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Effect of geometry and field intensity on the profiles of 
saturated-absorption resonances in low-pressure molecular 
gases 
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It is shown theoretically that a unique interaction between the impact and field or transit broadening 
mechanisms makes the collision line shift dependent on the intensity and the geometry of the field. It is 
found in the particular case of the L = 3.39 pm methane transition that the mechanism affects 
appreciably the reproducibility of the frequency. The joint influence of recoil and field and transit 
broadenings on the line shift is also considered. It is shown that allowance for transit effects alters the 
dependence of the line shift on the field intensity because of the recoil effect. 

PACS numbers: 33.70.Jg 

1. INTRODUCTION 

Modern nonlinear-spectroscopy methods can attain a 
v e r y  accurate  agreement  between the frequency of a 
laser and the frequency of the molecular  transition. The 
experiments  that have demonstrated the possibility of 
developing a high-grade unified l a s e r  frequency and 
length s tandard by this method1 initiated a n  intense 
study of the causes  that  restrict the accuracy  of the re- 

producibility of the molecular- t ransi t ion frequency by 
such  a standard.  A r a t h e r  l a rge  number of papers  have 
been devoted to a theoret ical  investigation of the influ- 
ence of collisions under  specif ic  conditions of v e r y  low 
absorbing-gas pressures:  saturation-field geometry; 
quadrat ic  Doppler and a number of other  fac- 
t o r s  on the profile of the saturated-absorption reso-  
nance. Par t i cu la r  attention was paid to a n  improvement 
of the influence of the magnetic hyperfine s t r u c t u r e  of 
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the ~ , ( 2 )  component of the vibrational-rotational transi- 
tion P(7) of the v, band of the methane molecule, whose 
frequency seems a t  present to be reproducible with the 
highest It can be regarded a s  universally 
accepted that it is precisely the effects connected with 
the presence of a magnetic hyperfine structure which 
make the principal contribution to the inaccuracy of the 
frequency of the indicated transition. Attempts were 
therefore made to tie-in the laser frequency with 
another methane-molecule transitionsqs that has no 
hyperfine structure, but has a number of shortcomings 
in other respects. 

The present paper is devoted to an investigation of the 
joint influence of the electromagnetic-field parameters, 
collisions with change of velocity, and the recoil effect 
on the reproducibility of the frequency of an isolated 
molecular transition when the line has either no hyper- 
fine structure at al l  or a substantially resolved one. 
To describe the interaction of the molecular transition 
with the field of the electromagnetic wave we use for 
the molecule density matrix an  equation in which, with- 
in the framework of a unified quantum-mechanical ap- 
proach, a r e  described both the internal degrees of 
freedom and the motion of i ts  mass center. This ap- 
proach is particularly convenient for the description of 
the recoil effect. 

In Secs. 3 and 4 we investigate the influence exerted 
on the molecular-resonance shift by the specific inter- 
action of the collision broadening of the line with the 
broadening due to transit effects and saturation. In the 
pressure region of interest to frequency stabilization, 
the resultant line shift is of the same order a s  the shift 
due to the influence of the magnetic hyperfine struc- 
ture. The results obtained in these two sections have 
been briefly reported in Ref. 10. 

The influence of the recoil effect on the molecular- 
resonance line shift following a change of the intensity 
of the saturating field was investigated in Ref. 11. In 
Sec. 5 we investigate the change produced in the line 
shift by the recoil effect under the influence of the joint 
action of two factors-the change of the intensity and 
geometry of the field in the resonator (transit effects). 
It turns out that allowance for transit effects changes 
considerably the relation obtained in Ref. 11 between 
the line shift and the saturation parameter. 

