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The behavior of solitary waves in two-dimensional lattices of nonlinear oscillators is investigated theoretically 
and experimentally. Solitons with an anisotropic relation between the amplitude and the duration are found. 
This anisotropy is preserved in the continual approximation. The proper "soliton modes" are studied in 
bounded lattices (resonators); it is shown that such modes are possible only for two configurations of the 
boundaries (rectangle and equilateral right triangle). The resonant excitation of soliton modes by a harmonic 
source (parametric generation of solitons) is considered. Experimental results of excitation of soliton modes in 
lattices of nonlinear electric oscillators are reported. 

PACS numbers: 05.50. + q 

INTRODUCTION conclusions, however, a re  more general in character 
and apply with practically no change, for example, to a 

The role of solitary nonlinear waves -solitons-in corresponding system of mechanical oscillators. 
lattice dynamics was recognized to  be important quite 
long ago, starting with the attempts at interpretation of 
the known "paradoxn of Fermi, Pasta, and Ulam,' which 

THEORY 

is connected with the anomalously slow stochastization 1. We consider a two-dimensional rectangular lattice 
in a system of nonlinear oscillators (we recall that the consisting of identical elements and describable by the 
very term asoliton" was first  introduced precisely in following nonlinear differential -difference equation : 
connection with this problem2). The properties of soli- d2Qm ,, 
tons in one-dimensional lattices (chains of coupled os- L'= dt2 ( U ~ - ~ . " - ~ U ~ . " + U ~ + , , " )  4- (ulll."-,-2um,"~um,"+,), ( 1 )  

cillators) were investigated in sufficient detail, and for 
where Qm,, is a specified nonlinear function of urn,,, and 

particular forms of the interaction potential between the 
the subscripts a re  the coordinates of a given lattice 

oscillators there a re  known solutions. It was shown in 
site in i t s  two dimensions. 

addition that solitons can exist in multilayer semicon- 
ductor structures (superlattices); a s  well a s  in multi- 
band systems. The role of soliton ensembles a s  col- 
lective excitations in lattices was investigated in a num- 
ber of studies; conclusions were drawn that the soli- 
tons can contribute to the energy transport process that 
determines the thermal conductivity of crystals. How- 
ever, almost all the investigations were limited to one- 
dimensional processes. It i s  clear that both the pro- 
perties of individual solitons and their collective be- 
havior can be substantially different in two-dimensional 
and three-dimensional systems (see Ref. 6). 

We consider in this paper solitons in two-dimensional 
lattices and investigate the resonant phenomena con- 
nected with the formation of 'soliton modes" in bounded 
resonators of varying configurations. The theoretical 
analysis is based on the equations of a rectangular lat- 
tice of electromagnetic oscillators, for which the ex- 
perimental results reported below were obtained. The 

Equation (1) corresponds directly to  the oscillations 
of a lattice of electromagnetic oscillators, which was 
used in the experiment described below (Fig, I), where 
L denotes the inductance of the element, urn,, the vol- 

FIG. 1. Diagram of electric lattice used in the experiment. 
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tage, and Q,,, the charge of the nonlinear capacitor. 
However, the theory developed below holds without sub- 
stantial changes also for other simple models of non- 
linear lattices. For example, transverse oscillations 
in a mechanical model of a lattice of atoms with mass 
p,  coupled by elastic forces, a re  described by the 
equation 

d2& " 
p 7 =  f(zm,~-zm-,,")-f(zm+1,~-zm,")+f(&,"-zm,"-,)-~(zm,"+,-zm"), 

dt 

(2) 
where z,,, is the deviation from the equilibrium posi- 
tion, and f is the force (generally speaking, nonlinear) 
that the nearest neighbors exert on the atom (for the 
linear case such models are  considered in detail, for 
example, in Ref. 7). For one-dimensional chains it is 
frequently possible to establish a correspondence be- 
tween the nonlinear functions in formulas (1) and (2), 
whereby these equations become identical. In two- 
dimensional problems the situation is more compli- 
cated, but at moderate nonlinearities and in the con- 
tinual approximation (see below) the principal results 
for these equations turn out to be analogous. 

