
Distribution of partons in a relativistic hadron 
Al. B. Zamolodchikov, B. Z. Kopeliovich, and L. I. Lapidus 

Joint Institute for Nuclear Research, Dubna 
(Submitted 13 July 1979) 
Zh. Eksp. Teor. Fiz. 78,897-909 (March 1980) 

The distribution with respect to the number of slow partons in a hadron is considered as a function of the 
rapidity of the hadron. The corrections for the recombination of parton chains are ignored in the derivation 
and finding of an explicit solution for this distribution, which depends on the initial distribution at y =yo=: 1. 
Comparison with Regge diagrams yields a connection between the parameters of the parton model and Regge 
field theory. The Abramovskii-Gribov-Kancheli cutting rules for reggeon diagrams are given a parton 
interpretation. The parameters of the parton model are estimated numerically, which shows that at the 
existing energies the slow parton density is apparently close to the saturation value, and allowance for 
enhanced Regge graphs is therefore in principle important. 

PACS numbers: 12.40.Bb, 12.40.Mm 

I 1. INTRODUCTION The present paper i s  arranged a s  follows. In Sec. 2, 

The parton arose a s  a generalization of vari- we introduce a method for studying the partonwave func- I 
I ous field-theory models of the peripheral interaction of function of a hadron by shifts with respect to the ra- 

pidity. Particular attention is devoted to the passive hadrons a t  high energies. By introducing a small num- 
I 

ber of rules, one can explain many characteristic c ~ m p o n e n t , ~  the state not containing slow partons. The 
weight of the passive component was determined earlier  properties of hadron-lepton and hadron-hadron inter- 

actions. Reproducing many results  of Regge pheno- in Ref. 9 from data on the total cross sections of had- 
ron-nucleus interactions. 

menology, the parton model also enables one to 
analyze the space-time structure of the interaction.* In Sec. 3, we consider the development of the parton 

configurations under shifts in the rapidity. We make a Fora long time the parton model existed a s  a method 
detailed calculation for the case when the interaction 

of qualitative analysis, guiding our intuition without 
between the parton chains can be ignored. We consider being a rigorous theory. Recently, significant progress 

has been made in the development of the formalism of the asymptotic behavior. We show that the neighbor- 

the parton model and i t s  applications. Several  paper^^-^ hood of the critical point in the values of q ( 0 )  i s  dis- 

have studied the connection between the parton model tinguished. 

and Regge field theory,'which is the only self -consistent 
theoretical scheme which describes elastic and in- 
elastic7 hadron interactions at high energies and not 
too large momentum transfer from a unified point of 
view. Grassberger3 proposed a method for studying the 
parton wave function when considering the evolution 
of the parton distribution with respect to displacements 
of the origin in the rapidity scale. He also showed5 
that despite the apparent inconsistency of the concept 
of the parton wave function the parton model reproduces 
all the results of Regge field theory. Therefore, the 
parton model can be used as a rigorous phenomenological 
scheme to calculate hadronic processes. The parton 
model leads to a clear physical interpretation of the 
graphs of Regge theory field and the parameters con- 
tained in the theory. For example, in Ref, 4 a con- 
nection was established between the values of the pom- 
eron parameter a,(O) and the three-pomeron constant. 
It will be shown below that the actual relationship be- 
tween these quantities i s  more complicated. 

In the present paper, we study the distribution of 
slow partons in a relativistic hadron. The need for 
such information ar ises  in various physical problems, 
especially when one i s  considering the interaction of 
high-energy hadrons with nuclei. The part played by 
t ree  Regge diagrams-the analog of a parton cascade 
in hadron-nucleus interactions-was understood for the 
first  time by Kancheli and ~a t inyan , '  who studied these 
graphs in detail. 

