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Hubbard long-range model 

I. V. Kitrchatov Atomic Energy Institute 
(Submitted 31 July 1979) 
Zh. Eksp. Teor. Fiz. 78, 1132-1 146 (March 1980) 

The use of the large-number-of-nearest-neighbor approximation enables us to evaluate the polarization 
operator which defines the permittivity and the phonon spectrum renormalization. We evaluate the long- 
range correction to the free energy in the vicinity of the metal-dielectric transition (M- or Mott-transition). 
We show that in the region of strong correlations the system loses its mechanical stability so that the M- 
transition is accompanied by a first-order isostructural transition. Far from the transition and for sufficiently 
low temperatures the singularities of the thermodynamic quantities are weakened and remind us of those near 
a second-order transition. 

PAC3 numbers: 7 1.30. + h 

INTRODUCTION 

In the theory of s t ruc tura l  t ransformations which ac- 
company the transition f r o m  the metal l ic  to the dielec- 
t r i c  s ta te  one u s e s  in an essent ial  way the assumption 
that the electron-electron interaction is small .  F o r  in- 
stance, in  the theory of an exciton d i e l e ~ t r i c ' ' ~  a l l  cal- 
culations of the i r reducible  ver tex  p a r t  a r e  res t r i c ted  to 
the second o r d e r  of perturbation theory. In Adler 's  the- 
ory3 one assumes  that the cause  of the s t ruc tura l  t ransi-  
tion is the s t rong electron-phonon interaction. The di- 
r e c t  electron-electron interaction does not occur  a t  a l l  
in this theory. In the Hubbard model4 the s t rong inter-  
action of the electrons (u) is taken into account r ight  
f rom the beginning. One can therefore expect that a 
c o r r e c t  allowance f o r  the electron-phonon and electron- 
electron interactions (in different cel ls)  in that model 
will lead u s  appreciably c l o s e r  to an understanding of 
the physical effects which take place in the oxides, sul- 
fides, and ni t r ides  of t ransi t ion metals .  

We assume that the energy f o r  the transition to a 
neighboring ce l l  ( t )  is s m a l l e r  than the energy of the 
electron interaction in one and the s a m e  ce l l  (u). One 

can then easi ly  show5 that i n  the Hubbard model there 
occurs  a s t r u c t u r a l  transition if the electron-phonon in- 
teraction energy reaches  a value of the o r d e r  of u. Such 
a situation may be  an exception-as a r u l e  the opposite 
situation occurs .  The  electron-phonon interaction is 
equivalent to an at t ract ion which is of the s a m e  o r d e r  of 
magnitude a s  (or  l e s s  than) the Coulomb interact ion be- 
tween different ce l l s  which, in turn, is l e s s  than the en- 
ergy u. Because of this we sha l l  neglect in  the p resen t  
paper  the ion motion, assuming that i t s  r o l e  reduces to 
providing electro-neutrality on the whole. Taking the 
long-range p a r t  of the Coulomb interaction into account 
makes  our model close to the well known Shubin-Von- 
sovski i  model6 where the problem was posed of finding 
the ground s t a t e  of a sys tem with an a r b i t r a r y  interac- 
tion between different cells.  

We sha l l  consider  in  the p resen t  paper the f i r s t -o rder  
i sos t ruc tura l  transition which accompanies the Mott 
transition. We sha l l  show that the rea r rangement  of the 
electron spec t rum near  the M-transition line strongly 
changes the long-range par t  of the Coulomb interaction. 
The permittivity increases  in the dielectr ic  phase when 
the p r e s s u r e  increases  and becomes infinite a t  the Mott 
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transition point. The screening radius decreases in the 
metallic phase when the pressure is  lowered far from 
the transition point, and afterwards starts to increase 
as  one appraoches the M-transition point due to the de- 
crease in the density of electron states. We shall show 
that as one approaches the metal-dielectric transition 
point the hydrostatic s t ress  modulus changes sign so 
that the system loses its mechanical stability. Hence 
one may conclude that close to the M-transition line 
there occurs a first-order phase transition. The pro- 
posed model enables us to find the corrections to the 
f ree  energy in the disordered magnetic phase when the 
temperature is large compared to the NCel temperature, 
but less than the energy u. 

