
p a t  the nucleus and its derivative p6,  and with them 
also the matrix elements V, and V,,, increase by 
(Z,,/Z,)4 times, respectively. So large an increase 
is due to the fact that in molecules with inversion doub- 
ling of the levels the effect i s  determined by all the el- 
ectrons, including the internal ones. From this point of 
view it is more convenient to use the molecules PI&, 
and particularly ASH, or BiCS. It is necessary, how- 
ever, that the inversion splitting be not too small, so 
that the compensating field can be monitored in the ex- 
periment. Its value for PI& is 1.5 X lo4 cm-' (corres- 
ponding to a field F - 1-10 V/cm). The increase of Z,,, 
yields in this case for the PH, and ASH, an amplifica- 
tion by 10 and 400 times, respectively. 

The authors a re  deeply grateful to D. G. Gorshkov and 
A. N. Moskalev for detailed discussions of the work. 
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Vacuum polarization in a strong field and the 
renormalization group 
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Using the renormalition group, the behavior of the polarization operator for a photon in a static external 
electromagnetic field is found for the following two asymptotic cases: a) in the presence of a strong crossed 
field, and b) at low energies in the presence of a strong magnetic field. For soft photons, the polarization 
operator is expressed in terms of the effective Lagrangian and is calculated in the two-loop approximation for 
the asymptotic cases of weak and strong magnetic fields. The structure of the perturbation series in the 
radiation field is determined in both asymptotic regions for the three constituents of the amplitude: the one 
containing the vacuum part, and the two purely field constituents. It is found that the behavior of the vacuum 
and field constituents is similar to those of the polarization operator and of the invariant charge in quantum 
electrodynamics with no external field, respectively, at large squared momenta. One of the field amplitudes is 
exceptional: for it, the "massless hypothesis" underlying the renormalization-group analysis is not satisfied in 
region b). 

1. INTRODUCTION lem involves calculating the radiative corrections to 
the potential, i.e. calculating the effective potential for 

A number of papers have recently appeared, whose different variants of the theory. - - 

results once more confirm the importance of investigat - 
ing field theories in the presence of static classical 

Interesting results in another direction were obtained 

fields in order to solve fundamental theoretical prob- 
in Refs. 2 and 3 by Ritus, who found the next radiative 
correction after the Heisenberg-Euler correction to 

lems. the Maxwell Lagrangian for a static field. Using the 
In the well-known paper of Coleman and Weinberg,' effective Lagrangian L(F) a s  an example, he investi- 

and in a series of papers that followed it, a dynamical gated the structure of the perturbation-theory (PT) 
symmetry-breaking mechanism was proposed in which series in the radiation field of quantum electrodynamics 
scalar fields acquire nonvanishing vacuum expectation (QED) for an intense field whose field strengths'E and 
values. One of the methods of investigating this prob- H greatly exceed the critical value F,,-m2/e (m and e 
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a re  the electron mass and charge) a s  well a s  the prob- 
lem of the closure of the theory, and traced the relation 
between the QED of an intense field and QED at small 
distances. 

The use of renormalization-group (RG) methods in 
these papers was based on the realization that the RG 
technique; which is usually employed to analyze the 
asymptotic behavior of various processes at large and 
small momenta, can also be used to investigate the 
asymptotic behavior of processes with respect to any 
dimensional parameter for which the renormalization 
law is known, and in particular, with respect to the 
strength of an external field.' 

The application of these considerations to QED is 
facilitated by the fact that the renormalization of charge 
and of the electromagnetic (EM) field are effected by 
the same constant, so that the anomalous dimension of 
the photon field coincides with the Callen-Symanzik 
(C-S) P function. 

As was shown in Ref. 4, the simplest situation occurs 
for the n-photon vertices r'"' in QED with an external 
field, and in particular, for the effective Lagrangian 
L =I"'), for which the C-S equations and their solutions 
have a certain universality, being equally suited for an- 
alyzing asymptotic behavior with respect both to mo- 
menta and to an external field. 

The present paper contains an application of these 
general RG considerations4 to the study of the asymptotic 
properties of the exact polarization operator (PO) for 
a photon in an external EM field. This quantity des- 
cribes the radiative corrections to the motion of a pho- 
ton in an external field, and for kZ = O  it determines the 
amplitude for elastic scattering of a photon in the field 
with polarization change. Vacuum polarization may 
turn out to have an important effect on the characteris- 
tics of the radiation from certain astrophysical objects 
that have strong magnetic fields (see Ref. 5 and, for 
example, Ref. 6). As compared with the three-photon 
vertex treated in Ref. 4, the PO has a number of fea- 
tures-in particular, features associated with the pre- 
sence of a vacuum contribution that does not vanish at 
F = O .  

