
field, we regard the abrupt boundary a s  the limit of a 
smoothed boundary when the transition region tends to zero. 
We write down an equation for p with variable coefficients 
that hold in the whole of space, and the boundary conditions 
are  obtained by integrating it and then going to the limit of a 
sharp boundary. 
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Pendellosung radiation of an electron diffracted in a single 
crystal 
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A quantum-mechanical analysis is made of Pendellosung radiation produced by diffraction of an electron 
in a single crystal, with account taken of the deviation from the Bragg condition in the final state of the 
electron. The formulas obtained for the angular distribution duplicate the result of I. M. Frank for the 
radiation of an oscillator moving in a refracting medium and oriented perpendicular to the velocity. 

PACS numbers: 61.14.Dc, 72.10. - d, 12.20. - m, 41.70. + t 

1. Frank1 h a s  developed the theory  of the  emiss ion  c a u s e s  a n  e lec t ron  diffracted i n  a c r y s t a l  to behave, 
of a classical osci l la tor  moving in a refract ing med- with r e s p e c t  to emiss ion ,  l ike a moving oscillator, 
ium. He h a s  shown that at nP> 1 (P = v/c, v is the oscil- i.e., when the e lec t ron  is diffracted Pendellosung radia- 

lator velocity, and n is the refract ive index) a number tion is produced at a frequency and  polar izat ion that 
of new phenomena appear ,  namely the anomalous and are determined by  the frequency and direct ion of the 

complex Doppler effects.  oscillations of the  diffracted electron.  It w a s  shown in 
Ref. 3 that nP > 1 (PII = u cos e,/c, 0, is the Bragg angle), 

It was previously noted2 that  the Pendellosung effect just as in the case considered by Frank,' the dependence 
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of the frequency of the Pendellosung radiation on the di- 
rection i s  determined either by the normal o r  by the 
anomalous Doppler effect. It was a lso  indicated that 
experimental observation of the phenomena of the com- 
plex and anomalous Doppler effect in Pendellosung 
radiation is feasible. 

From the point of view of quantum mechanics, 
Pendellosung radiation is the result of transition of 
the electron between different branches of the dis- 
persion surfaces (equal-energy surfaces in momentum 
space) of the electron in the ~ r y s t a l . ~  

However, in the derivation of the formulas for the 
intensity of the Pendellosung in Ref. 3, no account was 
taken of the deviation, due to photon emission, from the 
Bragg condition in the final state of the electron; this 
led to loss of the longitudinal component of the electron 
current. As a result, these results a r e  valid only a t  
u - g  =0, where x is  the wave vector of the photon and 
g is  the reciprocal-lattice vector, i.e., in the case of 
radiation in a plane parallel to a crystallographic 
plane.1) 

In this paper is developed a quantum-mechanical 
theory of Pendellosung radiation with account taken of 
the deviation from the Bragg condition in the final state 
of the electron. It is  shown that the equations for the 
angular distribution of the Pendellosung radiation a re  
substantially different from those in Ref. 3, and dupli- 
cate exactly the result obtained by Frank1 for the 
emission of a moving oscillator oriented perpendicular 
to the velocity. Thus, the classical analog of a dif- 
fracting electron is a moving oscillator, and this 
analogy has a distinct physical meaning in the language 
of dynamic theory of diffraction. 

Similar formulas describe a lso  the emission of fast 
electrons channeled in a The analysis of 
this radiation is  based on the concept of channeling a s  a 
finite motion of the particle in the transverse direction, 
bounded by two planes (for planar channeling) of the 
crystal (see, e.g., Ref. 7). The radiation accompanying 
the channeling i s  in this case the result of transitions 
between discrete states of the transverse motion of the 
particle. 

2. We consider a system of crystallographic planes 
in the crystal, characterized by a reciprocal-lattice 
vector g(lgl =2n/d, where d i s  the distance between the 
planes). 