1. CHOICE OF MODEL AND HAMILTONIAN 

The problem of the metal-dielectric transition was 
solved by the present author7 by the self-consistent field 
method. The Hubbard Hamiltonian was written in the 
atomic representation s o  that we would use as the zeroth 
approximation the one-cell part of the Hamiltonian 

where o i s  the spin, index, ri , ,=ab, ,  p i s  the chemi- 
cal potential which below is chosen in such a way that 
the number of electrons turns out to equal the number of 
sites ( p  =u). In Ref. 7 we reproduced Hubbard's main 
result4 consisting in that near the M-transition point the 
electron Green function has a branch point kind of singu- 
larity and there occurs a phase transition as  the result 
of electron scattering by the spin fluctuations in the pa- 
ramagnetic phase. The electron Green function, 
summed over all  indices, has a rather simple form 

The quantity O depends on the frequency w, and satis- 
fies a self-consistency condition (vide infra). In the lim- 
i t  u - 0 O = w, s o  that we get from (2) the usual Green 
function. In the opposite limiting case It(p) l e u  we get 
after an analytical continuation, iw, -& ,  the D-function 
with a gap E, = 2u. 

It i s  shown in Ref. 7 that close to the M-transition point 
G ( w )  satisfies a Landau type equation. In the dielectric 
phase, as on-0, O also tends to zero. In the metallic 
phase the function O is finite for w, = O  and i t  tends to 
zero a s  the square root as  function of the pressure, 0(0) 
a ( ~ - p ~ ) ' ' ~ .  We shall show below that such a behavior 
of the Green function in the limit T - 0 leads to a phase 
transition of order 34, which contradicts the general 
Peierls-Landau and Zel'dovich considerations.' This is 
explained by the fact that in the Hubbard model the Cou- 
lomb interaction between neighboring cells is neglected 
and especially in the dielectric phase the long-range part 
of the Coulomb interaction is not screened and i t  is nec- 
essary to take it into account together with the tunnel 
part of the Hamiltonian (1). The operator of the direct 
Coulomb interaction has the form 

In the present paper we take the interaction (3) into ac- 

FIG. 1. a) Polarization operator without corrections to the 
end diagrams; b) corrections to the end diagrams; c)  equation 
for the vertex part. 

count in the Debye-Hiickel approximation, using after- 
wards the &-expansion. The polarization operator will 
be evaluated in the same approximation as  the electron 
Green function (2) when we can neglect all intersecting 
diagrams, while the Coulomb interaction is taken into 
account through perturbation theory. 

2. POLARIZATION OPERATOR 

To find the permittivity and the phonon spectrum it  is 
necessary to know the polarization loop summed over 
the spins (see Fig. 1). The Green function, evaluated in 
the large number of closest neighbors approximation, 
has the following form (for spin "up")7: 

-io-u-'l , t(p) -h.t(p) -'/d ( P )  - - ~ J ( P )  
G-I- ( -I/,t ( p )  4h.t ( p )  -io+~-'/~t ( p )  +h- t (p)  

u is half the Hubbard energy I ,  the quantity X depends on 
the frequency and is determined by the following self- 
consistency condition: 

l l - 01  

y is  a positive quantity of order unity, w, = (272 + 1 ) f l .  
The vertex part, irreducible with respect to two elec- 
tron lines of opposite directions, can be calculated in 
the same approximation as  the Green function when one 
can neglect the contribution of the intersecting diagrams. 
An estimate of the omitted diagrams is made in Ref. 7. 
Performing simple calculations and summing over spins 
one easily understands that the simplest taking into ac- 
count of scattering by static spin fluctuations in the 
para-phase makes i t  possible to express the vertex part  
in terms of the same parameter y which occurs in the 
definition of the Green function (2) (see Fig. 2a, b). 
Thus, for instance, for spin "up" the vertex part To 
shown in Fig. 3 is independent of the index of the out- 
going lines and changes sign when the index of the in- 
coming lines a re  changed: 

In this case wi = w3 and w2 = w4, a s  in the approximation 

FIG. 2. Simplest irreducible vertex parts. The total contri- 
bution from diagrams a and b leads to the value y = 3. The 
contribution from the diagrams c and d vanishes after summa- 
tion over spins in the Coulomb vertex part. 
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upper half gives the integral of the retarded and the low- 
e r  half the integral of the advanced Green function D3p). 
We have 

FIG. 3. 

used we take into account scattering by static spin fluc- 
tuations. 