2. EQUATION FOR THE DENSITY MATRIX 

We consider the interaction of an atomic or molecular 
gas with an electric field E(R, t) having the form of two 
opposing monochromatic Gaussian beams propagating 
along the z axis: 

E(R, t )  = j E ( p )  exp ( i p ~ + i o t )  dp+ c.c., 

1 

The minimum radius of the caustic of such beams is 
reached in the planes z = z ,  and is equal to a,; Po 
= w / c ,  = E  +g. We use the following equation for 
the density matrix 

Here Ho is the Hamiltonian of the f ree  molecule and 
includes the kinetic energy of the motion of the mole- 
cule a s  a whole, d is the molecule dipole-moment oper- 
ator,  R, is the coordinate of the molecule mass center, 
and the term ip describes the influence of the collisions 
between the investigated molecule and the perturbing 
particles. The power absorbed a t  the point R is given 
by 

P ( R ,  t )  = s ~ [ ~ G ( R - B ) E ( R ,  t ) p ] .  (3 ) 

We consider next the spectral characteristics of the 
medium near the frequency wo corresponding to the 
transition 1 - 2 between nondegenerate states. It is 
known that in problems of this type we can confine our- 
selves to the two-level approximation and neglect the 
oscillations of the density-matrix elements a t  double 
the frequency. Substitution of (1) in (3) and subsequent 
averaging over the time yield 

P(R)  =2h00 Re J dl dp%Y (p)e 'q~plz (kk  k-p-q). 
(2n) (4) 

Here A(P) =id,,~(p)/fi, p,,(k, kt) ~ , ~ , ~ ~ ( t ) e - '  Wt, p1k2kt(t) 
is the density matrix element in a representation in 
which the motion of the molecules a s  a whole is des- 
cribed quantum-mechanically, k is the wave vector of 
the motion of the molecule mass center; when the 
doubled frequencies a r e  neglected, the values of 
p,,(k, kt) in the stationary regime a r e  independent of 
time. Under the experimental conditions, a s  a rule, the 
transverse dimension of the cell with the gas greatly 
exceeds the size of the caustic. Interest attaches there- 
fore to the absorbed power integrating over the trans- 
verse coordinates; a t  the same time i t  i s  advantageous 
to retain the dependence of the absorbed power on the 
longitudinal coordinate, since this dependence reflects 
the position of the cell relative to the neck of the caus- 
tic. Integrating (4) with respect to x and y we get 

where n is a unit vector along the z axis. 

For the time-independent quantities p,,(k, kt) we get 
from (2), taking (1) into account, the system of equa- 
tions 

+ kp) ,z (k, k-p) f Jdp'h (p') [pzz (k-P', k-P) - p t i  (k ,  ~ - P + P ' )  1, 

+j dpl[li. (p') pa, (k-p', k-p) +L' (p') p i t  (k ,  k-p-p') 11 (7) 
A - k p  - - pz) p.,,(k, k-p)  = ( i p )  I2  (kk k-P)  ( 2M 

Here pi,(k, kl) =pJt,kp - i = 1,2,  p ~ ~ i k f  is the den- 
sity matrix element diagonal in the internal quantum 
numbers in the absence of a field; in the case of the 
spatially homogeneous problem R({,)ikp 

= (2n)'ZiW(k)6(k - kl), where Z, is the total population of 
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the level i, W(k) is the Maxwellian distribution function 
of the molecules in the wave vectors; 2, = Z, - 2,; Ao 
=w =o,; M i s  the molecule mass. We represent the 
collision term in the form 

(h)u(k, k - ~ ) - - ( r u + v i d ~ e ( k ,  k - ~ ) +  j~ij(k,k')p'j(k',k'-~)a'.  (9) 

The quantities rij play the role of the ordinary relaxa- 
tion parameters in the equations for the density matrix, 
when no account is taken of the change of the molecule 
velocity in the collisions. The complex quantity r, 
= r +iA determines the width and the shift of the line 
in the usual impact broadening collision, while r,, and 
r,, a r e  the reciprocal lifetimes of the molecule on levels 1 
and 2. The parameters v,,, v,,, v, =v;, +ivg, and the 
integral term in (9) with the kernel ~ , , ( k , k ' )  reflect the 
role of collisions with change of velocity, with 

vi j (k')  = 1 ~ , ~ ( k ,  k')dk. (10) 

The quantities I?, v,  and A a r e  proportional to the den- 
sity. They can be connected with the exact values of 
the amplitudes of the scattering of the molecules in 
states 1 and 2., 

The equations (6)-(8) for the density matrix with the 
collision term (9) allow us to investigate the shapes of 
the nonlinear power resonances with allowance for the 
joint action of the transit effect, the recoil effect, 
the field broadening, and the collisions. The terms 
f i $ / 2 ~  in the left-hand sides of (6)-(8) describe the 
recoil effect. If we neglect these terms, Eqs. (6)-(8) 
coincide with the equations for the space-time Fourier 
components of the density matrix elements pij(R,v, t ) ,  
in which the motion of the molecule mass center is . 

described classically. 