The polarization operator and the Green's function for 
a photon in static external fields were obtained in the 
lowest one-loop approximation of the Furry picture in 
Ref. 7 for a general EM field, in Refs. 8 and 9 for a 
crossed field with E I H  and E = H ,  and in Refs. 5, 10, 
and 11 for a pure magnetic field. The solutions of the 
dispersion equations for an EM wave in a magnetic 
field were investigated in Refs. 12. The calculation of 
the radiative corrections to the one-loop approxima- 
tion, i.e., the calculation of multiloop contributions, is 
beset with great difficulties, so at present only the 
mass radiative correction has been obtained in the a 
approximation for the case of a crossed field at k2=0.'3 

From a general point of view, on the other hand, the 
RG provides answers to many questions, such a s  how 
the radiative corrections depend on the field strength 
under various asymptotic conditions, what is an effic- 
ient parameter for an asymptotic expansion, and the like. 

The paper is organized as follows. The RG technique 
as applied to the PO is introduced in Sec. 2. As com- 
pared with L,  the PO has a complicated structure, 
being expressed in terms of three invariant amplitudes 
P,. External fields of a special class (which includes 
crossed fields and pure magnetic fields), namely those 
in which the P i  depend on the invariant variables 

are considered and asymptotic formulas of two types 
are examined. 

The situation in which x >> 1 and the invariant x and v 
can be neglected is investigated in Sec. 3; this situation 
obtains when k>> m. Asymptotic expressions P$', are 
calculated for the one-loop terms. In this section there 
is also established the structure of the asymptotic 
(in ~ r q l ~ ' ~ )  loop series for the amplitude P,,,, and the 
ratios P~,~ . , ,  =P2,3,,a/P&),,a of the exact asymptotic 
amplitudes P,,,, and P,,,, to their one-loop approxima- 
tions. It is shown that, in the asymptotic region 3 
>> m2, the expansion for P,,,, has the same structure 
a s  the PT series for the ordinary vacuum PO k2a(k2/ 
m2, a) and that the expansions for the ratios k,,,,, have 
the same structure a s  the PT series for the invariant 
charge ad(3/m2, a )  associated with the photon propag- 
ator D = k"d in QED with no external field. 

In Sec. 4 we consider the limiting case k  << m for 
strong magnetic fields H  >>H,  in which the variable 
x is important. Starting from the effective-action 
formalism, we obtain the relation between the n-photon 
vertices I?'"' in the low-energy limit k,- 0 and the 
quantity L ,  and with the aid of the resulting formulas 
we calculate the amplitudes in the one- and two-loop 
approximations for the weak- and strong-field regions. 
The results of the calculations show that the "massless 
hypothesis" that lies at the basis of the RG analysis of 
asymptotic behavior is not valid for the amplitude P,,,, 
in this limiting case, although all the RG results ob- 
tained in Sec. 3 are applicable to the quantities P,,,, 

and p,,,,. 

2. GENERAL PART 

It is convenient to express the renormalized PO in the 
field F,, in the form 

II,," (k,  kt, F) - (2n) '6'(k-k') 11, ( k ,  eF, a, m), (1) 

which takes account of the fact that II,, depends on the 
external field through the product eF;  the PO i s  related 
to the photon Green's function 

and is a manifestly gauge invariant function of F, , r F 
and 3 =l? - g. The variable a = e2/4a determines the 
contribution from radiative corrections in the radiation 
field, and in diagram language it i s  the expansion par- 
ameter for the loop expansion: 

The quantities II:;' a r e  represented by n-loop diagrams 
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FIG. 1. 

with Green's functions for an electron in the external 
field. For example, the lowest contributions to all,,, 
i.e. the quantities all; and cr211FJ, correspond to dia- 
gram l and 2, respectively, in Fig. l ,  where the double 
line represents an electron in the external field. 