On the real  axis D$(p) =[Df3(p)]* so  that we get after in- 
tegrating by parts 

The electrostatic vertex shown in Fig. 1 by a dashed 
line is determined by the commutator [x,, z,a&a,], the 
magnitude of which is independent of the spin: 

[p*, ; J-xo.~, [Xka2, n] =x-. 
Direct evaluation of the II-operator leads to a sum of 
two terms corresponding to Figs. l a  and b: 

(11) 
In the limit T-- 0, II,(O) =-p(0) so  that there is no 
screening in the dielectric phase, while in the metallic 
phase the screening radius has a minimum a s  a function 
of the ratio t/u (see Refs. 4, 7). Close to the M-transi- 
tion point the screening radius becomes infinite like (t 
- tc)-1'4. 

where 

2~~+o+++o-~-(0++0-) (@++a_) 
II.L"' (q) =TZ 

-.P Vm+ (P+) Vs- (P-) If we assume that for all p there exists a Q such that 
the condition t(p+Q) =-t(p) is satisfied, the polariza- 
tion operator a t  E = O  and q=Q determines the condition 
of stability against an increase in the period of the 
structure: 

here 

In the limit t << u, T -- 0 we have 

n, ( Q )  = - - ~ Y T D ,  l' l~vu'+o,,~) - . I .  P?=C t ? ( p ) / r ~ : .  
Y 

(13) 
O n  P 

If, however, t>>u, we have 

The quantities t, satisfy condition (4) which we used to 
transform the second sum in (6). If E = 0 and q =0, the 
polarization operator can be expressed in terms of the 
complete Green function 

A comparison of (13) and (14) shows that the quantity 
uno(Q) has a negative minimum when t-u. In the limit 
T - 0 the function (14) has a logarithmic singularity 
which determines the structural transition in an exciton 
dielectric. However, for any finite u in the limit T - 0 
the integral is cut off in frequency s o  that we get instead 
of (14) as T - 0  

One can easily check Eq. (7) by differentiating the D- 
function (8) and using Eq. (4) and afterwards comparing 
it with what one obtains from (6): 

where I/(&) is the single-particle density of states. (9) 

here cp, = q,(q =0, E =O). Equation (7) enables us to ex- 
press lIo(0) in terms of the density of states 3. PERMITTIVITY AND SOUND 

We showed above that in the dielectric phase as  T -- 0 

lim n,(q)=O. 
q-0 

D ~ S ( ~ )  is the retarded Green function which we can obtain 
from (8) through an analytical continuation in the upper 
half-plane, iw, - w + i 6 .  

The next term of the expansion in powers of q2 deter- 
mines the permittivity 

We change in (7) from a sum to an integration: 

(a is the size of the crystal cell which we assume to be 
cubic). 

The contour r encloses all singularities of the function 
tanh(zI2~) .  If we now expand i t  along the real  axis, the 

In the "dielectric" limit t <<u one can show that the 
polarizability vanishes a s  T - 0 with an accuracy up to 
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terms of second order in the parameter ( t / ~ ) ~ .  For  this 
it is sufficient to expand the f i rs t  sum in (6) inpowers of 
q' as  the second sun1 of (6) gives corrections of order 
( t ,  11)' and higher: 

As T - 0 both sums over w, vanish a s  the summed func- 
tions a r e  total derivatives. 

When the pressure increases the dielectric permittiv- 
ity increases and becomes infinite near the M-transi- 
tion point. The occurrence of this singularity is con- 
nec ted with the factor 1- cp, (q, c )  which vanishes in that 
point where both its arguments vanish. We shall assume 
that all odd nloments 

vanish and we expand the "dangerous" denominator in 
powers of 3 and w: 

This expansion determines the behavior of all polar- 
ization loops near the M-transition point when 11 - yD2 I 
\< 1. It is convenient to introduce instead of w  a new 
variable $ = w / 3 .  To express 3 in terms of i t  we use an 
expansion of the self- consistency condition (4) in powers 
of w, 3 and I l - y ~ ~ l :  

I-$,=-!D.[ 1 ?(,I~II-'] -~D.~'$.-'IL-:.  

Hence we have near the M-transition point 

In the metallic phase the parameter J I  changes from 0 to 
1. In the dielectric phase J I  changes from 1 - yD2 to 1. 
Substitution of (18) into the expansion (17) leads to the 
following result: 

I- i l  zl( .;D.-l  ) -  (19) 

In the limit $4 dm,, we get from (19) a "pair law": 

I U I I I ( I - ~ ~ ~ ) - ~ (  { I ) .  i)O(*!LJ- I) ! ( I -  yDz)O(l--yD2). 