As follows from the dynamic theory of diffraction in 
the two-ray approximation, near the Bragg condition 
an  electron of energy E in a crystal  is  described by the 
Bloch functions $l'(k('), r )  and ijg)(kh), r), corres- 
ponding to the two branches of the dispersion surfaces 

where 

A =[b +g)a- #]/2 i s  the parameter of the deviation from - - 

the Bragg condition, V, =E2U,/2m, - V, is the amplitude 
of the first  harmonic of the periodic potential of the 

lattice. The wave vectors k") and kC) correspond to 
two branches of the dispersion surface whose equation 
is of the form 

(k2-KZ) [ (k+g)'-KZ] =Ut, (4) 

where K =[2m(E + V,)/fi]lh =mv/fi, and - V, is  the aver- 
age potential of the lattice. The symmetry of the func- 
tions (1) and ( Z ) ,  a s  follows from (3), is determined by 
the sign of U,. We shall assume that U,>O, and in this 
case a t  A = O  we have y<O, s o  that the function Ji") is 
an antisymmetrical combination of the direct and re- 
flected waves, while the function $') is a symmetrical 
combination. The intensities of the direct and reflected 
waves in branches (1) and (2) a r e  determined by the 
quantity 

cosZ y=l/,(l-A/(AZ+U,I)'b). (5) 

3. Let electrons with energy E, be incident a t  exactly 
the angle 8, on the reflecting planes of the crystal in the 
Laue diffraction scheme (i.e., the crystal boundary is  
perpendicular to the planes). This excites in the crystal 
waves belonging to  both branches of the dispersion sur- 
face, s o  that the wave function of the electron Ji, inside 
the crystal takes the form8 

~.=2-'"1$.'~'(k.'~', r) +$.'"(k."', r) ]e~p[-iE.t/A]. (6 

By virtue of satisfaction of the Bragg condition A, =0, 
we get from (1)-(3) for the functions $2) and &' 

The dispersion equation (4) is  correspondingly simpli- 
fied: 

ka""'* =K2Fuo (9) 

We consider now transitions of the electron from the 
state $a to the state Ji, with energy E ,  at  which a phonon 
of energy Eb and with wave vector u is emitted: 

r.=on/c. (10) 

We assume that the emission of the phonon violates 
only slightly the Bragg condition, i.e., the parameter 
A,  in the final state is  small  compared with U,: 

IAblcUa, (11) 
where 

This leads toalimitation on the considered wavelengths 
of the photons: 

A>g, tg Os cosQ (xg),  (1 3) 

where 5, = (2rrK cos €J,)/U, is the extinction length. 

Inasmuch a s  A - 6 ,  for Pendellosung radiation, and 
8,<<l (for example, 8,=0.03 for electrons of energy 
50 keV), the conditions (11) and (13) a r e  practically al-  
ways satisfied. In this case, retaining in (5) the terms 
linear in A,/U, we get for the Bloch functions of the 
final state of energy E ,  
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Accordingly, we obtain from (4) 

The matrix element of the transition a- b from the 
branch a to P ( a  = 1,2; P =1,2) with emission of a photon 
with polarization ux is of the form 

~ ~ 7 = 2 - " < 9 d @ '  (k:" , I )  l H X l $ ~ '  (c) , I )  ), (17) 

where H x  is the operator of the interaction of the elec- 
tron with the photon in the mediumg: 

As shown in Ref. 3, the Pendellosung radiation is due 
t o  transitions between different branches, with the 
ordinary and anomalous Doppler effects produced in the 
transitions 1 - 2 and 2 - 1, respectively. Calculation 
of the corresponding matrix elements yields 

We have taken into account the quasimomentum con- 
servation laws: 

k!" + x - kf' = 0 for the transition 1 -+ 2, 
k(1) ,, + x - k:) = 0 for the transition 2 -+ 1. 

It is  seen from (19) that despite the smallness of the 
quantity usg/2U,, the contribution of the second term 
to  the matrix element can be comparable with the con- 
tribution from the first ,  since g/21(k, +g/2)) =tan8,<< 1. 