The convenience of the present choice of arguments 
for the PO is associated with the renormalization in- 
variance of the product eF = e p ,  under multiplicative 
renormalization transformations: 

Dr;' (k ,  eF, a ,  m )  =zD& (k ,  eoFo, a,,  m, A) .  

e=Z"eo, F=Z-"Fa, Z=Z (eo, Alm) , (4) 

a s  a result of which the argument eF enters on equal 
footing with the momentum. Here we indicate the unre- 
normalized values of the various quantities by a sub- 
script zero, and mass renormalization h s  already been 
carried through on the right-hand side of (4), A being 
the cutoff parameter. 

We shall consider only the physically interesting case 
of an external field with G =0: 

In this paper we use RG equations of the C-S type, 
which a r e  obtained by a standard pr~cedure '~ ' '~  and, 
because of the condition e F  = e, F, noted above (which 
entails eY1/' = eoyt'Z and eq = e,cp,), contain no deri- 
vatives with respect to the argument F: 

(with fixed values of the parameters k, eF = ep , ,  a,, 
and A on the right-hand side) where P(a)= ma(lnZ)/am 
for a, and A constant. Equations (8) and (9) have the 
same form a s  in the absence of a field and are  well 
known from the RG analysis of asymptotic behavior at 
large momenta. 

The "massless hypothesis," which plays a central 
part in the RG analysis of any asymptotic behavior, is  
used in investigating the asymptotic forms Pi.,, of the 
functions Pi at 3>> m2,&/2>> m2, and ecp >> m3. Ac- 
cording to this hypothesis the unrenormalized functions 
P,,, do not depend on m in the asymptotic region, so 
that aP, ,,,,/am = 0 and Eqs. (8) and (9) reduce to equa- 
tions in the asymptotic region with zeros on the right. 
The massless hypothesis can be justified only in 
asymptotically free theories; in other theories this 
hypothesis must be verified each time to each order 
of PT. In QED with an external field it is  satisfied for 
L in the two-loop approximati~n.~ . .. 

where F5, = (1 /2)ie, ,,; this case includes the special 
Some of the consequences of the asymptotic equations, 

cases of a crossed field (7=0) ,  a pure magnetic field 
which we can immediately verify by direct calculation, (.PO), and a pure electric field (Y< 0). In this case 
concern the one- and two-loop contributions to the the following expression0 for the PO, which follows 
asymptotic expansion from the general relativistic, gauge, and charge invar- . -  - .  

iance of the theory, i s  valid: 
- " 

P,+.. = ~ a n ~ , j ~ . + ' '  (k2,  eF" ,  ecp, m ) .  

(5) 
"-0 

Making use of the expansion - 
where cp, =~,.k,,cp~=F:,k,,cp=cp*=[(~,,k,)~~~~, and - 
the P, (i=1,2,3,) are  scalar functions of three invar- p ( a ) = 2 Z  ( z )  " I ~ ,  

iantsl ': n=t 

P,=P,(kZ, e S " ,  ecp, a ,  m )  . (of which only the first three coefficients a re  known at 
present1': 0% = 1/2, 0, = 1/4, and 8, = 121/288) we obtain In the limit F - 0, expression (5) reduces to the PO for 

a photon in vacuo: 

II, 1 ,,o= (k26,.-k,k,) n (k21m', a ) .  

The amplitudes P,, , vanish at F = 0, while P,(F = 0) 
=kzn(#/m2, 0) ;  moreover, in view of Eq. (5) the quan- 
tities PI/# and P,,,/q2 a re  finite at # =0 and cp2 =0, 
respectively. 

As follows from Eqs. (2) and (4), the amplitudes P,,, 
are  renormalized by multiplication and a r e  RG invar- 
iants: 

P ,  ,(ka, eS'",  ecp, a ,  m)=P,o,2,3(k2,  e S " ,  ecp, ao,  m, A ) ,  (6) 

whereas the amplitude 8, like the vacuum part of n, 
is renormalized by subtraction: 
pl(kZ, e S s ,  ecp, a, m )  = lim [p , , , ,  (k2 ,  e 9 " ,  ecp, a,,  m, A)  -n,, ,  (0, a,, mlA) 1. 