It is well known that in the linear approximation, 
when Q,,, = C,,U,,,,,, where C, i s  a constant, Eq. (1) has 
a solution in the form of plane harmonic waves u,,, 
-exp(i(wt - kmm - k,n)}. The wave frequency w is con- 
nected with the projections k,,, and k, of the wave vector 
on the lattice axes by the following equation: 

In some cases one can obtain also exact particular sol- 
utions for nonlinear problems. In fact, Eq. (1) reduces 
to one-dimensional in two obvious cases: a)  when u de- 
pends only on m or n; b) when u depends on m i n ,  i.e., 
for plane waves propagating respectively along the lat- 
tice axes and in the diagonal direction. In particular, 
i f  Q = QJn(1 +u/U,), where Q, and U, are constants, 
the propagation of such waves i s  described by the well- 
known Toda equation: for which exact solutions were 
obtained. The latter include plane solitions of the form 

where r= m or n and S = 1 in case (a) and r= (m * n ) / n ,  
S = n  in case (b). The anisotropy of the lattice mani- 
fests itself here in the fact that solitons propagating 
along the diagonal to its axis have a duration shorter by 
a factor than solitons traveling with the same ampli- 
tude along the axes. 

To consider waves propagating in an arbitrary direc- 
tion, we make the two customary simplifying assump- 
tions: 1) the amplitude of the waves is relatively small, 
so that Q(11) = Cdi - crzr2, and 2) the spatial scale of the 
motions i s  much larger than the distance between the 
neighboring cells. 

This enables us to replace the differences in (1) by the 
first terms of the corresponding Taylor series and to 
proceed to an analysis of a continual system. Under 
these assumptions we obtain from (1) 

We consider next a plane wave traveling at an angle rp 
to the lattice axis (see Fig. 11, and change over from 
m and n to new coordinates x and y , which are  con- 
nected with the front of the wave: 

m-x cos cp-y sin cp, n-x sin cp+y ws cp, cp-const. 

In these coordinates, the wave propagates along the x 
axis, and its front is parallel to the y axis. Equation 
(5) for this wave is of the form 

where ~ ( c p )  = (2 - sin22cp)/24. 

For a fixed angle cp, Eq. (6) i s  the well known Bous- 
sinesq equation:' the solutions of which have by now 
been well investigated. In particular, one of them de- 
scribes the soliton 

where 

Thus, the dependence of the soliton velocity on its am- 
plitude i s  the same for all directions but its charader- 
istic duration T,= A/v ,  depends on the orientation of 
the front. Just a s  above, at a specified amplitude of 
the soliton the duration T, i s  minimal for diagonal di- 
rections (cp = *lr/4) and is larger by a factor $Z in the 
case of propagation along the lattice axes. 

2. We proceed to the question of the natural and 
forced oscillations in bounded nonlinear lattices with 
reflecting boundaries (resonators). We assume that in 
the continual limit we have on the lattice boundary au/an 
= 0 (in the electric model this means that the conduction 
current is zero). In the linear approximation, oscilla- 
tions in such a system can be described by a set of 
normal harmonic modes with corresponding natural fre - 
quencies oi (i= 1,2,. . . ). The nonlinearity produces, 
generally speaking, a coupling between the modes, and 
in the case of weak nonlinearity the principal role i s  
played by the resonant interactions. In this sense, 
systems with an equidistant spectrum of the natural 
frequencies (ai = iw,), for which all the harmonics of 
the fundamental oscillation are  at resonance, are a 
special case, and lead to establishment of essentially 
unharmonic (pulsed) oscillations. Instead of analyzing 
an interaction of a large number of normal harmonic 
modes in a resonator, i t  is then more effective to use 
an approach based on consideration of "pulsedn modes, 
each of which is represented, generally speaking, by an 
unlimited spectrum of harmonic modes. 