In Sec. 4, we compare the parton model with the con- 
tributions of Regge graphs. This yields a connection 
between the parameters of the two approaches. We 
show that the contribution of the nonenhanced pomeron 
branchings has an eikonal form only under the condition 
that the number of fast partons in the hadron has a 
Poisson distribution. The rules for cutting of Regge 
graphs7 i s  interpreted in the parton model. 

In Sec. 5, the parameters of the parton model a r e  
estimated numerically. The values of these parameters 
a r e  found to be very sensitive to the value of P,, the 
contribution of the active component to the wave func- 
tion of the valence quark. An accurate determination 
of P, i s  also important in elucidating the part played by 
enhanced Regge graphs. 

2. THE PASSIVE COMPONENT 

The parton wave function of a hadron is not invariant 
under Lorentz transformations. The generator of a 
Lorentz transformation along the z axis has the form 

Here, K, i s  the z component of the total momentum, 
and H ( x )  i s  the density of the Hamiltonian. 

The generator L, can be represented in the form 
I,,=L,'~'+L,~",[ (2 
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where L:' contains only the free part of the Hamiltonian 
and generates shifts of the partons with respect to the 
rapidities. The interaction of the partons, i.e., their 
decay and fusion, is described by LF . In "soft" field 
theory, in the spirit of which the parton model i s  con- 
structed, L$' has a structure such that i t s  intensity 
(rate of fusion and decay of partons) decreases rapidly, 
a t  least a s  1 / ~ ,  with increasing parton energy. 

As a result, we have the following picture. When the 
hadron momentum i s  increased (which i s  achieved by 
development under the influence of the "Hamiltonian" 
K , ) ,  the partons of its wave function that have sufficiently 
large rapidity, y >> 1, do not interact and behave a s  free 
systems, i.e., their rapidities increase uniformly. At 
the same time, in the region of the slow partons (y = l )  
the shift with respect to the rapidity i s  accompanied by 
decays and fusion of partons. 

Note that if for some value of Y a given component 
of the wave function contains only fast  partons with 
yi >> 1, then if Y is increased there i s  only a shift in 
the position of the partons in the rapidity scale without 
decay and fusion of the partons. Since such a component 
does not interact with a target at rest, we shall say i t  
"passive." On the other hand, the "active" component, 
which contains several slow partons, can be trans- 
formed into the passive component with increasing Y, 
since there exists a probability that the slow partons 
will not decay during the time required to reach the 
fas t  part of the spectrum. It can be seen from this that 
the norm of the passive component w0 of the parton 
wave function of the hadron i s  a monotonically in- 
creasing function of i t s  rapidity Y (Ref. 3): 

If Y i s  sufficiently large, the processes of multiplication 
and fusion of slow partons occurs independently of the 
quantum numbers of the hadrons a s  Y is increased. But 
in the region Y 5 1 the hadron quantum numbers can 
influence the growth of wo, which in this region can 
occur very rapidly because of the power-law decrease 
with the energy of the contribution of secondary reggeons. 

It follows from what we have said that the passive 
component of the wave function i s  distinguished, since 
i t s  weight wo can reach large values. In addition, 7 .  

depends on the quantum numbers of the hadron. 

The existence of a large passive component i s  mani- 
fested, for example, in the interaction of high-energy 
hadrolls with nuclei. In Ref. 9, the total nucleon-nu- 
cleus cross sections were analyzed with a view to de- 
termining the weight of the passive component of the 
quarks. Under the assumption of additivity of the quark 
amplitudes and with neglect of the distribution over 
the number of slow partons in the active component and 
mixing of the different components during the passage 
of the hadron through the nucleus it was shown that the 
weight of the active component P, for u and d quarks 
is only about 0.5. A similar analysis of the experi- 
mental data1' on the total cross sections of K,A inter- 
actions showed that for the strange quark P, i s  even 
smaller: Ps/Pq = 0.5. 
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3. CALCULATION OF A PARTON CASCADE 

1. Using the qualitative arguments of the preceding 
section, we obtain here a system of equations that 
describe the variation with the energy of the distri- 
bution with respect to the number of slow partons in a 
hadron. We denote by w,(y) the probability that a had- 
ron with rapidity y contains n slow partons. These 
probabilities have the normalization 