A*- 

(7) 
Here p, =P,/l? is a dimensionless quantity, while r,, , 
(0, a,, m/A) is the unrenormalized value of the PO r ( p /  
m2,a) at @=O.  

for the first two terms in the expansions of the renor- 
malized functions (3a), provided the massless hypo- 
thesis holds. Thus, one of the interesting consequences 
is that the quantities P:;::, are independent of the mass 
m ,  i.e. they have the "scale invariance" property (in 
other words, (11) indicates that the quantities P g C )  
approach finite limits a s  m - 0). According to another 
consequence, the asymptotic amplitude P?:, has the 
form P t:, = f'k2P,lnk,, to logarithmic accuracy, 
where k,, is the "important variable" in the asymptotic 
region concerned (see Sec. 3 below). 

In subsequent sections the above mentioned properties 
will be verified in two asymptotic regions of the var- 
iables kz, @ I 2 ,  and ecp . Getting ahead of ourselves, 
we may say that these properties hold for all the am- 
plitudes Pi in the limiting case a) (see below), and this 
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is to a certain extent a confirmation of the massless 
hypothesis. This hypothesis is not satisfied for the 
amplitude P, in the other asymptotic region b). 

In order to use dimensional considerations, it is 
desirable to transform to the dimensionless functions 

of the dimensionless ratios v = k2/m2, x = 21/28/2/m2,  
and =ecp/m3. 

We recall that the quantities P::., are  independent of 
m and a [ E ~ s .  (11) and (3a)l; hence the C-S equations 
for the ratios (12) have the following form in the asymp- 
totic region: 

a a a 
2v - + zx - + 3 ~ -  - p (a)a p,,3,a. (v, x,  x,  a) =0, (88) [ av  a ,  a ,  

On introducing the dilation parameter X for the mo- 
menta k and the field F (to the first and second powers, 
respectively, according to their dimensions) the gen- 
eral solutions to these equations can be conveniently 
written in the following form (also see Ref. 4): 

where the effective coupling constant a,, is a solution 
of the equation 

Assuming that the variable k2 is bounded, we shall 
later consider two different asymptotic cases in which 
the important variable is effectively one or  the other 
of the field variables x and x. These cases correspond 
to solutions of Eqs. (13)-(15) in which it is convenient 
to choose X = x,, = m a . ~ ( x ~ / ' , ~ ~ / ~ ) .  

Case a) corresponds to the asymptotic region x >> 1, 
1, and << 1 with the choice X This 

situation is of course realized for a crossed field when 
x = O  and x = M3e Ik JE(I - cosy)>> 1 in the high-energy 
or  strong-field limit under the condition (k2)3r2<< e Ik 1 
E(1- cosy), where y is the angle between the vectors 
k and E x H, and it is also realized for a pure magnetic 
field, when x = m'3e Ik JH sine>> 1 under the conditions 
e lk IH sin@>> (k2)3'2 and lk 1 sin0 >> (elf)'/', where 8 is 
the angle between k and H. 

For the reasons given in Ref. 18, when these condi- 
tions a re  satisfied (and they are satisfied for F -F, ,  
when, roughly speaking, k>> m )  one may neglect the 
invariants x and v a s  compared with x in calculating 
the probabilities of processes. In applications to the 
solutions (13)-(15) one can make an analogous assump- 
tion: which is a generalization of the massless hypo- 
thesis, that the limits v/x 'I3 - 0 and x/x 'I3 - 0 exist 
provided, a s  is usual in QED, that a,,, increases a s  
h l / 3 :  

P ~ . . . ( V , ~ , X ,  a)=a-'-a.f(-'(ln~'",a)+p,,..(O,O, 1, aeff(1n?,a)),(16a) 
PI, 3. (v, 3, X.  a) =pz. 3, .. (0, 0, 1, aeff (In x", a) 1, (17a) 

i.e. the asymptotic behavior is the same a s  that for a 

crossed field at ka = 0. 

Case b) corresponds to the asymptotic region x >> 1, 
v/x<< 1, and X/?/2 << 1, with X =&'. It is appropriate 
for a strong magnetic field eH >> ma provided the con- 
ditions k'<< eH and I kl sin@<< (e~)"'  are satisfied, 
and they are indeed satisfied for soft photons with 
k<< m provided H -He,. 