We consider first a linear two-dimensional resonator 
without dispersion, when Q = C,,U in (6), and there i s  no 
dispersion term -a4u/ax4. Obviously, a plane wave of 
arbitrary profile is not distorted in such a medium. 
Assume that the wave is short compared with the di- 
mensions of the resonator ("flat 6 pulsen) and undergoes 
repeated reflections from the boundaries. As a result, 
the configuration of i ts front will vary continuously, but 
i t  is possible that after a finite number of reflections 
the front will reoccupy i ts  previous position (Fig. 2). In 
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FIG. 2. Two possible types of pulsed modes excited in a non- 
linear triangular resonator. 

this case, obviously, natural pulsed oscillations are 
established in the resonator, in the form of a super- 
position of a finite number of flat 6 pulses, that go over 
into one another by the reflection from the boundaries 
(they can be regarded as  a set of an infinite number of 
harmonic modes with equidistant spectrum). Confining 
ourselves to resonators in the form of convex poly- 
gons, we can shows that in this class there exist only 
four types of resonators in which natural pulsed modes 
can be observed: rectangle, equilateral right triangle, 
equilateral triangle, and right triangle with angle n/6 
at the vertex. 

We turn now to the nonlinear problem described by 
Eq. (6) with the same boundary condition (au/an = 0). 
It is natural to assume that in the case of small nonli- 
nearity and weak dispersion there can exist in the reso- 
nators listed above free nonlinear oscillations in the 
form of plane solitons with the same front configuration 
as for the 6 pulses in the linear system without disper- 
sion. For this i t  is necessary, however, that the soli- 
ton remain stationary upon reflection. In the case of 
small nonlinearity, the reflection of the soliton pro- 
ceeds in the same manner as  in a linear medium (with 
conservation of the duration and waveform of the pulse), 
but owing to the anisotropy of the lattice, the duration 
of the reflected pulse may in general not correspond to 
the soliton, and then the subsequentpropagation be- 
comes nonstationary. Since the amplitude and duration 
of the soliton remain unchanged upon reflection, and 
consequently its spatial length does not change, it fol- 
lows that in order for the pulse to remain stationary it 
is necessary that the orientation of the front on the re- 
flected soliton preserve its symmetry with respect to 
the principal axis of the lattice [i.e., p in (6) should 
change by q * n/2]; then the incidence and reflection 
angles are  equal. It follows therefore that the bounda- 
ries must be oriented either along the principal axes of 
the rectangular lattice, o r  make an angle n/4 with them. 
This in turn means that out of the four indicated reso- 
nator configurations only two-rectangle and equilateral 
right triangle-admit of the existence of stationary 
 soliton^ modes. On the other hand, in each of these 
resonators the structure of the pulsed mode is not the 
only one. For example, in a rectangle with natural 
frequencies w,, (i, j = 1,2, . . . ) different spatial struc- 
tures correspond to equidistant sets of harmonic modes 
with arbitrarily specified ratio i/j = const. 

For a triangular resonator, only two pulsed modes are 
possible, and are shown in Fig. 2. These modes con- 
sist of plane fronts propagating either along the normal 
to one of the sides of the triangle (Fig. 2a) or  at an 
angle r/4 to them (Fig. 2b). The natural frequencies 
of these modes are  chosen in the linear approximation 
from among the natural frequencies of a square reso- 

nator with side equal, in case a, to the hypothenuse, 
and in case b to the side of the triangular resonator, 
and in this case the fundamental frequency w, i s  smaller 
by a factor 4-2 than the fundamental frequency w,. 

Thus, the nonlinear resonators of the two considered 
types turn out to be singled out in that "soliton modesn 
can exist in them in the form of solitons with plane 
fronts propagating at definite angles to the boundaries. 
Of course, the amplitudes of these waves must be high 
enough to make the length of the soliton much shorter 
than the dimension of the r e~ona to r .~ '  Since thf  lito on 
velocity depends on Sts amplitude, a nonlinear frequency 
shift of the oscillations w, must take place with chaqge 
of the oscillation amplitude. It is easily seen that the 
relative frequency shift is equal to 

where w, i s  the natural frequency in the linear approx- 
imation (with account taken of dispersion), and k, i s  
the corresponding wave number. 

