E,) and have coinciding maxima a t  P = O  and 
two (noncoinciding) lateral minima each. At Pr, << 1 
the off-diagonal corrections a r e  -(PY,)~, s o  that a t  

P = O  not only the binding energies but also the effective 
masses a r e  the same as in the nondegenerate case. 

It must be emphasized that in any state the internal 
motion of the e - h pair is finite: the average radius 
vector (p) between e and h is equal to p, at  all n and m. 
Large momenta Pr, >> 1 correspond to a low binding 
energy (10) and to a large exciton size, s o  that such 
states a r e  disintegrated by a weak perturbation (im- 
purity, surface inhomogeneity, and others). In this 
sense, in any real system the exciton momentum has 
an upper bound (much more substantial than mentioned 
in footnote 2). 

At momenta close to the minima of the dispersion 
curves, the exciton dispersion laws a r e  quadratic, just 
a s  in (lo), (141, and (17). The exciton dimension is 
then 

(P, is the position of one of the E,,(P) minima, and A 
and B a r e  dimensionless constants that depend on n and 
m). In interactions of scale R >>r, the wave function of 
the exciton motion as a whole must be averaged over 
the internal motion, and the result is a plane wave 
exp(iP. R/2). Consequently an exciton with momenta 
(P -P,)r,<< 1 can be regarded in such interactions as 
a n  ordinary two-dimensional quasiparticle whose mo- 
tion does not depend on H (but all its characteristics- 
mass, dipole moment a t  P + 0, etc., a r e  determined by 
the magnetic field4)). 

3. We consider now the interaction of two excitons 
on the level n =m = O  with momenta Pl,P, << 1 /r,, lo- 
cated a t  a distance R >>r, from each other. The 
proper dipole moment of each exciton is 

and the corresponding contribution to the energy of 
their interaction is 

The sign of (20) depends on the relative orientations 
of PI, P,, and R. This energy can also be negative but, 
a s  seen from (18) its absolute value is half that of the 
combined kinetic energies of the excitons. Therefore 
the total energy of two excitons can have a minimum 
only a t  PI =P, =O. 

The energy of the interaction of the excitons a t  zero 
momenta (i.e., the energy of the van der  Waals at- 
traction) is in this case 

Contributing to this energy a re  only transitions from 
the ground state to  states with n = O  and rn =1 (the re- 
maining dipole- moment matrix elements, determined 
with the wave functions (6) in the zeroth approximation 
in the parameter (1) a r e  equal to zero; with allowance 
for the corrections, their contribution to  (21) would 
have an additional smallness An important 
factor is the presence in (21) of the small coefficient 

590 Sov. Phys. JETP 51(3), March 1980 I. V. Lerner and Yu. E. Lozovik 590 



r,/a,, which makes the interaction energy small  com- 
pared with exciton self energy E ,  even a t  R -Y,. At 
R 5 r,, on the other hand, a strong Pauli repulsion 
appears between excitons of energy - w, >> E,. Inas- 
much a s  in the potential well made up by the energy 
U ( R )  and the barr ier  at R =r, the zero-point oscillation 
energy is 

all the way to  R -r,, no levels can appear in the well. 
Consequently, formation of a biexciton in th issys tem 
is impossible. 

We note that the weak van de r  Waals attraction of the 
exciton to a charged impurity can produce in principle 
a bound state, since there is no repulsion in this case 
(but the binding energy is exponentially small). 

4. The interaction of an  electron with a charged im- 
purity is  described by the SchrMinger equation (5) with 
Y =l. In this case the zeroth-approximation energy (7) 
is infinitely degenerate in the angular momentum m 
at  m > 0. But the electron-impurity interaction operator 
2e2/&p i s  independent of angle, i.e., it is diagonal in 
m (Ze >O is the charge of the impurity). Therefore the 
corrections to the degenerate levels (7) a r e  obtained 
from ordinary perturbation theory: 

where 

Integrals of this type a r e  calculated in the book of Lan- 
dau and Lifshitz7 [formula (f, 6)j. We present the result 
in a different form, more convenient for  estimates: 

" (2n-21-I)!! (2m+21-I)!! @-I)!!  C (2n-21) !! (2rn+2j) !! (21) !! ' (23) 
-- ,-a -- 
where the notation (o)!! =1 and (-I)! 1 =1 is used to 
simplify the notation. 

At small n the coefficients I,, a r e  obtained directly 
from (21). In particular, I ,  =I.  

At n>> 1 we can obtain estimates of I , ,  by using asymp- 
totic expressions similar to (24). For example 

Thus, the interaction of the electron with a Coulomb 
impurity lifts completely the degeneracy in the angular 
momentum m: The Landau levels (7) acquire the fine 
structure (22). At m >> 1 the fine-structure components 
condense in proportion to ~ , m - ' ~ ,  and the dimension 
of the electronic state increases in proportion to 
rhmlh. Just a s  in the case of the exciton, there a r e  no 
non-bound states. On the whole, the spectrum of the 
electron on the impurity differs qualitatively from the 
spectrum of the exciton. 