As we have noted above, a slow parton may not 
succeed in decaying during the "time" of transition to 
the fast part  of the spectrum. We shall call this phe- 
nomenon breaking of the parton chain. We denote the 
probability of breaking in the unit of "time" (rapidity) 
by y. It may also happen that a parton does succeed in 
decaying and the chain is not broken. If a parton suc- 
ceeds in decaying twice during the "time" of transition 
to the fast part of the spectrum, two independent parton 
chains can be formed. We denote the probability of this 
per unit rapidity by A. 

The system of equations describing the evolution of the 
the parton distribution function has the form5 

dw,ldy=yw*, (5) 
dw./dy=- (7-t-A) nw,+y ( n + i )  w,+,+A(n-I) w.-I. (6) 

Equation (6) refers  only to the active component. In the 
system of equations (5)-(6) we have ignored the pro- 
cess of fusion of two parton chains whose wee partons 
were separated by a short distance in the plane of the 
impact parameters. We shall return to this question 
below. 

We introduce F(x,y), the generating function for the 
distribution function ul,: 

" 
F ( z , Y ) = ~  xnwn(y ) .  

"-0 

It follows from (4) that 

F ( 1 ,  y)=l. 

Using (5) and (6), we obtain 

This equation can be solved by the method of char- 
acteristics. The general solution has the form 

Here, we have introduced the notation 

A=h-y. (11) 

If the initial parton distribution ~ ~ ( 0 )  at y = 0 i s  given, 
then from (9) we can find (n),, the mean number of slow 
partons. We have 

This growth of (n), ensures growth of the total hadron 
cross sections with the energy and can be related to the 
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quantity 

A-ap(0) -1. (13) 

Using (7) and (lo), we can readily calculate the dis- 
tribution function with respect to the number of wee 
partons. If there was one slow parton at y = 0, then 

lo. (y) -P(-) e-Av(i-e-Av)fl-l/[l- (l-P(-))e-Avln+l. (1 5) 

Here 

P(m) -81% (16) 

is the weight of the active component in the asymptotic 
behavior for the tree graphs. 

It can be seen by comparing (14) and (15) that the 
passive component really is separated from the gen- 
era l  distribution, which has the form of a geometric 
progression. It can also be seen from (11) and (16) 
that the equality X =  A obtained in Ref. 4 i s  valid only 
for y =O. The relation (16) can be readily obtained by 
a method analogous to that presented in Ref. 4. For 
this, i t  i s  sufficient to assume that the distribution of 
the partons in the active component i s  such that (n2),, 
~(n):, (with accuracy l/(n)) and that the passive com- 
ponent, which has weight 1 -P(q, i s  separated from the 
total distribution. 

2. We now discuss the part played by the fusion of 
parton chains. Allowance for these process in Eq. (6) 
makes i t  difficult to solve that equation explicitly. How- 
ever, appreciable corrections ar ise  here because of 
this only at a fairly high density of slow partons. We 
shall therefore assume that the solution (10) i s  a good 
approximation for not too large values of y.') 

Note also that the expression (14) for the weight of the 
passive component is changed little by allowance for 
absorption, since the transfer of the norm in ldTL occurs 
from states with small values of n. 

For A> 0, the value of (n), increases rapidly in ac- 
cordance with (12). The increase in the parton density 
i s  stopped by the absorption process, a s  a result of 
which an equilibrium density of slow partons is  formed 
in the active c~mponent.~'" This process i s  described 
by the equation 

Here, p(y, b) i s  the density of the slow partons in the 
active component in the plane of the impact parameter 
b; s i s  a dimensional parameter which characterizes 
the "rate" of absorption of partons. The factor 
1 - exp(- s p )  is the probability that there is a t  least 
one parton in the region of impact parameters of area  
s. When the saturation density po i s  reached, the last 
term on the right-hand side of (17) vanishes, and 

The radius of the disk within which p = po i s  equal to 
R = 2 ( a ' ~ ) " ~ ~ ,  where a' i s  the rate of diffusion of 
partons in the b plane. 