We note that allowance for the deviation from the 
Bragg condition in the final state is inessential for the 
Cerenkw radiation due to  the transitions 1 - 1 and 
2 - 2,= since it adds a small increment -gn g/4U, to  
the large quantity -I (k, +g/2)1 in the matrix elements. 

Introducing the unit vectors e l l  and e, along the di- 
rections +g/2, and g, a s  well a s  n, along the 
direction x ,  and also recognizing that 

I IL"'" +'/,g I =k:ifz' ss mulllfz, (20) 

we get 

e nfz '11 nfz fzo H ' ~  = - ( )  [ e l  e e l -  ] . (21 
2 V8 

Denoting by u, the polarization vector lying in the plane 
of the vectors n, and e l l  (u, lies in this case in a plane 
perpendicular to the direction of e 11) we obtain for the 
matrix elements corresponding to different polariza- 
tions, in a spherical coordinate system 

Here 8 and cp a r e  the angles that characterize the di- 
rection of the photon emission, the polar axis is chosen 
along e 1 1 ,  i.e., along the direction of the average 
propagation of the electron in the crystal parallel to the 
crystallographic planes, and cp is the angle in the plane 

perpendicular to the. vector e 11 and is reckoned from 
the direction of el. 

4. The number N of photons emitted per unit time is 
determined by the formula 

2n nao' dodo 
N= J T ~ ~ ~ w ~ 2 8 ( ~ a - ~ b - h w )  --. 

.=,o.A c3 ( 2 ~ ) ~  

Using the quasimomentum conservation laws a s  well 
a s  the dispersion equations (91, (lo), and (16) for  the 
electron and photon, and neglecting the recoil energy, 
we obtain for the transition 1 - 2 

E,-Eb-ho=2V8-ho(i-ng,, cos 8 ) .  (25) 

Analogously fo r  the transition 2 - 1 we have 

From the energy conservation law it follows directly 
that the transition 1 - 2 is allowed in the angle region 
8>  9,[8,=arc cos(l/Blln)] outside the Cerenkov cone, 
and the dependence of the frequency of the emitted pho- 
ton on the direction is determined by the normal Dop- 
pler effect 

o = o o / ( l - n p , ,  cos 0).  (27) 

where 

The transition 2 -1 is allowed in the region of angles 
8< 8,  inside the Cerenkov cone, and the dependence of 
the frequency on the direction is determined in this 
case by the anomalous Doppler effect: 

Substituting the expressions for  the matrix elements 
(22) and (23) in (24) and integrating with respect to  the 
frequencies with the aid of a 6 function, we obtain for 
the number of photons emitted per unit time into a unit 
solid angle an expression that is valid both a t  8< 8, 
and 8> 8,: 

cWT an (1-pun cos 8)2-(1-$l~nz)cosZ cp sinz 8 
-=- 
do 4n plZwo (I-plln cos 8)' , (30) 

where P, =v,/c, v, =fig/2m =nfi/md is the electron ve- 
locity corresponding to the transverse momentum 
Ag/2, and a = e2/fic. 

We note that in this form Eq. (30) is valid also in the 
relativistic region, if m is taken to  mean the total mass 
(and not the res t  mass) of the electron, since the rela- 
tivistic matrix elements for  the emission of a photon 
by a free electron, expressed in terms of the electron 
velocity, coincide with the nonrelativistic ones if the 
recoil momentum is neglected, and a r e  proportional to 
the velocity. On the other hand, the relativistic effects 
in dynamic theory of diffraction a re  also taken into ac- 
count by corrections for the electron mass.' 

In the derivation of (30) we took into account the fact 
that when (27) and (29) a r e  satisfied we have 

and 
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At constant n, difficulties a r e  raised by the infinitely 
large Doppler frequency and radiation intensity a t  
9 = O,, but these difficulties a r e  eliminated if account 
is taken of the dispersion of the medium, i.e., the n(o) 
dependence. 