In nonlinear spectroscopy, use is  made of several 
different methods for the registration of resonances of 
the saturated absorption of molecules. A cell with the 
tested gas is placed in the resonator of a linear o r  ring 
laser;  alternately, the absorption of a cell taken outside 
the resonator is registered (out of the resonator spec- 
troscopy). In the case of a cell placed in the resonator 
of the linear laser,  it i s  always necessary to deal with 
saturation of the molecular transition by the standing- 
wave field. In the cases of a ring laser and spectro- 
scopy outside the resonator one investigates the ab- 
sorption of a weak wave in the presence of the strong 
opposing wave, or else the absorption of two opposing 
waves with comparable but not exactly equal amplitudes. 
We shall therefore study hereafter the absorption of 
opposing waves with arbitrary intensities, s o  a s  to make 
the results equally applicable for all the indicated cases. 

3. JOlflT ACTION OF TRANSIT EFFECTS AND 
VELOCITY-CHANGING COLLISIONS 

The difficulties encountered in the solution of Eqs. 
(6)-(8) with the general-form collision integral (9) can- 
not be overcome. When considering concrete problems 
i t  becomes necessary therefore to use a model colli- 
sion integral. It has become traditional recently to 
break up the collision integral (more accurately, the 
arrival  term) into two terms: 

J ~ ( k , k ' ) ~ ( t c ,  k ~ t p ) a ~ = = ~ w ( k ) ~  p ( r ,  k'+p)dk' 

+ $ ~ ( k ,  k') p(k', k'+p) dk'. 

The f i rs t  term reflects the influence of the so  called 
strong collisions, when the collision process is ac- 
companied by large-angle scattering, and it can be as-  
sumed approximately that after the collision the scat- 
tering matrix, regardless of its form prior to the col- 
lision, is  a Maxwellian distribution function in the wave 
vectors. When describing narrow absorption reso- 
nances with width much less  than the Doppler line width, 
the role of the first  term in (11) is small enough to be 
neglected, and only the contribution of the strong col- 
lisions to the departure term need be retained. 

The second term of (11) describes the influence of 
weak collision_s accompanied by scattering through 
small  angles 0<< 1. We shall assume hereafter that the 
function B(k, k t )  depends only on the difference of the 
arguments : B(k, kt) = ~ ( k  - kt). This calls  for the 
following comments. 

As already mentioned, we a re  interested in a descrip- 
tion of narrow absorption resonances near the center of 
the molecular transition. In this case the density-ma- 
t r ix  elements p(k, k +p) have sharp maxima a t  very 
small  values k,, k,<< k,, where k, is a projection of the 
wave vector on the z axis and k, is the mean thermal 
value of k. At the same time, p(k, k +p) a r e  smooth 
functions of the wave-vector components k, perpendicu- 
l a r  to the z direction. On the other hand, the function 
B(k, kt) which describes the contribution of the colli- 
sions accompanied by scattering through small angles 
g, have a sharp maximum a t  k=kl .  Therefore the argu- 
ments k, and k: of the function B(k, d )  under the inte- - 

gral  sign in (1 1) can be regarded a s  equal: B(k, , k, ; 
k:, k:)= B(k,, k,; k,, k:). Next, using the explicit form 
of the integral term, we can show that a t  small  values 
of the arguments k, and k:, which a r e  the only ones of 
importance for our problem, the function B depends 
actually only on their difference B(k, kt) = B(k, , k, - k:). 
Finally, the remaining slow dependence of B on k, has 
the same meaning a s  the dependence of the relaxation 
coefficients r and v in (9) on k. Usually this dependence 
is neglected and k is replaced by the mean value k,. It 
i s  consistent to proceed in the same manner also with 
the function B, and to se t  it equal to B = B(k,, k, - k:). 
The last equation i s  equivalent to the assumption made 
above, that the function B depends only on the difference 
between the arguments k and kt. 