In contrast to the work of Levin and le skin," who did 
not take into account the passive component, we find 
that a disk with saturation density of partons that im- 
pinges on a target a t  r e s t  i s  not "black" even in the 
active state. Indeed, the partial-wave amplitude of such 
a process i s  equal to 

Here, o, is the cross  section for the interaction of the 
slow partons with the target B. We now go over to the 
center of mass system of the colliding hadrons A and 
B: 

Here, Uo i s  the interaction cross  section of two slow 
partons. 

The integration over b' in (20) i s  over the region of 
overlap of the colliding disks, which increases with the 
energy a s  yZ. Therefore, the exponential in (20) tends 
to zero, and, comparing (19) and (201, we find that the 
amplitude of the interaction in the active state of the 
parton disk with the target B is 

The picture described above is valid only far from the 
neighborhood of the phase transition point A,.'~ If P(Y) 
for A i  A, tends asymptotically to the constant P(m), 
then P(Y)- 0 (as Y- 0 0 )  for A =  A, a s  a power of Y, 
while P ( Y )  decreases exponentially with Y for A < 
However, formula (16) does not have these properties. 
The reason for this i s  that no allowance was made for 
absorption on account of the assumption p <<po. For 
A x  A,, this assumption i s  certainly not satisfied; for 
in the limit A -  A, the value of P(*) must tend to zero 
and, a s  follows from the Lorentz invariance of (21), 
p,- 0. In what follows, we shall assume that the super- 
critical regime i s  realized. 

4. COMPARISON WITH REGGE GRAPHS 

1. The evolution of the distribution with respect to the 
number of slow partons occurs a s  is described in the 
previous section only for sufficiently large values of 
y ;.> 1, when the quantum numbers of the fast hadron no 
longer have an influence. We cannot follow the vari- 
ation of w,,(y) at small  y, or a t  least not a t  the level a t  
which the present discussion i s  conducted. We there- 
fore specify the initial parton distribution w:(yo) by the 
generating function F0(x, yo) a t  a rapidity value yo 
= 1-2. 

We shall assume that the quantum numbers of the 
hadrons influence only F(x, yo), and that the develop- 
ment of the parton chains for y > yo occurs in a univer- 
sa l  manner. Then, using the solution (lo), we can cal- 
culate the distribution of the slow partons in a fast had- 
ron and study their interaction with the target, com- 
paring the result with the expressions for Regge graphs. 

The contribution of the pole graph to the scattering 
amplitude of hadrons A and B (Fig. 1) corresponds to 
the case when only one slow parton has interacted with 
the target and only one parton chain has been broken up 
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FIG. 1. Diagram corresponding to the pole contribution to 
the scattering amplitude of hadrons A and B .  

(Fig. 2). For this i t  i s  necessary to select the parton 
configurations in which there is no absorption. Com- 
paring these contributions to a$, we find 

Here, we have written down the parton contribution on 
the left-hand side. The quantity (n), i s  the mean num- 
ber  of slow partons in the initial distribution for y = yo; 
a, i s  the cross  section of the interaction of a slow par- 
ton with the target B. The factor exp(AI) on the left- 
hand side, which takes into account the multiplication 
of the partons in each "tree", cancels the same factor 
on the right-hand side, where it corresponds to pom- 
eron exchange. By dj' and G$' we denote the vertices 
of emission of k pomerons by hadrons A and B. 