It must be emphasized at the same time that in view 
of the reversibility of the interaction of the solitons, 
different modes, when simultaneously excited, do not 
exert on the average any influence on one another (a 
nonlinear frequency shift due to their frequency inter- 
action appears only in the next order in the amplitude). 
At the same time, for modes with close frequencies, 
a substantial periodic exchange of energy is possible, 
with a period determined by the frequency difference. 

3. We examine briefly the excitation of a resonator 
by a harmonic external source with frequency close to 
one of the natural modes. One can expect the syn- 
chronous upward frequency conversion to produce in 
the resonator forced oscillations corresponding to the 
indicated soliton modes. 

To describe such oscillations we can use an approach 
developed earlier for one -dimensional systems -the 
so-called parametric pulse generators (PPG). A PPG 
constitutes a one-dimensional resonator, in which the 
energy of the harmonic excitation (pump) is converted 
into the soliton energy. The theory of such system is 
developed in Ref. 9 and is based on consideration of 
solitons propagating in a media whose parameter (in 
this case the distributed capacitance C=dQ/du) change 
because they are  modulated by the harmonic 'pumpn 
field up = Upcos(w,t - kpx), so that C - C, -u,(x - v,t), 
where up is the propagation velocity of the pump wave 
in the system. It is important that account is taken 
here of only the pump-field component that moves to- 
gether with the soliton, since the opposing component, 
when averaged over the period, does not interact with 
the soliton. The co-moving wave, on the other hand, 
delivers to the soliton a power (E/C)aC/at, where E is 
the soliton energy. The behavior of the soliton in the 
field of the parameter wave is characterized by the dif- 
ference between the velocities of the pump and the soli- 
ton (which depends on the amplitude A = a V,/3 C,), and 
also by its phase $= wpTo, which is determined by the 
interval To to the nearest, from the side of negative t, 
maximum of the field. The equations for A and $ be- 
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come similar in form to the equations for the particles 
in a cyclic a ~ c e l e r a t o r ~ ~ ~ ~ :  

-Pa- 
d* A (M sin *+v). - - A-Y cos $4. 

dr 3 dr 

where 7 = ubt, A=  v,, /vO - 1, and v is the loss coefficient 
[see Ref. (9)]. This theory can be applied without sub- 
stantial changes to two-dimensional resonators. In 
fact, the field of the resonator mode which corresponds 
to the pump wave, can be represented as  a superposi- 
tion of plane waves having the same front orientation a s  
for the pulsed modes shown in Fig. 2 : 

where for the case shown in Fig. 2a we have 5 =n ,  and 
q=m,  while for F'ig. 2b 5=(n-m)/d-2andq=(n+m)/ 
a; U, is the pump amplitude. 

A plane soliton propagating in the corresponding di- 
rection interacts with only one of the traveling harmonic 
components of the pump field, so that it is possible to 
describe the amplification of the soliton by using the 
one-dimensional equation (9). In Ref. 9 was presented 
a detailed analysis of Eqs. (91, on the basis of which an 
investigation was made of the soliton generation re- 
gimes and their stability. As a result i t  was estab- 
lished analytically and confirmed experimentally that 
in PPG there can exist several stable equilibrium 
states corresponding to stationary solitons moving in 
synchronism with the pump. We note that the depen- 
dence of the natural frequencies of the soliton modes on 
the amplitude (8) leads, just as  for the usual nonlinear 
oscillator to a jumplike dependence of the amplitude of 
the oscillations on the excitation frequency (the hard 
generation regime). Such a nonlinear resonance, how- 
ever, i s  more complicated because of the multimode 
character of the system. In this case this means that 
different numbers of solitons in the resonator can exist 
simultaneously. Examples of such resonance curves 
are  given in the experimental part of the paper (see 
F'ig. 6 below). In addition, in the regime of generation 
of soliton modes the nonlinear resonance is more no- 
ticeably pronounced, since according to (6) the nonli- 
near frequency shift i s  proportional to the first power 
and not to the square of the oscillation amplitude. 