3. ASYMPTOTIC PROPERTIES OF THE 
POLARIZATION OPERATOR FOR x B 1 

We begin our study of the asymptotic properties of the 
PO for x >> 1 by calculating asymptotic expressions for 
the one-loop contributions for the case of a crossed 
field. Employing the equations 

and 

(which were derived in Ref. 9) for x >> 1, which corres- 
ponds to small values of the variable 

and making use of the asymptotic expressions for the 
special functions fl(z) and f f (z ) ,  

2 1 in 
fl(z)Iz,o=lnz+--c+-ln3+-, 

3 3 3 

and 

(which were also derived in Ref. 9), we obtain2' 

where 

boo=-VSc-'1, In 3-'o/,7+L/ain, 

and 

It is difficult to see that the results (18) and (19) act- 
ually confirm the massless hypothesis in the sense of 
the consequences noted above. Moreover, it also fol- 
lows from these results that the parameter k' drops 
out of the asymptotic expressions pifi, in accordance 
with the "generalized massless hypothesis." On the , 

other hand, the field dependence in Eq. (19), a s  well 
a s  that in the two-loop contribution, follows directly 
from Eq. (11) via dimensional considerations: 

Turning now to the study of the general solutions (16a) 
and (17a), we note that the effective parameter for as- 
ymptotic expansions is a,,,(111~'/~, a ) .  For these solu- 
tions one can also write expansions in double series 
in a and lnX2/3 that a re  valid when (a /3r ) ln~ ' /~<< 1. 
The expansion 
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has the same structure as the analogous PT series in 
cr for the vacuum PO in the asymptotic region k2>> ma 
and for the ratio (L, - L)/aL, in the asymptotic region 
F >> F,, where L, =-9 i s  the Maxwell Lagrangian.2.3 
The coefficients in the principal logarithmic terms are  
also the same in these expansions and can be expressed 
in terms of the known coefficients 0, and P2: 

The other coefficients a re  related to the P ,  a s  follows: 

The expansion 

without its unity term suppressed is similar to the 
asymptotic series in the region k2>> m2 for the invar- 
iant charge lyd(p/m2, cr) associated with the exact 
vacuum photon propagator D = k-'d. The coefficients 
satisfy the following recursion relations: 

and in particular, we have 

for the coefficients in the principal logarithmic terms. 

It should be emphasized that the one-loop radiative 
corrections associated with vacuum polarization in- 
crease with increasing field strength a s  X2/3, in 
contrast to the logarithmic increase of the vacuum rad- 
iation corrections with increasing momenta. For the 
two-loop contribution we have 

(the second of these expressions is valid to logarithmic 
accuracy) but, beginning with the term incu2, the ratioof 
successive corrections becomes of the order of a lnx2'3. 
A similar situation also obtains (and independently of 
the field strength) in the limiting case k<< m (see be- 
low), and also for the effective Lagrangian we have 
L e ) s  aL  ) (Refs. 2 and 3). The amplitudes Pa,,,,, are  
scale invariant only in the zeroth and first approxima- 
tions in a,  the invariance being broken by the terms 
in lnx2l3. 

The RG also provides for the summation of the logar- 
ithmic terms of various ranks; for example, by virtue 
of (25), the sum of the principal logarithmic terms in 
(23) has the form 

and indicates the appearance of the "zero charge" dif- 
ficulty for the case of an external field. 

4. THE REACTION k <m.  THE RELATION BETWEEN 
THE POLARIZATION OPERATOR AND THE 
EFFECTIVE LAGRANGI AN 

In the low-energy limit k<< m, the PO may be ex- 
pressed in terms of the effective Lagrangian for the 

electromagnetic field. We shall first obtain the rela- 
tion between these two quantities for the general case 
of the n-photon vertices I"") of QED in an arbitrary 
static field F, 5 F: 

starting from the basic formalism for the effective 
Here {k,) is the set of momenta for the n 

photons, and { p i }  is the corresponding set of vector 
indices. 

Here we introduce the effective action r(f,F) into 
QED with an external field by an additional term in the 
LagrangianYQt = j,A, , where A, is the vector potential 
for the external field F, ,  and f =f ,,@) = i(p,a,(p) -p,a, 
(p ) )  i s  the "classical" field corresponding to the vector 
potential a,, and j , is the quantized electron current. 
The effective action i s  the generating functional for the 
vertex functions r '"': 

where the y '"' are defined a s  the n-th order derivatives 
of r with respect to the faiFi at the point f =O. The 
effective action has the property 

r ( f ,  F) =r ( f + ~ ) ,  (28) 
and i ts  functional expansion in the y '"' has the form 