The screened two-pomeron graph in Fig. 3 corresponds 
to the case when two slow partons belonging to different 
t rees  collide with the target. This contribution to the 
elastic amplitude, which has double density of particles 
in the rapidity scale, i s  of course positive, but after 
allowance fort he screening terms in the amplitude with 
single density of particles the sign is reversed and be- 
comes negative. Comparing the expressions for the 
corresponding contributions, we find 

From both sides of this equation we have omitted iden- 
tical factors exp(2AY) and (R2 + CY'Y), where R i s  the 
radius of the region over which the partons a re  dis- 
tributed for y = y,. 

The relations for the three-pomeron graphs in Figs. 
4a and 4b are  obtained similarly: 

( n > A h o e ' = ~ ~ L ' ~ g ( ' ) r ,  
0)  (1) ( n  (n-i) >.,saB==GA Gn r. 

Study of more complicated graphs does not lead to 
new relations between the parameters. From Eqs. 

FIG. 2. Interaction of a definite parton configuration of had- 
ronA with target B. Only one wee parton has interacted. The 
comb indicated by the heavy lines i s  transformed into a hadron. 

(22)-(25) we find 

FIG. 3. Screening two- 
pomeron graph. 

Thus, X is not equal to the dimensionless three-pom- 
eron constant ro=r/&? (in contrast to  the result of 
Ref. 4), but i s  connected to i t  by the relation 

where a, is the cross section for the interaction of two 
slow partons from different hadrons. T o  see this, i t  is 
sufficient to consider in the center of mass  system the 
screening in the interaction of two clouds of slow par- 
tons. 

2. It i s  interesting that the existence of the three- 
pomeron constant leads to the need to introduce a four- 
pomeron (two into two) constant t. Indeed, the pres- 
ence of the inelastic channel in the interaction of two 
parton chains (two into one) with cross  section s leads 
to the appearance of elastic "scattering" with cross  
section s as a result of conservation of the total prob- 
ability. These considerations lead to the following 
connection between the four-pomeron constant t and the 
absorption constant s (Ref. 5): 

Further, from the expressions (24) and (25) we can ob- 
tain one more relationship between the parameters. In 
the case when A = B and the distribution over n for y 
=yo i s  a Poisson distribution, we obtain from (24)-(25) 

Note that the expressions (29) and (21) a r e  equivalent. 
Indeed, 

Here we have used (16). The expression (21) follows 
from (30), (18), and (29). 

3. We now consider the nonenhanced graphs. Com- 
paring (22) and (23), we see that if the initial distri- 
bution w,(y,) is a Poisson distribution, i.e., if 
(n(n - I)), = (n):, then G:'= (G:))' and G,b' = ( ~ 2 ' ) ~  and the 

FIG. 4. Three-pomeron 
diagrams. 
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contributions to the e las t i c  amplitude f r o m  exchanges 
of different numbers  of pomerons have a n  eikonal form: 
~ ( k )  = (G(1))L. 

This  question war ran ts  a m o r e  detailed discussion. 
At the f i r s t  glance, we have h e r e  a contradiction, the 
essence  of which is a s  follows. It is knownL3 that  the 
contribution of inelast ic  diffraction to the absorpt ive 
par t  to the e las t i c  amplitude changes the eikonal fo rm 
of the two-pomeron exchange, which corresponds t o  the 
contribution to the absorpt ive par t  a r i s ing  f rom the 
e las t i c  c r o s s  section. On the one hand, although f o r  an 
initial Poisson distribution of the partons we have ob- 
tained a n  eikonal fo rm of the e las t i c  amplitude, cor -  
rect ions mus t  a r i s e ,  on the other hand, f rom inelast ic  
diffraction, whose partial-wave c r o s s  sect ion (for given 
b) i s  

In this expression, we have for  simplicity ignored the 
distribution of the partons over  b. Since h e r e  the non- 
enhanced two-pomeron graph i s  under discussion, in 
(31) we have taken into account only the variance of the 
amplitudes f, that a r i s e s  f o r  par tons belonging to dif- 
ferent  t rees ,  i.e., by f one mus t  understand the partial- 
wave amplitude for  scat ter ing of a sys tem of exp(AY) 
slow partons (the variance of the amplitude within this 
group leads to  the diffraction corresponding to enhanced 
graphs). 