The specifics of the two-dimensional resonator con- 
sists, in particular, in the existence of several "soli - 
ton" modes that differ in the orientation of the wave- 
fronts relative to the boundaries (see Fig. 2). These 
modes can be excited simultaneously, if several inde- 
pendent harmonic sources a d  on the resonator. Al- 
though, as already noted, soliton modes do not interact 
energy-wise with one another, the resultant oscillations 
can differ substantially from a simple superposition of 
individual modes, since every one of them i s  now in a 
pump field with a complicated space-time structure. In 
the given-pump-wave approximation, the excited oscil- 
lations are described by a system of pairs of equations 
of the type (9), which are not connected with one anoth- 
e r ,  and whose number i s  equal to the number of har- 
monic sources, while the dimensionless pump ampli- 
tude M i s  a complicated quasiperiodic function. In the 

simplest case the influence of this pump on each soliton 
mode reduces to quasiperiodic changes of the amplitude 
and phase of the solitons in the vicinities of the sta- 
tionary state. Thus, in the case of a two-frequency 
pump wave, the parameters of the solitons a re  modu- 
lated with a period T = 2 d o l  - w,)-'. Approximately 
half of this time the soliton wave is additionally ampli- 
fied by the "foreign" pump wave, and during the other 
half it is weakened, so that one should expect appre- 
ciable deviations of the amplitude and phase of the soli- 
ton from the stationary state at T >> T,,,. On the other 
hand i f  T c! TI,,, then the crossover interactions a re  in- 
essential and the pulsed oscillations should be close to 
superpositions of individual soliton modes. 

EXPERIMENT 

The experiments were performed in a two-dimension- 
al electromagnetic resonator in the form of a rectangle 
o r  an equilateral right triangle, made up of oscillations 
shown in Fig. 1 with inductance L = 40 pH. The non- 
linear element was the capacitance of a p -n junction of 
semiconductor diodes blocked by a dc bias voltage E, 
= -0.8 V; such a capacitance can be approximated by 
the formula C(u)= C, - 2mc, where Co= 442 p F  and a 
= 66 pF/V. The resonators were excited in one corner 
link by a source of harmonic oscillations through a re-  
sistor R = 24 kn. The orientation of the lattice (the 
axes m and n) coincided in all the cases with the direc- 
tions of the sides at the vertex of the right angle (Fig. 
2). The size of the rectangular resonator was 20-30 
links, while the size of the side of the triangle was 20 
links. 

We present some data concerning the investigation of 
the triangular resonator. At low excitation amplitudes 
(up to 30 mV), nearly linear harmonic oscillations were 
produced in the system, with resonances at the natural 
frequencies. The first four resonances were observed 
at the frequencies fl= 178 kHz, f,=kHz, f,= 353 kHz, 
f,= 505 kHz, with the frequencies fl and f, of the order 
of 2 fl corresponding to the modes of a quadratic reso- 
nator with a side equal to the hypothenuse of the t r i -  
angle, and with f, and f, of the order of 2 f, correspond- 
ing to the modes of a quadratic resonator with a side 
equal to the side of the triangle. As already mentioned 
above, two series of natural frequencies, multiples of 
f, and f,, are  present in this case. 

At relatively large amplitudes U,, of the external 
source (pump) acting near of the one of the resonant 
frequencies (Up 20.2 V), the oscillations in the reso- 
nator acquired a pulsed character in accordance with 
thetheory. 