We note that the problem of the two-dimensional ex- 
citon in a magnetic field was considered a lso  by 
Grebeshchikav and Korneev; but they used a Schro- 

dinger equation with y = l ,  which is valid only for elec- 
tron-impurity interactions. Even in this case, however, 
the results they obtained by expanding the quasiclassi- 
cal  integral in terms of the parameter (1) differ sub- 
stantially from the exact expansion we obtained in terms 
of the same parameter. 

Interaction of an electron with a short-range impurity 
hardly lifts the degeneracy. Thus in the case of an im- 
purity A6@)  (for which perturbation theory is valid a t  
(Ame/2n) ln(L, Ly/2wi)<< 1, where L, and L, a r e  the 
dimensions of the system) there is split off from each 
Landau level, by an amount -A/2nri --Am,w,, one 
level corresponding to  a state with angular momentum 
m =0, while the energies of the states with m + 0 re- 
main unchanged. If the radius of the interaction of the 
electron with the impurity is a << r,, the degeneracy 
of the states with m + 0 i s  lifted only a (a/~,)~". '~ 

5. We discuss now the conditions for the applicability 
of the employed model. Allowance for the size-quan- 
tized motion along the field H does not lead to signifi- 
cant effect. Under the condition (2), the dispersion 
curves can be calculated a s  before by perturbation 
theory (the energy has in this case a nonmonotonic 
dependence on the momentum also  a t  the higher levels 
of size quantization). In the formulas of Secs. 2 and 4 
(which pertains to the ground level of motion along z) 
it is necessary to replace e2/r;p by - -. 

el dz v(~)=Tlm Qo'(z) QO ( 2 )  
.-- - 

(25) 

I i.e., by the coulomb potential averaged over the wave 
functions of the motion along t. - A numerical calcula- 
tion (with @,(z) =(2/d)lhsin(~d/z)] shows that a t  d -Y, 

the dispersion curves differ from (10)-(16) by only 
several percent. At d << r, [a condition stronger than 
(2)] it can be easily shown analytically that replace- 
ment of e2/Ep by the potential (25) leads in all equa- 
tions to additive corrections a(d/r,)? 

The results a r e  applicable also to highly anisotropic 
semiconductors with M, >> M,., in a strong magnetic 
field H,. In this case the problem can be treated adia- 
batically and Eq. (25) represents the Coulomb potential 
averaged over the fast motion along the field H. (The 
problem of the ground state of an  electron o r  an im- 
purity in such a system was considered in Ref. 11; the 
results agree, in the zeroth approximation in l/M,, 
with equation (20) in which we put n = m  =O.) 

Strictly speaking, a Coulomb potential with 
E = ( E ~  +c2)/2 can be used only when the state size (p) 
>> J .  At n = m = 0 and d -r, we have (p) -d. However, 
even in this case the replacement of the Coulomb op- 
erator leads only to insignificant changes. The quali- 
tative results (as well a s  the quantitative ones a t  
d << r,) remain the same. 

Our use of a two-band semiconductor model is not a 
significant restriction. If the condition (1) is satisfied 
in a multivalley semiconductor for electrons and holes 
of a l l  types, then the Landau levels of an  e-h pair of 
any type have the same dispersion laws, which do not 
depend a t  all on the masses of e and h. (If the electron 
and hole bands a r e  separated by P,,, then the dispersion 

59 1 SOV. Phys. JETP 51(3), March 1980 I. V. Lerner and Yu. E. Lozovik 59 1 



laws become effective starting not with the zeroth mo- does the asymptotic form of the dispersion laws change at 
mentum, but with P,,.) Pr, >> 1. 

"In any state, the exciton mass  Mnm- l/~~r,,' does not depend 
One of the possible experimental applications is  the on the effective masses  e and h at H= 0. It i s  seen, however, 

study of the dispersion relations of excitons. Besides from the equality 1/E0rH2 - (ao/rH)M (where ao=ae + a, and M 
the traditional methods (e.g., using Raman scattering), is the mass  of the exciton as a whole at H= o), that Mnm >J M. 

obser~ation is possible of dispersion in a n  electric 
field I perpendicular to the field H. The point is that, 
just a s  in the three dimensional case,3 in the presence 
of a field the energy depends on the vector 

Mc + 
P'-P+-[H Xg]. 

HZ 
At P = O  the momentum characteristic values P' -l/r, 
a r e  reached in fields $ - (1 /137)(a,/r,)~. 

 he energy of e o r  h in the usual representation 1 ni , mi ; n2, 
m,) and q,, a r e  respectively the radial and azimuthal 
quantum numbers of e and h) is given by 

a= ( n ~ + ' l ~ ) o , + ( i ~ ~ + ~ / ~ ) o ~ , ,  - 
i.e., it is degenerate in mt and %. Equation (7) corresponds 
to the cited expression (we,,= eH/me,,c at  n=minh i ,  nZ), m 
=n2-ni. 

"1t is implied that I P I << 1 G I ,  where G is the reciprocal-lat- 
tice vector. This restriction is inessential, since the disper- 
sion curves a r e  nonmonotonic only intheregionp - 1/rH <<G. 