We note that inelastic diffraction is a purely inter-  
ference phenomenon and a r i s e s  only in the presence of 
a variance of the amplitudes fo r  the scat ter ing of dif- 
ferent  numbers  of slow partons. Therefore,  the assump- 
tion that single-pomeron exchange i s  dominant in  the 
c r o s s  section of inelastic diffraction i s  completely un- 
justified. At the s a m e  time, in the calculation of the 
correct ions to  two-pomeron branching i t  i s  necessary  
to take into account precisely the single-pomeron par t  
of the diffraction, and not the complete c r o s s  section, 
a s  is usually done. Therefore,  we separa te  the single- 
pomeron contribution f r o m  (31). F o r  this, f n  mus t  b e  
written in the fo rm f:' mus t  b e  written in the fo rm 
/!,I) = nf. Then 

The circumstance that the diffraction c r o s s  section is 
proportional to (n) means  that a contribution t o  (f& ), i s  
made by only planar graphs, which, a s  i s  well known, 
do not contribute t o  the elast ic  scat ter ing amplitude 
a t  high energies. Therefore,  although the c r o s s  sec-  
tion of inelastic diffraction (31) and even i t s  single- 
pomeron part  (32) a r e  nonzero in  the considered case,  
no correct ion to the eikonal f o r m  of the branchings 
a r i ses .  This  fact  reso lves  the resul t ing paradox. 

It should b e  noted that the eikonal f o r m  of the non- 
enhanced graphs is a d i rec t  consequence of the assump- 
tion of a Poisson distribution over the parton number 
for  y = yo. It is sufficient, fo r  example, to change the 
weight of the passive component u),,(yo) t o  m a k e  the 
dependence G ' ~ '  found f rom (22) and (23) different. Si- 
multaneously, there  appear  nonplanar graphs,  and these 
make a contribution to (f& ), and in conjunction with 

(f:,), lead, a s  i s  readi ly shown, to exactly the s a m e  
f o r m  of G"'. 

Note a l s o  that  the Poisson f o r m  of the distribution f o r  
y = yo (and, hence, the eikonal fo rm of the amplitude) 
cer tainly cannot b e  c o r r e c t  for  l a rge  values of n, when 
the parton density approaches the saturat ion value p, 
and absorption cu ts  off the components with l a rge  n. 
T h e  value n,, a t  which the cutoff appears  can b e  est i -  
mated in accordance with 

Here,  a;= 1 (GeV/c)-' i s  the slope of the / reggeon 
t rajectory,  s ince the parton distribution in the h plane 
f o r  y = yo i s  determined to a l a rge  degree  by  the dif- 
fusion of the valence quark, which corresponds to  the 
f reggeon. A numerical  es t imate  of p,, will b e  obtained 
in the following section. 

4. T o  conclude th i s  section, we consider how the 
r u l e s  f o r  cutting the Regge diagrams7 a r e  interpreted 
in  the parton model. We consider  a nonenhanced dia- 
g r a m  containing n pomerons, of which m a r e  cut. Its 
contribution to the inclusive c r o s s  section i s  equal to7 

Here,  pc = 2p i s  the Green 's  function of the cut  pomeron. 
In parton language, such a graph  corresponds to the 
situation when slow partons (from different t r e e s )  in 
the incident hadron in te rac t  with the target.  The  am- 
plitude of this p rocess  i s  

k-m 

In (35), fc i s  the amplitude f o r  the interaction of a 
slow parton with the target.  The  factor  (1 - f)'-'" t akes  
into account the circumstance that in a s ta te  with k 
par tons k - vz partons d o  not in te rac t  (f=fc). F r o m  this 
factor ,  we mus t  separa te  the t e r m  (- l)"-'"C::; fn-", and 
th i s  corresponds to a d iagram with n pomerons, of 
which v7 a r e  cut. Accordingly, the summation over  k 
mus t  begin with n: 

T h i s  expression can be  rewri t ten a s  

Writ ing fc = pcao and f = 2pa0 and using the definition of 
G'"' introduced e a r l i e r ,  namely 

we obtain the expression (34). 