It follows from Eq. (18) that when we integrate over $J 
the ~mportant  region is of the order 11 - yD2 I, s o  that 
the main part of the expansion of the II-operator origin- 
ates from the factor 1 - cp,: 

We do not write down here an expansion of the denomin- 
ator Vw(p,) in powers of q a s  each differentiation of this 
function gives an extra factor 3 a  +'I2. Taking this fact 
into account we put everywhere where i t  is a t  al l  possi- 
ble w and 3 =0 s o  that the main term in the expansion of 
the 11-operator in powers of q2  has the following form 

We integrated here by parts and used the cubic symme- 
try of the crystal. In the limit T - 0 we can integrate 
over 4 rather than sum over w  [see (18) and (IS)]: 

where $Jc =I-  yD2 in the dielectric phase and qC = O  in 
the metallic phase. The evaluation of the integral (20) 
gives the following expression: 

Hence we find by means of (16) 

s o  that the permittivity becomes infinite according to the 
rule 

To find the spectrum of the collective (sound and plas- 
ma) excitation we expand the n-operator in c2. TO do 
this we perform an expansion of the product which oc- 
curs in the "dangerous" denominator 1-cp,(q, E ) :  

we use the definition (4) of the quantities Vw(p) and 3: 

Hence we find 

where 
R"= (I -qJd -I. 

Similarly we can determine also the second deriva- 
tives, but near the M-transition point one can consider- 
ably simplify the calculations if everywhere in the num- 
era tors  we put 3 and w  equal to zero. As a result we 
get the following expression: 

d6i 
"'"(P) =-it (p) R , ,  - = R., 

(101 d o  
dZ(3 

a2vm(p) = - it(p)-= 2yu'Ru3 X t s ( p )  Irm-'(p). 
3 0 , ~  dcoZ 

P 

Substituting this into (23) we find [z,t3(p) = 01 
uz&z 

I - ~ - ( O ,  E )  = l - v * + y T x  th(p)V--b(p) [l-q-I-z. (24) 
I 

Finally we perform the expansion of (6) in c2: 

After changing from a summation over o to an integra- 
tion over ij by means of (18) we have 

We determine the main term of the expansion of (24) 
in powers of I I - y ~ ,  I - ' I2: 

(711. (0) 7 ':I)?(;\D;) ;, 
--=- 

a El I I - ~ I ) ~ I ~ ~ ~ : ; ~ ~ I Z ~  
(n - in thc diclectric pl~rse 

X 
( ( : ) ' / 1  + l)/(::'ln - I ) ,  - .?I:\':' - . in the tnetallic pluse . (25) 
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Combining these results with (21) we find the following 
expression for the sound velocity in the dielectric phase, 
the value of which vanishes linearly: 

an an- at z (1-yol)" C:==~/ZF-~Z(~)  r. 
In the metallic phase the expansion of the II-operator 

contains a constant part. After an analytical continua- 
tion, s2- -w2, one obtains easily the spectrum of the 
optical kind of oscillations: 

Near the transition point II,(O) a (yD2 - 1)'12 s o  that the 
frequency of the plasma oscillations vanishes as 
(t - t p .  

4. METAL-DIELECTRIC PHASE TRANSITION 

If we neglect the direct Coulomb interaction, the f ree  
energy in the Hubbard model is calculated by means of 
the following general formula: 

To obtain this relation i t  is sufficient to assume that 
t (r)  is proportional to the integral for the transition to a 
neighboring cell which, in turn, is a decreasing function 
of the mutual distance between the atoms. The average 
of the two operators in (28) is evaluated in terms of the 
complete Green function (2): 

We use (4) to evaluate the sum over the momenta: 

Near the M-transition point i t  is convenient to use the 
variable J, [see (18)]. In the absolute zero limit we get 
F = E  and 

After integrating we arrive at the conclusion that with- 
out a long-range Coulomb interaction the M-transition is 
a transition of order 3$ and 

The contribution from the long-range Coulomb part is 
well determined by the well known formula from the 
"ring" approximation8: 

We f i rs t  of all determine the correction coming from the 
polarization operator: 