Thus, the kernel of the collision integral in Eqs. (6)- 
(8) will be regarded as  a difference kernel. We can 
then obtain the solution of these equations in third- 
order perturbation theory in the field, For the beam 
absorption coefficient a,, defined a s  the ratio of the 
total power absorbed from the beam per unit length in 
a given section z to the total energy flux of the same 
beam through this section, we obtain in the Doppler limit 

a+=aa+d:) , 
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Here a, is the linear coefficient of absorption, x, 
=d,E,/.,  7+=a,/vo is the time of flight of the molecule 
through the light beam, u, is the mean thermal velocity 
of the molecule, and b = @ / 2 ~  )w2/c2 is the splitting due to 
the recoil effect. The role of the velocity-changing col- 
lisions is demonstrated by the functions 

( 1 3 ~ )  
E(Ak,) =B(k,-k.') = dk,B(k-kc), 

where Aw, =P,v, is the Doppler line width. The influ- 
ence of the field geometry is described by the functions 

where I, = 1 i 2i(z - z,)/p,& Neglecting the change of the 
atom velocity in the collisions (B=O, 9 '0) we obtain 
from (12) the result of Ref. 3; if in addition we neglect 
the curvature of the wave fronts of the opposing beams, 
I, = 1, then (12) coincides with the expression obtained 
in Ref. 13. 

Equation (12) contains the three possible causes of the 
absorption-resonance shift. The f i rs t  is the result of 
the joint action of the transit effects and the recoil ef- 
fect and was investigated in detail in Ref. 14. The sec- 
ond cause of the shift is allowance for the curvature of 
the wave fronts I,# 1, which is made in Ref. 3. In the 
present article we investigate the third cause, which is 
a result of the interaction of the velocity-changing col- 
lisions and the transit effects. We therefore neglect in 
the present section and in the next section the recoil 
effect and the curvature of the wavefront 1, = 1, and as- 
sume that a+= a_, 7+ = T  - =7,. Here F?)=F?) = F  
= (7: +2c2 + 2677 +$)-I. After these simplifications Eq. 
(12) is still quite complicated, so  that the shift of the reso- 
nance maximum can be investigated only numerically. 
In the case of particular applied interest, however, that 
of vibrational-rotational transitions of molecules such 
a s  CH,, OsO,, SF,, further simplification is possible. 
In this case the collision line shift is much less  than the 
width: A << r ,  v:, << v', , cp"<< and consequently r 
=rl1=rZ2, & 1 = & 2 = ~ ; 2 ,  V ~ ~ = V ~ ~ = V ~ = V ,  & = ~ , , = j & ~  
= p. Therefore in the vicinity of the maximum of the 
resonance the integrand in (12) can be expanded in 
t e rms  of the small parameters T I A o ,  r - ' ~ ,  v:,/r, 
9"/r Differentiating the result with respect to w, we 
obtain for the position of the maximum with the reso- 
nance 

The integrals I, and I, depend on the relation between 

the line impact-broadening parameters and the transit  
time T,. It is seen therefore from (15) that the collision 
shift of the resonance depends on the transit  width. We 
investigate first  this dependence a t  large and small  
values of the density of the perturbing gas. 

We recall that the kernels of the collision integral 
&,(Ak,) and B,{(A~,) describe the influence of collisions 

-.companied by a small  change of velocity, and the 
difference from zero in the region Ak,S ko8. Therefore, 
a s  seen from (13), the functions q(5) and B(5) differ 
from zero in the region 5 s lDAw,, with p(5 =0) = v,, 
- B, and ~ ( g  =0) =v  - 8. At large values of g>> l/$A%, 
the function q(t;) takes the form 

and the rate a t  which the function B(g) tends to zero 
depends on the concrete form of the kernel. 

At large densities, when the parameters r and v a r e  
large, r, v>> BAw,, the main contribution to the inte- 
grals in (16) is made by the region of small  values of 
f << l/8AwD. We must therefore put under the integral 
sign ~ ( 5 )  = v,, - p,, ~ ( 5 )  = v - 8. The shift of the line 
maximum is then Aw,= -A - B, and does not depend on 
the transit width. 