Typical oscillograms of the voltage oscillations 
across the capacitor of the resonator corner link lo- 
cated farthest from the source (m = 1, n = 20) are  shown 
in Fig. 3 for the cases when the values off, corre- 
sponded to the fundamental frequencies of the two indi- 
cated sequences. Depending on the relative detuning 
A =  (f,, - fj)/fj between the excitation frequency f, and the 
natural frequency f, of the linear resonator, the wave- 
form of the oscillations can be substantially different. 
At large negative A ,  the oscillations consist of series 
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FIG. 3. Waveform of voltage oscillation at the cornerpoint of a 
triangular resonator: a) at fp = (1 + A h ;  b) at fp = (1+ A&. The 
values of A are  indicated in the figure. 

of pulses in each period of the pump. The number of 
pulses in the series decreases with increasing f,, and 
at small positive A there remains one pulse for each 
period. Measurements of the spatial distribution of the 
field in the resonator at different instants of time have 
made it possible to  establish that the pulsed oscillations 
have plane fronts, whose configurations correspond ful- 
ly through the pulsed modes graphically shown in F'ig. 
2 (Fig. 2a for f, sf, and Fig. 2b for f, =f2). The pro- 
files of the pulses agreed well with the solitons de- 
scribed by formula (7). Thus, in the case f, =f, at a 
soliton amplitude Ire= 0.87 the soliton duration was 
0.45 psec, while formula (7) yields 0.46 psec. At f, 
sf2 the pulse duration a t  the same amplitude was small- 
e r  by a factor 1.3 (instead of 1.4 according to the the- 
ory). The slight difference between theory and experi- 
ment can be attributed to  the influence of the field of 
the pump, which produces a 6pedestalv for the soliton 
and by the same token alters slightly i t s  parameters. 
Judging from the measurements of the pulse duration, 
up to 12 harmonics of the fundamental frequency were 
effectively excited in the system. 

Similar pulsed oscillations were observed when the 
resonator was excited at the frequencies f3 or  f,, i.e., 
at the second harmonics of the fundamental frequencies. 
The period of the pulsed process could take on in this 
case two different values corresponding to the pump 
frequency or  to half this frequency; in the latter case 
(frequency-division regime) the soliton was excited not 
in each period of the pump, but in every other period 
(Fig. 4). 

Figure 5 shows the resonance curves characterizing 
the dependence of the soliton amplitude Vs on the pump 

FIG. 4. Frequency division of pulsed oscillations in a resona- 
tor at small changes of the pump frequency near f 3 .  

FIG. 5. Nonlinear resonance for soliton modes in a resonator 
near the frequency f 3 .  

frequency when the resonator is excited at frequencies 
close to the resonant frequency f3. It can be seen that 
the resonance has two clearly pronounced peaks; the 
left-hand peak corresponds to oscillations with frequen- 
cy f,, and the right-hand side to frequency fp/2. The 
Vs(A) curve has the asymmetric form typical of non- 
linear systems; in particular, a change from one os- 
cillation regime to another took place jumpwise follow- 
ing small changes of the frequency f, near f,, in full 
agreement with the theory. 

Figure 6 shows the waveform of the characteristic 
pulsed oscillations in a rectangular resonator. Just as  
above, different pulsed modes a re  possible with corre- 
sponding equidistant spectra. Figure 6a shows oscil- 
lations produced at f d l ' =  140 kHz, and Fig. 6b-at 
f :'= 251 kHz, the fronts of the corresponding pulsed 
modes a re  shown on the left. F'igure 6c demonstrates 
the form of the oscillations excited by two independent 
pump sources with frequencies fil' and f y ' ,  and in 
this case both pulsed modes a re  excited, and in view of 
the relative proximity of the difference fi2) - f il' to 
each of these frequencies, weak amplitude modulation 
was produced and the oscillations were close to a 
superposition of separately excited pulse sequences. 
The same figure shows the oscillations in a rectangular 
resonator when excited at fi3)= 345 kHz (Fig. 6d) and 
f :I= 434 kHz (Fig. 6e). These frequencies correspond 
to more complicated pulsed modes (see Fig. 6d and 6e, 
left). In this case, joint excitation of the resonator at 

FIG. 6. Voltage oscillations at the corner points of a rectangu- 
lar  resonator, excited by a single source (a, b, d ,  e) or si- 
multaneously by two (c ,  f )  sources of sinusoidal oscillations. 
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both frequencies fi3', f :) leads to a substantial mod- 
ulation of the amplitude ~f the pulsed sequences with the 
difference frequency f i4) - f i3) = 89 kHz (Fig. 6f). 