It i s  not difficult to see from (29) that the expansion 
y(*)({ki), F) = y  '"'(0, F )  + . . . of the vertices about the 
zero-momentum point ki = 0 corresponds to the expan- 
sion of the functional r = 61L(fC+F) + . . . about constant 
values of the functions 

and, with the aid of (28), leads to the relation 

where 51 i s  a four-dimensional volume. Thus, the mo- 
mentum dependence of the vertices separates out in the 
low-energy limit k<< m, and we obtain 

In particular, for the Green's function Dl:= I',CI' this 
formula becomes 

D,.-'(k, F),=k,k,azL(F) laF,aF*. (31) 

Transforming to the invariants Yand G in (31), cal- 
culating the amplitudes in the low-energy limit for the 
case of external field with C = 0 of interest to us,-and 
denoting the amplitudes for this special case by P i ,  we 
obtain3 ' 

It should be pointed out that in this approximation the 
vacuum contribution to n vanishes, i.e. p l ( ~  =0) =0, 
so that field and charge renormalization must be effect- 
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ed with a Z factor of "field" type-not of "momentum" 
type. A s  was shown in Ref. 2, the part of invariant 
charge is played in QED with an external field without 
real particles by the ratio 

where the variables 

q=[ (F2+Gz)"+iT]'", and e= [ (P+G2)"-T I ' "  

represent the magnetic and electric fields, respective- 
ly, in a coordinate system in which they are  parallel; 
Z-l'= I,(O, 0, a,, m / A ) ,  and this expression coincides with 
the usual expression Z" = 1- a,rr,(O, a,, m / A ) .  

It follows from (32) that the amplitudes P,,,, like L ,  
are  RG invariants, whereas the quantity p, =PI/@ is 
renormalized by subtraction: 

D~=p~ol,-ao-l (I-lo(O, 0 ,  ao, mlA) ). 

Formula (32) makes it possible to calculate the P, 
in the one- and two-loop approxilnations (the latter being 
the important one) in terms of the now known Heisen- 
berg-Euler LagrangianZ0 and the two-loop term2 Le).  

It is-easy to see that in the case of a crossed field we 
have Pl = O  and only the first two terms in the expansion 
in CY contribute to the other amplitudes: 

For the region of weak magnetic fields we obtain 

in the two-loop approximation, while the amplitudes 
P:i2' are given by Eqs. (33) after the substitution 

It is convenient to use the variables 7) and c in study- 
ing the region H >> He,. Noting that the case of a pure 
magnetic field corresponds to the values q =H and c = 0 
for the variables and making use of the following asym- 
ptotic expressions for the region in which eq /nz2 >> 1 
and e&/m2<< 1: 

where y = eC, c = 0.577. . . i s  Euler's constant, f (x) is 
the zeta function, 6r25'(2) = - 0.569 . . . , and a,,, 
=0.878572 . . . (the constant 4,, was evaluated by num- 
erical integration in Ref. 3), we obtain4 ' 

where 

500=3n-2f'(2)  -'la In yn+'l#, Ijr,o='ls+a2.a-11r In yn, 
(37) 

~:,'d.='/,nH/,:!='/,k'n-' sin2 e. 
It is necessary to investigate the nonasymptotic expres- 

sion for L a )  in order to calculate the amplitude p&'8; 
the calculation is carried through in the Appendix and 
leads to the result 

Equations (36)-(38) enable one to draw a conclusion 
concerning the general solution (13)-(15) for the limit- 
ing case b) corresponding to the choice k = g f 2 .  We see 
that in this case the massless hypothesis is satisfied 
for the amplitudes 5,. , in the two-loop approximation 
but is not satisfied for pzis, which is not scale invar- 
iant. In the same approximation, the generalized mass- 
less hypothesis, according to which the limits of form- 
ulas (13) and (14) a s  v/x and approach zero 
exist, i s  also valid for the ratios 

and 

pa, -(v, X, X ,  a )  = ~ 3 .  -1 (0,  1, 0 ,  a e f f  (In x'", a )  ). (17b) 

Expansions like (20) and (23), respectively, but with 
x2l3 replaced by x, a r e  also valid for these ratios, a s  
a re  the pertinent remarks following (20) and (23) in the 
text. 

In concluding, the author is  pleased to thank B. L. 
Voronov and V. I. Ritus for many discussions and much 
valuable advice. 