At lower densities, when the parameters r and v a r e  
small, r ,  vc< ~ A W , ,  the main contribution to the inte- 
gral  in (16) is  made by the region of large values g>> 1/ - 
BAw,. Putting in this case B = O  and using for 9" 
expression (17), we get 

A plot of the function g,(x) i s  shown in Fig. 1. Thus, 
in f irst  order in the small parameter (l? + V ) / ~ A U ,  the 
impact line shift becomes dependent on the transit time. 

In the intermediate pressure region, to find the shift 
i t  is necessary to know the explicit form of the kernel 
of the collisions integral and the relation between the 
parameters r+@ and v + r, v: +A and p:, +A, which a r e  
determined by the specifics of the investigated transi- 
tion. By way of example, Fig. 2 shows the dependence 
of the shift of the line maximum, referred to the quan- 
tity -A -&, on the density of the absorbing gas a t  dif- 
ferent values of the transit time 7,. T h e  calculations 
were made for the broadening-constant ratios charac- 
terist ic of the broadening of the e) component of the 
vibrational-rotational line P(7) of the v, band of methane 

FIG. 1. 
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4. JOINT ACTION OF FIELD BROADENING AND 
VELOCITY-CHANGING COLLISIONS 

The qualitative explanation of the dependence of the 

FIG. 2. 

( A  =3.39 pm), namely ( r  +v) / ( r  +@) =3,15 (A +@:I/ 
(A +v:,) = 10.16 The collision-integral kernel was ap- 
proximated, following Ref. 17, by 

The numbers near the curves of Fig. 2 indicate the 
values of the rat io rO/(T +v). 

The dependence of the impact line shift on the transi t  
time r, can be illustratively interpreted. It is  known 
that the overwhelming contribution to saturated-absorp- 
tion resonance is made by a smal l  group of molecules 
whose wave-vector projections on the direction of pro- 
pagation of the field a r e  concentrated in a narrow r e -  
gion near the ze ro  values of &, determined from the 
condition tipol hkEI/M S y ,  where y is the homogeneous 
line width. If the resonance width y i s  s o  smal l ,  y 
<<Fip,k,~/M =8AwD, that scattering through an  angle - 
t7<< 1 takes the molecule out of this region, then the 
change of the molecule velocity by the collisions leads 
to an additional shift of the broadening and shift of the 
resonance, so  that 

where l/rO reflects phenomenologically the contribution 
made to the broadening by the transi t  of the molecule 
through the light beam. In the other limiting case ,  

>> Bhw,, the change of the molecule velocity in the 
collisions does not take the molecule outside the region 
of resonant interaction with the field, and elast ic  scat-  
tering ceases  to contribute to the width and shift of the 
resonance: 

When the transi t  time r, changes and the gas density is 
constant, a gradual transition takes place from (19) to 
(20), meaning a change of the line shift with changing r, 
a t  constant density. 

It i s  of interest  to note that the foregoing reasoning 
indicates that a t  sufficiently strong broadening the 
transi t  effects, when 1/r0>>ghwD, so  that the condition 
~ > > T A W ,  is always satisfied, should cause the shift to 
be described, a s  it were, by Eq. (20) and to be a linear 
function of the gas  density in the entire pressure  region. 
It is seen from Fig. 2, however, that this conclusion is 
wrong. The function Ao, differs from a linear one a t  
a l l  values of the transi t  time 7,. This is due to the in- 
c rease  of the contribution made to the resonance by the 
slow molecules when 7, decreases,  a fact that cannot 
be reflected, naturally, by the phenomenologically in- 
troduced relaxation constant 1/r0. 