E a r l i e r ,  the graph cutting r u l e s  w e r e  interpreted by 
Levin and Ryskin" f o r  the example of the deuteron, 
which corresponds t o  the c a s e  when only one component 
with k = 2 i s  p resen t  in the initial distribution over the 
parton number. 

5. NUMERICAL ESTIMATES OF THE PARAMETERS 

1. T h e  magnitude of the passive component of u and d 
q u a r k s  a t  nucleon energy 240 GeV w a s  determined in 

455 Sov. Phys. JETP 51(3), March 1980 Zamolodchikov etal. 455 



Ref. 9 from data on the total cross  sections of neutron- TABLE 11. Value of the three-pomeron cou- 
nucleus interactions. Using this result, we can deter- pling constant ro calculated for different d- 

mine the saturation density p, of the partons. ues of the parameters ?./A and ~ , (y ) .  

We find from (14)-(16) that if there i s  only one parton k l A  

for y = yo then 5 )  1 1 1 2 1 I 6 1 8 I 10 

P(y)  =(AIL) [I-(l-A/h)e-AY]-i. (s8) 0.3 1.09 2.18 
0.5 1 0.29 ( 0.58 ( 1 I I / '% Assuming that the number of partons for y = y o  has a 0.7 0.10 0.19 0.95 
0.9 0.03 0.05 0.10 0.16 0.26 

Poisson distribution, we find from (38) the weight of 
the active quark component P,: 

From (18), using (291, (22), (23), and (39), we obtain 

It i s  here assumed that single-pomeron exchange makes 
the main contribution to i.e., that 

a:= [G:" I2eAU. 

For numerical estimates, we assume that u::, = 8 mb. 

Wth regard to the value of x/A, i t  i s  known only that 
X/A> 1. It i s  however easy to show that the value of p, 
is not sensitive to X/A, since the derivative of p, with 
respect to x/A vanishes a t  

ergies, i.e., the contribution of the enhanced pomeron 
graphs i s  small, is apparently incorrect. In such a 
case, the true value of A must exceed the value AG0.07 
found by fitting to the experimental data the formulas of 
the eikonal approximation,15 since strong absorption 
reduces the growth in the number of slow partons, which 
is proportional to exp(Ay). 

Nevertheless, the possibility that p'l'<< p, cannot be 
regarded a s  ruled out. First, the definition of P,(y) 
requires a more accurate analysis. Second, an impor- 
tant assumption in (39) is that of a Poisson distribution 
with respect to the parton number for y = y,. If this is 
not the case and the weight of the passive component 
satisfies wo(y = yo) > exp(- (n),), the values of p, will be 
greater than those given in Table L 

We note further that the results of Table I also en- 
able us to calculate the dimensionless three-pomeron 

Therefore, p, hardly changes in the range of reasonable 
constant r,=r/@, where r i s  given by (27). This value values of x/A. In Table I, we give the values of p, 
of the unrenormalized constant apparently exceeds con- found from (40) for different values of x/A and P,(y). 
~ i d e r a b l y ' ~  the effective constant rZ"zO.1, which i s  de- 

The value of the parameter A was taken equal to 0.07 
termined from inelastic diffraction data." 

in accordance with Ref. 15. 