Sufficiently close to the transition point the largest 
contribution to the sum in (33) and (34) comes from the 
term with & = 0. Due to the Coulomb factor close to the 

transition point the sum over q in (34) then comes from 
the small q region. This fact is connected with the sin- 
gularity of the &operator which contains a denominator 
1 - cp,(q). We use  i ts  expansion in powers of q2: 

For cubic crystals this expansion has the following form, 
if we use  (19): 

Making the same simplifications a s  when we evaluated 
the permittivity we find 

After changing to integration in the small q2 region we 
get instead of (34) the following expression: 

To estimate the sum in (36) we evaluate i t  for T = O  
using the substitution (1 8): 

The particular properties of the obtained expression a r e  
connected with the increase of the polarizability near 
the M-transition point. At finite temperatures the log- 
arithmic singularity in (37) is smeared out s o  that a s  
the simplest interpolation we must take instead of 
I1 - yD,  I under the logarithm sign the larger of the two 
quantities: I1 - yD2 1 o r  T / u .  For the final evaluation 
of the correction (33) we subtract from i t  the sum (34): 

If the number of dimensions is less  than four, all the 
integrals in (38) come from small q s o  that one must 
everywhere in (38) put IIo(q)= IIo(0). For not too low 
temperatures i t  is sufficient to take from the sum over 
E the term with E = 0. As a result we get after element- 
ary integrations 

The quantity II,(O) is given in (11); in the case T<<u i t  
is non-vanishing only in the metallic phase: 

[see Ref. 7 and (la)]. In the metallic phase the main 
contribution comes therefore from F2-the Debye-Hick- 
e l  correction to the free energy which is appreciably 
larger than (32) and F1, a s  for T < < E ~  

In the dielectric phase the main contribution comes 
from (37) as according to (11) the density of states a t  
low temperatures turns out to be exponentially small. 
At low temperatures 
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in the dielectric phase. The correction to the equation 
of state is obtained by differentiating the free energy 
with respect to the volume, taking into account the fact 
that the parameter t is a decreasing function of the 
mean distance between the atoms vat/av< 0: 

In the dielectric phase the pressure increases logarith- 
mically due to the f i rs t  term in Eq. (40). The second 
term gives a large negative contribution in the metallic 
phase, =(t - tc)'i'4 which for t > t ,  is always larger in 
absolute magnitude than the first  term. 

Equations (37) and (39) show that for some range of 
temperatures a phase transition is possible in the sys- 
tem which is close to a f i rs t  order transition. When the 
temperature is lowered appreciably below u the nature 
of the singularity changes. However, even a t  T = 0 the 
singularity originating from the Coulomb interaction 
turns out to be stronger than the one occurring in the 
Hubbard model (32). At T = O  all sums over frequen- 
cies must be replaced by integrals and one must expand 
the dangerous denominator in powers of q2  and c2. Using 
(24) and (35) we get 

1-q.(q, e )  =I-q.+b@+ce'/(l-9.)'. (41) 

As a result of integrating over the momentum q2 we 
have instead of (36) 

The logarithmic divergence in & at  the upper limit is 
cut off at some maximum frequency which is independ- 
ent of t. Using the expansion (19) and the change of 
variable (18) we easily make the integral obtained di- 
mensionless using the substitutions 

e-lrDz-ll"e, $-+lrDa-iI$, 

as a result of which we shall have (with logarithmic ac- 
curacy) 

A comparison of this result with (37) shows that the ex- 
tra integration over & gives an additional small factor 
(1 - Y ~ 2  1 3'2. For this reason we get as T - 0 instead of 
(39) the following result: 

In the metallic phase the coefficient B is of order un- 
ity; in the dielectric phase i t  is different from zero but 
somewhat smaller. This fact is connected with the sim- 
ple fact that after the analytical continuation the integra- 
tion in (38) will take place over that region of energies 
where the density of states is non-vanishing. In the di- 

electric phase this region decreases fast as we get away 
from the M-transition point. 

5. LONG-RANGE CORRELATION EFFECTS AND 
CONDITIONS OF APPLICABILITY 

Equations (43) and (42) a re  valid for sufficiently low 
temperatures and not too close to the M-transition point: 

T,<Tau[  I t - t . I / t , ]hau.  (44) 

The left-hand inequality ar ises  from the fact that a t  suf- 
ficiently low temperatures (<T,) the system becomes 
unstable against the occurrence of antiferromagnetic or- 
deringg which was neglected in the present paper. 