impact line broadening on the t rans i t  width can be used 
without modification to explain the line shift that results  
f rom field broadening. However, a quantitative inves- 
tigation of this effect entails a number of difficulties. 
I t  i s  known that the field-broadening effect i s  not con- 
tained in the solutions of Eqs. (6)-(a), which a r e  ob- 
tained in third-order perturbation theory in the field. 
The  most  direct  way of jointly taking into account the 
field broadening and the collisions is to continue the 
successive-approximation procedure to include the 
fifth order.  Apart from the fact that the equations ob- 
tained in this manner a r e  very  cumbersone, their ap- 
plicability is limited since the perturbation-theory 
s e r i e s  begins to diverge already a t  sufficiently smal l  
values of the saturation parameter  (1x1 /y)2 < 0.25, 
whereas a typical experimental value of this parameter  
is (Ix 1 /y)2 - 1. The possibility of obtaining a more  exact 
solution of Eqs. (6)-(a), without resort ing to expansion 
in a perturbation-theory se r i e s ,  and with a collision 
integral of the form ( l l ) ,  is practically nonexistent 
even in the case  of the difference kernel. We therefore 
confine ourselves primarily to the case  when the tran- 
s i t  t imes  a r e  long enough, l/r,<< y ,  s o  that the transi t  
broadening can be neglected; this reduces formally to 
neglect of the t e rms  k, - p, in the sca lar  product k. p 
in  the left s ides  of (6)-(8). In addition, we neglect the 
recoil  effect [the t e rm W@/~M in Eqs. (6)-(a)] and the 
curvature of the wave front [the te rm p2,/2pE in the 
argument of the delta function in (I)]. Next, taking the 
Fourier  t ransforms of the functions pfj(k, k -p) with 
respect  to the argument p, and assuming that the W(k) 
is a sufficiently smooth function of the argument k, so  
that pi,(k - p', k - p) =pi, (k, k - p +p'), we obtain in place 
of (6) 

+x.. exp - - [pll(k, p,-+pZ, r,) (k, P O , ~ L )  1 ( 5, 

Equations (7) and (8) a r e  transformed similarly. We 
note that if we seek  p,, in the form p,, = ~ ~ ~ ) b ( ~ ~ - p , )  
+&-)6(fiE + p o ) ,  then we obtain for  p(,+) and pi;) equations 
that agree  with those used in Ref. 2,  except that the 
dependence of the field on the coordinate r, is retained 
in (21). Jus t  a s  in Ref. 2, we seek  the solution in the 
form 

where W,(k,) i s  the Maxwellian distribution function 
with respect  to the perpendicular components of the 
vector k. Substituting (23) in the integral te rm of (21), 
we can take the smooth function W,(k,) outside the inte- 
gra l  sign a t  the point of the maximum of the kernel a t  
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The function W,(k,) is then cancelled from the right- 
and left-sides of the equations. 

Owing to the presence of the integral collision te rm,  
the system of equations for  J, can be solved a s  before 
only by expansion in a perturbation-theory s e r i e s  in the 
field. We confine ourselves therefore to the case  of low 
densities of the perturbing gas  l?+v<< ZAW, and suffic- 
iently smal l  intensities of the saturating field Ixl<< BAW,. 
These conditions limit the resonance width y,  which r e -  
mains smaller  than ~ A W , ;  a t  the s ame  time, the sa tur -  
ation parameter ln/(r + v) l2 remains arb i t ra ry ,  so  that 
the  relative contribution of the field broadening to the 
resonance width can be large. 

The inequality y<< GAW, means that the function J, i s  
a s teeper function of k, than the kernel k(k, - kt). The 
function B in the integral (24) can therefore be taken 
outside the integral s ign a t  the point of the maximum of 
J, at  k,=O: 

Once these simplifications a r e  made, only the spatial 
burnout, reflected in (21) by the presence of the t e rms  
p,,(k, 2p0,r,) in the right-hand side of (21), prevents us 
from obtaining the exact solutions. Only in the case  of 
absorption of a weak wave in the presence of a strong 
opposing wave (1%- I<< In, I , Ix- I2/(r + v)'<< 1)  can be 
effects of spatial burnout be taken into account exactly. 
The absorption coefficient of the weak wave is then 
equal to 

In the derivation of (25) we have assumed, a s  before, 
that 

r=r,,=r2?. V , ~ ~ = V ~ = Y ~ ~ = V ,  pLIr=p,,=fiZZ=p. 