We note in conclusion that the foregoing analysis can 
be generalized to include three-dimensional lattices. 
In particular, in the case of a logarithmic nonlinearity 
it is possible to obtain the exact solution of three-di- 
mensional equations similar to (1). These solutions 
correspond to a soliton whose front is oriented at var- 
ious angles to all three axes of the lattice. Such a soli- 
ton is shorter by a factor than the soliton propagat- 
ing along one of the axes. 

The singularities of the propagation and resonant ex- 
citation of solitons in anisotropic nonlinear lattices, 
which were considered above, can apparently play a 
substantial role in the analysis of various types of col- 
lective excitations in a solid. As already indicated, the 
importance of the soliton concept in the explanation of 
energy transport processes and transport of thermal 
excitations in crystals was recently made ~ l e a r . ~ l * ' ~  
In recent papers by Bishop (see Ref. 13 and the biblio- 
graphy therein) used the methods of statistical mech- 
anics to analyze the contribution of the soliton compo- 
nent to the lattice oscillations. On the basis of the re-  
sults of the present paper one can expect the aniso- 
tropy of the soliton parameters to influence the thermo- 
dynamic properties of nonlinear lattices. At the same 
time, crystals of a definite regular shape (for example, 
cubic) can be singled out under corresponding boundary 
conditions in that respect, that i t  is possible to excite 
effectively in them soliton modes of high intensity. 

%or a travelling plane wave this leads, as  usual, to the Kort- 
weg-de Vries equation. 

')A more general approach should include in the analysis, in 
place of solitons, periodic (conoidal) waves, this would make 
it  possible to describe oscillations of any amplitude. 
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Phase transitions in superconducting compounds with 
superstructure C-15 

V. A. Finkel' and E. A. Pushkarev 

Khar'kov Physicotechnical Institute, Ukrainian Academy of Sciences 
(Submitted 18 August 1979) 
Zh. Eksp. Teor. Fiz. 78, 842-846 (February 1980) 

The crystal structure of the superconducting compounds ZrV, and HN, with C-15 structure is 
investigated at 77-300 K, and the temperature dependence of their electric resistance is investigated at 
61-300 K. At T,,, = 80 K (for ZrV3 and T,,, = 100 K (HN,) the cubic lattice symmetry is lowered to a 
rhombohedra1 and tetragonal, respectively, an abrupt change takes place in the atomic volume, and 
maxima appear on the temperature dependence of the resistivity. Inflections of the temperature- 
dependence curves of the crystal lattice parameter and of the resistance are observed at - 157 K (ZrV,) 
and -120 K (HNJ. It is suggested that the loss of stability of the crystal lattice is the result of two 
successive phase transitions, one of the second order and the other of first order. 

PACS numbers: 61.60. + m, 64.70.Kb, 72.80.Ga 

Much attention has been paid of late to the study of the critical temperatures of the transition to the super- 
lattice instability of superconducting Laves phases with conducting state (T ,  - 10 K) and the temperatures at 
C-15 structure (in particular ZrV,,HN,!. Interest in which the cubic crystal lattice of the type C-15 lose 
the question is quite understandable: ZrV,,HfV,, the stability (Tm - 100 K). The existence of such a situation 
ternary compounds Zraf,-,V,, Hf,Ta,_,V,, and others uncovers extensive prospects for experimental and the- 
a r e  unique examples of a very strong difference between oretical study of the relation between the two phenom- 
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