2. It can be seen from Table I that there i s  weak The value of r, calculated for the same values of Pq 

dependence of p, on X/A. At the same time, the value and x/A a s  in Table I i s  given in Table 11. 

p, i s  very sensitive to the value of P,(y). The value of It i s  usually assumed that the values of A and r, a r e  
P,(y = 5) found in Ref. 9 i s  an estimate, but a t  the such that the supercritical regime i s  realized, the con- 
achieved accuracy (for different nuclei P, -0.4 - 0.67) dition for which i s  4 > A where (Ref. 12) A, * ri I n 4  
the data of Table I indicate the existence of some prob- (it is assumed that rZ,<< 1). It follows from Table 
lems. I1 that by no means all  values of r, satisfy this in- 

equality. For  example, if P,= 0.5, then a l l  values of Indeed, let us calculate the density of slow partons 
r, correspond to the subcritical regime, A< A,. In such corresponding to the emission of one parton "comb": 
a case, al l  the results of Sec. 3 become inapplicable. 

1 bZ This i s  another aspect of the problem noted above b"' 
pi"(b)=-exp -- . 

,,a,, ( 4a'y 1 (41) zp,). As we have already said, the true value of A i s  
larger than the one used in the calculations, and the 

For (Y' = 0.25 (GeV/c)-', y = 5, and b = 0 we have p"'(0) entire analysis should be redone. 
=0.064. It can be seen'that &"(o) i s  of the same order 
of magnitude a s  the saturation density p, calculated for 3. Let us attempt to estimate X / A .  If we denote by 

Pq= 0.03 - 0.7. This means that the widely accepted point E the probability of a parton's decaying once during the 

of view (to which we also adhere) according to which the "time" of transition to the fast part of the spectrum, the 

parton combs interact weakly (p'"<< Q,) at existing en- condition that the total probability i s  equal to unity has 
the form &/(I - E ) +  y = 1. But even if the parton decays 

TABLE I. Values of the saturated density po 
in units of ( G ~ v / &  calculated for different 
values of the parameters h/A and P,(y). 

XIA 

IIJ=~) Pq 4 I 6 8 1 10 

twice, the produced partons may be reabsorbed and a 
branching of the combs need not occur, and therefore 
X< 2. Hence 

h+vT/ ( i -vQ-~< i .  

For A = 0.07, we obtain 1 -' X / A c  2.8. Knowing x/A and 
p,, we can find 
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which f o r  P ,  (Y) = 0.5 gives 

Experimentally, (n), can b e  determined by studying 
multiple production of hadrons on nuclei and comparing 
inclusive s p e c t r a  on different nuclei in the beam frag- 
mentation region. 

6. CONCLUSIONS 

Although formally a l l  the r e s u l t s  obtained in the par-  
ton model can b e  found f rom the graphs of Regge field 
theory, the parton interpretat ion is frequently s impler  
and more  perspicuous, which makes  it possible to  ob- 
tain new results.  Besides d i r e c t  application to cal- 
culations of hadron interact ions at high energies ,  the 
analysis  made in the p resen t  paper  h a s  shown that the 
generally adopted point of view concerning the par t  
played by the enhanced Regge graphs  at existing en- 
e rg ies  may b e  incorrect.  The formulas  obtained in the 
p resen t  paper enable one to analyze the experimental  
da ta  on the interaction of hadrons in the f ramework  of 
the parton model with allowance f o r  a l l  parton config- 
urations. Very  important  h e r e  is the  norm of the active 
quark component 8, which mus t  b e  determined m o r e  
precisely. We note that in such an analysis  it is pos- 
s ible  to determine the value of the unrenormalized three- 
pomeron constant. 

We are grateful  t o  M. G. Ryskin, who r e a d  our  d r a f t  
and made a number of helpful comments. 

" ~ o t e  that such an approximation corresponds to a restriction 
to nonenhanced pomeron graphs in a theory with rising cross 
sections. Moreover, this approximation also includes semi- 
enhanced graphs, allowance for  which is important in the 
interaction of hadrons with nuclei. Allowance for the fusion 

of the parton chains in Eqs. (5)-(6) would correspond to the 
addition of enhanced loop-type diagrams, whose contribution 
a t  presently attainable energies is usually assumed to be 
small. In Sec. 5, we discuss a further possibility when it 
is necessary to take into account the fusion of the parton 
chains. 
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