To calculate the line shift we can expand (25) in pow- 
e r s  of the small  parameter a, equate the derivative 
da-/d(hw) = 0  to zero,  and integrate. As a result  we 
get  

where I,, = Ix,I~/(I '+~)~.  The analytic expression for  the 
function gz(x) i s  quite unwieldy, and we confine our- 
selves only to i t s  plots in Fig. 3. Curve 1 shows the 
function g,(x) a t  a- = a,, curve 2 shows the function 
g,(x) a t  a,= a- but without allowance for the spatial 

y m  

3 

FIG. 3. 
2 

I 

u 5 76' 75 
z 

burnout, and curve 3 shows the function g,(x) a t  a_<< a,. 
In the l a s t  ca se  a,<< a, the distribution of the fields 
along the coordinate perpendicular to the resonator 
axis  is of no importance whatever, s ince this resul t  
corresponds to the approximation of opposing plane 
waves. Comparison of curves 1 and 2 shows that the 
spatial burnout does not influence strongly the resul t  
(26). 

A result  s imi lar  to (26) can be obtained also in the 
case  of the interaction of two strong waves of equal in- 
tensity (the Lamb dip). In this case,  however, to obtain 
the result  i t  i s  necessary to neglect the spatial burnout 
and to assume a,=a-. For  the shift of the maximum we 
get  

In the case when the t ransverse  dimension of the ab- 
sorbing cell is much l a rge r  than the dimension of the 
caustic of the Gaussian beam, the function g3(x) takes 
the form 

The plot of g,(x) is in this case  the curve 4 of Fig. 3. In 
the opposite case,  when the t ransverse  dimension of the 
cell is much smal ler  than the dimension of the caustic 
we have g3(x) = (1  +2x)'I2(2 +2(1 + 2 x ) " 2 ) ~ ( 1  +3(1 + 2 ~ ) ' / ~ ) "  
(curve 5 of Fig. 3). 

5. JOINT ACTION OF TRANSIT EFFECTS, RECOIL 
EFFECTS, AND SATURATION 

An obvious method of decreasing the ro le  of the 
collisions that lead to a shift of the resonance is to 
decrease the pressure  of the absorbing gas. At very  
low pressures ,  however, a new effect comes into play 
and leads to a shift of the resonance, namely the split- 
ting of the resonance into two components a s  a resul t  
of the recoil  effect. As can  be seen  from (14) (see a lso  
Ref. 13), a t  unequal lifetimes of the levels of the work- 
ing transition the components of the doublet have dif- 
ferent  intensities. Under typical experimental condi- 
tions the doublet is not resolved, and the vertex of the 
resultant line contour i s  shifted relative to the central 
frequency of the transition. The magnitude of the shift 
depends on the rat io of the intensities of the components 
and on their  widths, and a s  a resul t  a l so  on the transi t  
t ime 7, and on the intensity of the field in the resonator. 

In the case  of weak saturation, the field broadening 
can be neglected, and the influence of the transi t  t ime 

can be taken into account within the framework of 
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third-order perturbation theory by using Eq. (14). A Equation (29), apar t  from the substitution (xlZ- $ 1 ~ 1 ~  
detailed analysis of the shift in this approximation was agrees  with the expression given in Ref. 11. The dif- 
presented in Ref. 14. To investigate the influence of ference between the coefficients of Ix12 is due to allow- 
the field broadening, the third-order approximation is ance for  the Gaussian field distributions. At ??, = r, 
insufficient. The corresponding calculations in fifth- there is no line shift. It  is  interesting to note that the 
order perturbation theory was car r ied  out in Ref. 11, dependence of the line shift on the field intensity a s  
but without allowance for  the transi t  time. 7,- - is due entirely to allowance for the effects of 

Equations (6)-(8) make it possible to calculate the 
absorption coefficient a and take simultaneously into 
account the recoil effect and the t rans i t  broadening. 
As will be shown below, allowance for the transi t  ef- 
fects can al ter  substantially the result  obtained in Ref. 
11. The calculation was performed for  a standing wave, 
neglecting the wave-front curvature and the velocity- 
change in collisions, in fifth-order perturbation theory 
in the field: 

The result  uf3 )  of third-order perturbation theory can 
be obtained from Eq. (12), in which we must put B =0,  
q = O ,  I , = ] ,  a+=a- ,  x+=x-=x .  The fifth-order pertur-  
bation-theory correction i s  given by 

The function G:, describes the joint action of the popu- 
lation burnout and the recoil effect, and is equal to 

where ri =ri, +v,,, y,, =r+v:, a, =Aw -6 ,  a, =Aw +6, 
fl(x, y) = 4  cosxcosy x cos(x +y). The function G:: appears  
a s  a result  of allowance for  spatial burnout effects:  

Gi,"=2Lfz(QtL1+,I (-I)'+ (-I)'] (2qz+52)6, QiL, Qt(2qz+5i+5z) ), 
f2(x,  y, 2 )  =4 cosxcos  ycos z. 