3'~ince the Coulomb operator is diagonal in m a t  P= 0, the po- 
sition of the centers of the exciton bands relative to the un- 
perturbed levels (7) does not change at any value of y. Nor 

'R. J. ~ l l i o t  andR. hudon ,  J. Phys. Chem. Solids 15, 196 (1960). 
'H. Hasegawa and R. E. Howard, J. Phys. Chem. Solids 21. 179 

(1961). 
'L. P. Gor'kov and I. E. ~ z ~ a l o s h i n s l d r ,  Zh. Eksp. Teor. Fiz. 

53, 717 (1967) [Sov. Phys. JETP 26, 449 (1967)l. 
'I. V. Lerner and Yu. E. Lozovik, a)  Solid State Commun. 23, 

453 (1977); b) Zh. Eksp. Teor. Fiz. 74, 274 (1978) [Sov. Phys. 
JETP 47, 140 (1978)l. 

9. V. Lerner and Yu. E. Lozovik, Pis'ma Zh. Eksp. Teor. Fiz. 
27, 497 (1978) METP Lett. 27, 467 (1978)l; J .  Low Temp. 
Phys. 58, 333 (1980). 

6 ~ .  Kuramoto andC . Horie, SolidStateCommun. 25, 713 (1978). 
'L. D. Landau and E. M. Lifihitz, Kvantovaya mekhanika 

(Quantum Mechanics), Nauka, 1974 [Pergamonl. 
's. D. ~eneslavskif  and A. I. Buzdin, Proc. 2nd All-Union Conf. 

on Metal-Insulator transitions, Lvov, 1977, p. 231. 
%u.B.Grebenshchikovancl V.V.Korneev, Fiz. Tverd. Tela (Len- 

ingrad) 19, 2143 (1977) [Sov. Phys. SolidSttte 19,1255 (1977) 1. 
'O-n, L. I. Magarill, and M. V. ~ n t i r z h .  Eksp. 

Teor. Fiz. 75, 723 (19711) (Sov. Phys. JETP 48, 365 (1978)l. 
"s. D. ~enes lavs ld r  and E. ~ntra l 'go.  Zh. Eksp. Teor. Fiz. 68, 

2271 (1975) [Sov. Phys. JETP 41, 1135 (1975)l. 

Translated by J .  G. Adashko 

NMR investigation of the anisotropy of hyperfine 
interactions of orthoferrites 

A. S. Karnachev, Yu. I. Klechin, N. M. Kovtun, A. S. Moskvin, and E. E. Solov'ev 
Donetsk Physicotechnical Institute, (Ikminian Academy of Sciences 
(Submitted 23 August 1979) 
Zh. Eksp. Teor. Fiz. 78,11761 195 (March 1980) 

The anisotropy of the hypertine interactions in a number of rare-earth orthoferrites is investigated 
experimentally and theoretically on the basis of the singularities produced in the NMR spectrum of "Fe 
nuclei in spin-reorientation phase transitions. Both non-substituted orthofemtes and orthoferrites 
substituted in the rare-earth sublattice are investigated. A phenomenological analysis based on the use of 
the magnetic symmetry of orthofemtes has made possible a qualitative explanation of all the effects 
observed in NMR experiments. A microscopic analysis points to a small contribution of the paramagnetic 
rare-earth sublattice to the anisotropy of the hypefine interactions (HFI) for the "Fe nuclei. The most 
probable mechanism of the HFI anisotropy, explaining all the main features of NMR in the spin- 
reorientation region is connected with the non-cubic contribution to the crystal field at the Fe3+ ions 
from the next-to-nearest environment, considered within the framework of the point-charge model. 

PACS numbers: 75.30.Gw, 76.60.Jx, 75.50.Gg 

A few years ago, NMR investigations of phase trans- 
itions of the spin-reorientation (SR) type in rare-earth 
orthoferrites (REO) have led to observation of an in- 
teresting phenomenon-violation of the magnetic equiv- 
alence of the ions from different sublattices of the iron. 
This violation consisted in the fact that two values of 
the local field are  produced at the "Fe nuclei in the SR 
transitions. In addition, other subtle effects were ob- 
served, such as a jump of the local field and the non- 
synchronous rotation of the antiferromagnetism vector 
and the vector of the summary magnetization following 
the SR. 

It was indicated in the f i rs t  studies that a connection 
exist between the splitting and shift of the NMR fre- 

quencies in the region of the SR transition, on the one 
hand, and the character of the hyperfine interaction, 
on the  other.'^^ Allowance for the magnetodipole in- 
teractions of the 5 7 ~ e  nuclei with the surrounding Fe3' 
ions, however, did not provide a satisfactory quan- 
titative explanation of the observed effect. In addi- 
tion, no account was taken in the earlier research on 
the influence of the rare-earth ions. This has made i t  
necessary to explain the experimental data using a 
model in which the antiferromagnetism and ferromag- 
netism vectors (1 and m) are  not orthogonal in the SR 
region. Later investigations of mixed orthoferrites 
containing various rare-earth ions have shown that 
these effects differ substantially in character, depend- 
ing precisely on which of the lanthanide-series ion is 
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