In this case the complex Doppler effect 
Equation (30), however, retains the same form. 

The obtained expression (30) for the intensity of the 
Pendellosung radiation agrees with the result 'of Frank1 
for the intensity of the emission of a classical oscil- 
lator oriented perpendicular to its velocity ull in a re- 
fracting medium. 

Thus, the classical analog of a diffracting electron 
is a classical charged particle moving along the crys- 
tallographic planes with velocity vll and oscillating 
harmonically in the direction of the vector g at a fre- 
quency w, and amplitude x,: 

The condition I A , ~  <<U, of the smallness of the deviation 
parameter in the form (13) acquires in this case the 
simple physical meaning that the amplitude of the oscil- 
lations of the diffracting electron be small  compared 
with the wavelength of the emitted light. Thus, (13) i s  
in essence the condition that the radiation be of the 
dipole type. 

We note that (30) leads to a substantial directivity of 
the radiation even a t  relatively low electron velocities, 
for example, a t  n1-3 =2/3 (this corresponds to n ~ 1 . 2  a t  
an electron energy 100 keV) the ratio of the number of 
photons emitted forward and backwards into a unit solid 
angle per unit time is -25. 

Integrating (30) over the angles a t  nPll < 1 in the case 
of constant n we obtain for the total number of photons 
emitted per unit time 

In the optical r$gion, for  example a t  A, =2nc/nwoo 
= <,/n@,, = 3000 A (which corrfsponds to  5, ~ 2 0 0 0  A at  
nPll =2/3) a t  n =1.2 and d = 1 A an estimate in accordance 
with (34) yields N =  5.7 x109 photons/sec, s o  that when 
an electron current of 1 pA (-0.6 x 1013 electrons/sec) 
passes through a crystal of thickness D =55, =l0000 A 
there will be emitted -2.1 x108 ~ho tons / sec  in the wave- 
length band from 1000 to 5000 A: In the soft x-ray 
region, for example a t  5, =300 A and a t  an electron 
kinetic energy 1 MeV (B 11 =9.94), taking into account the 
fact that n =1 and A, =320 A we get from (34) a value 
N ~ 4 . 2  ~ 1 0 : ~  photons/sec in the wavelength band from 

20 to 600 A, and by virtue of (30) the number of photons 
with minimal wavelengths emitted forward is  -lo3 
times larger than backwards. Accordingly, when the 
same current passes through a crystal  of thickness 
D =55,, the number of photons emitted predominantly 
in the short-wave region is -1.3 X 10'. 

We note that since 0: in (34) contains the relativistic 
factor (1 - P),  it follows that a t  n =1 and a t  high ener- 
gies (PI1 =P) the value of N does not depend on the elec- 
tron energy, while the energy losses increase like 
(1 - Pi)-' because of the shift of the photon frequency 
into the harder region. In the case of channeling, the 
number of radiated photons increases with energy like 
(1 - Pa)-1h.5 The cause of the difference i s  that, in 
contrast to  channeling in diffraction, when the energy 
increases the amplitude x, [Eq. (33)] of the transverse 
oscillations of the electron decreases like (1 - Pyh, 
and what is  constant i s  the transverse momentum kg 
transferred to the lattice, while the frequency w, is 
likewise independent of the particle energy. On the 
other hand, the equations given above a r e  vaild only 
up to electron energies a t  which 0,z O,, where 9, is the 
cri t ical  channeling angle. For  higher energies, when 
O,< O,, the angular width of the diffraction begins to 
exceed the Bragg angle. Multibeam effects then be- 
come substantial.' 

In conclusion, the author is  deeply grateful to A. S. 
Ryl'nikov, A. I. Smirnov, and 0. I. Sumbaev for helpful 
discussions. 

"1n Eqs. (20) and (21) of Ref. 3 there were left out also the 
factors d/(l -Bncos8), which stem from the arguments of 
the 6 functions, and the normalization factor 2; see Eq. (30) 
of the present paper. 
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