APPENDIX 

To calculate the amplitude F2 in the one-loop approxi- 
mation when it is written in terms of the variables q 
and &, 

we make use of the following expression for L ": 

in which z =m2/eq. In the limit a s  &/q -0, the first 
two terms in the expansion of this formula take the form 

L ( ~ ) ( q , a ) = ~ ( ~ ~ ( q , ~ ) + ~ e ~ ~  1 n2+o + .... 

L u)(q, 0) is given by Eq. (35) for z << 1, while 

where \k(x)  is the logarithmic derivative of the gamma 
function and 

Retaining the terms that do not vanish when q =H>>Her, 
we reach Eq. (38). 

" ~ h e s e  amplitudes determine the poles of the photon Green's 
function as  solutions of the equations k2 = Pi and k2 = Pi+ P2,3. 

",Such an asymptotic formula was also calculated in  Ref. 8, but 
using a different representation for the PO. It is easy to see 
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that the results of Ref. 8, when expressed in terms of the 
amplitudes P i ,  give Eq. (19) for the P2,3,,& however, they do 
not contain the logarithmic term, which is small as compared 

' with m2x2I3, and therefore give ~i!b,= 0 instead of Eq. (18). 
9 ) ~ n  deriving (32) from (31) we used the condition 

( a 2 ~ / 8 9 8 ~ ) l G , o =  0; this condition is easy to understand since 
the quantity concerned is a pseudoscalar expressed in terms 
of G and, since it  is finite, i t  must vanish a s  G-0. 

"In the second of Refs. 12, the PO in a magnetic field was ex- 
pressed in terms of scalar functions x i  related to the P i  by 
the equations ax, =Pi and ax2,3 = Pi+ From (36) and (37) 
we obtain the asymptotic formulas 

which are accurate to terms that are  constant in H and agree 
with the results obtained in the usual manner in Ref. 12. 
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Nonlinear interaction between waves in strongly 
inhomogeneous media 
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Nonlinear three-wave interaction between waves in a randomly inhomogeneous dispersive medium is 
considered. A kinetic equation for the probability distribution of the second-harmonic intensity is obtained in 
the diffusion approximation. It is shown on the basis of the diffusion equation that the random mismatching 
of the wave phases, violating the phase synchronism condition, results in a weakening of the nonlinear 
interaction, which goes over to a stationary regime corresponding to the limiting efficiency value of an optical 
frequency doubler (50%). The dynamics of the transition of the nonlinear interaction to the stationary 
conditions is analyzed. An extension to the case of nondegenerate three-frequency nonlinear interaction is 
presented. 

PACS numbers: 03.40.Kf, 42.65.Cq 

1. INTRODUCTION 

Significant attention h a s  been paid i n  recen t  y e a r s  to 
the analysis  of resonance interact ion of waves i n  dis-  
pers ive  inhomogeneous media. H e r e  the nonlinear in- 
teraction p r o c e s s  is accompanied by regula r  o r  random 
mismatchings of the phases,  the  conditions of phase 
synchronism to which the resonance interact ion of the 
waves is extremely sensi t ive are violated, and this 
leads to a weakening of the nonlinear interaction. 

nonlinear inhomogeneities on  the nonlinear propert ies  
of the c rys ta l .  However, because of the difficulties 
of theoret ical  analysis ,  the analysis  of the bas ic  ques- 
tion of the effectiveness of the conversion of the basic  
radiation into subharmonics  is c a r r i e d  out e i ther  i n  the 
approximation of the given pump field, o r  i n  the ap- 
proximation of the given pump which es- 
sentially reduce the considered problems to l inear  ones. 
The  p a r a m e t r i c  instabi l i t ies  i n  an inhomogeneous plas- 
m a  are considered in s i m i l a r  fashion. m 

The g r e a t e s t  number  of r e s e a r c h e s  has  been devoted For a sys temat ic  analytic consideration of the effect 

to the multiplication of laser frequencies  i n  nonlinear of the inhomogeneities of the  medium on  the process  of 
c rys ta l s  with inhomogeneities. The i n t e r e s t  in th i s  nonlinear interaction, it is necessary  to re jec t  the ap- 

problem in laser physics is due to the fac t  that  the ef- proximations usually employed. An at tempt to go be- 

fect  of generation of light harmonics  allows one to es- yond the  f ramework  of the p a r a m e t r i c  approximation 

t imate v e r y  simply, by experiment, the  effect of the h a s  been undertaken i n  the recen t  p a p e r s  of Filonenko 
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