The results (37), (39), and (40) apply a t  sufficiently 
high temperatures. I t  is, however, clear that when we 
approach the transition point the formulae obtained 
above cease to be applicable because of critical fluctua- 
tions. 

We shall depict by a wavy line the Coulomb interac- 
tion: 

V (q)  = h e z /  (qz+x') , x2=-4rce2II0 (0) /a. (45) 

The basic correlation corrections a r e  determined by 
the ternary and quaternary vertex parts E 3  and E4, a s  
shown in Fig. 4. One shows easily that in our case of 
a half-filled band the vertex part E3 vanishes as an odd 
power of q,. The vertex part  E4, calculated in the static 
and long-wavelength limit w,  = O  and q, - 0, corresponds 
to repulsion and depends strongly on the ratio t/u. In 
the vicinity of the Mott transition which is of interest to 
us i t  has a very weak singularity which we must neglect 
and evaluate Ed for t =t,: 

E,-T qm3D,' (p) - ~ - ~ g ( T / u ,  t l u ) .  (46) 
*.. 

Here g(x, y ) is a dimensionless positive-definite function 
which we shall use in the limit T <<u, t-t,, g(0, t d u )  
=g. The simplest account of the correlation corrections 
shown in Fig. 4a to c leads to the following estimate (q, 
= 0): 

Here a is the size of the cell; and the factor T ar ises  
because in the summation over the energy transfer we 
restrict  ourselves to the static term corresponding to 
o=o. 

In the three-dimensional case comparison of (47) and 
(46) leads to the following inequality: 

a b C 

FIG. 4. Ternary (E3) and quaternary (E, )  unpaired Coulomb 
potential, a to c: corrections to the quaternary potential. 
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Combining this inequality with the condition for the use 
of the quasi-static approximation we get the region of 
applicability of the results (37) to (40): 

t-t, 8nu au t-t. " u l ~ l  t T q g ( ~ )  1 . (48) 

We note that in fact the parameter g-1, but i t  is always 
multiplied by the factor [4ne2/uaI2 which is the square 
of the ratio of the size of an atom to the size of the 
elementary cell. 

It is interesting to note that in four-dimensional space 
all corrections become logarithmic so  that our problem 
can be solved in the parquet appro~imation.'~ In the 
three-dimensional case our problem is equivalent to the 
single-component Ising model where the dimensionless 
parameter T = I (T - T,)/T, I must be replaced by n2. The 
critical indexes in that model a re  well known:" a 
=0.08, /3=0.33, y =1.26, q =0.04. In the dielectric 
phase n2 = 0 and the correlation function i s  determined 
by Fisher's parameter 17: 

~ ( q )  ~-q-~+q, v (r)a r-L*04. (49) 

In the metallic phase when n2 > 0, 

~ ( q )  a [qLn+xV]-'. (50) 

The second derivative of the f ree  energy with respect to 
the parameter n2 (in the metallic phase) is determined 
by the index a'': 

6'F/6 ( x ' )  z=-x-Za. (51) 

Because of this we have in the region of strong Coulomb 
correlations instead of (39) 

In the region of strong Coulomb correlations when 

the absolute value of the Debye-Hiickel correction (39) is 
thus overestimated (since 2 - a - 1.92 > 3/2). 

In the dielectric phase in the region of (53) the dielec- 
tric permittivity is infinite a s  according to (49) a t  large 
distances the Coulomb interaction decreases somewhat 
faster than l/r-as r - ' ~ ' ~ .  When the temperature is low- 
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ered the region of applicability of the "high-tempera- 
ture" results is diminished, but the extrema on the iso- 
therms (40) become steeper and the amount of heat re- 
leased a t  the transition diminishes. The nature of the 
transition is not changed a t  any finite temperahre,  but 
as T -- 0 this transition is in a wide range of pressures 
close to a second-order transition [according to (42) and 
(44) i t  has the character of order 2a to 247. 

The Coulomb interaction in the Hubbard model thus 
changes the nature of the Mott transition considerably. 
It i s  transformed from a transition of order 34 to a 
first-order isostructural transition [see (32) and (40)]. 
When we approach the transition point the dielectric 
permittivity grows and the frequency of the plasma os- 
cillations and the sound speed decrease. The Coulomb 
interaction necessarily leads to a structural instability 
near the Mott transition point. This result agrees 
qualitatively with all experiments where a metal-dielec- 
tric transition occurs. 

The author is grateful to S. T. Belyaev for useful dis- 
cussions. 
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