In the absence of t ransi t  effects 7,- m the coefficients 
K, N, and L a r e  equal to unity. Allowance for the finite 
t ransi t  time leads to the expressions 

Neglecting the recoil  effects, 6 =0, Eq. (28) differs 
nnly in form from the expression given in Ref. 18. The 
disparity between (28) a t  7,- - and the result  of Ref. 
11 is apparently due to a misprint in this reference. 

To calculate the line shift we proceed in the following 
manner. We assume that the splitting due to the recoil  
effect is much l e s s  than the width of the doublet com- 
ponents, and expand d3) and in the smal l  param- 
e t e r s  A W / ~ ,  and 6/y,. After differentiating we obtain 
for  the maximum of the line a ra ther  cumbersome ex- 
pression that contains quadruple integrals. In the limit- 
ing case 7,- - the result  can be obtained in analytic 
form: 

spatial burnout. If we put in (28) Gf:, then the coeffic- 
ient of lxlZ in (29) vanishes, i.e., this dependence dis - 
appears. At finite values of r0 the situation changes; 
in this case both the spatial burnout and the population 
burnout (the function G:,) make, generally speaking, 
comparable contributions to the line shift. 

When account is taken of the transi t  time, the reso-  
nance shift can be investigated only numerically. As a 
measure  of the dependence of the line shift on the sa t -  
uration parameter  

it is convenient to use the derivative d(hw,)/dl, a t  I, =O. 
This quantity, in units of 6, is shown in Fig. 4 a s  a 
function of the rat io r2/rl for different values of the 
parameter  r17,. We have assumed here  that the rela-  
tion y, = (r, + r,)/2 is satisfied. For  radiative broad- 
ening this equality is satisfied exactly; for impact 
broadening of vibrational-rotational transitions of the 
molecules a t  low pressures  y,, << ~ A W ,  i t  is satisfied 
approximately but with a high degree of accuracy, since 
the scattering amplitudes in the upper and lower states 
a r e  practically the s ame  in this case. The dashed curve 
in Fig. 4 corresponds to  the case  7,- m and i s  a plot of 
Eq. (29). I t  is seen from Fig. 4 that allowance for  the 
finite t ransi t  t ime leads in general to a reversa l  of the 
sign of the derivative d(~w,)/dl,, s o  that for  any ratio 
of the values of rl and r2 i t  i s  possible to choose a 
transi t  t ime 7, such that the dependence of the line shift 
on the saturating power is practically nonexistent. 

6. CONCLUSION 

For a quantitative estimate of the resonance shift due 
to the effects considered in  the art icle,  it is necessary 
to have complete information on the broadening con- 
stants  of the corresponding transition. By now, the 
most  detailed investigations were made of the broaden- 
ing of the F P )  component of the vibrational-rotational 
transition P(7) of the v, band of methane (h =3.39 pm) ,  

FIG. 4. 

1089 Sov. Phys. JETP 50(6), Dec. 1979 V. A. Alekseev and L. P. Yatsenko 1089 



which is of particular interest  for  frequency stabiliza- 
tion. The width of the saturated-absorption resonance 
on this transition at various methane pressures  p was 
experimentally measured in Ref. 15, from which i t  
follows that d ( r  +,3)/dp= 5 X108 ~ z / ~ o r r ,  d(v + r ) /dp  
z 20 x 10' ~ z / T o r r ,  and 8Ao,a 5 x lo5 Hz. The line- 
shift parameters are given in Ref. 16, namely d ( ~  +vG)/ 
d p =  -lo4 and d ( ~  +&)/dp= -lo5 H z / ~ o r r .  

We estimate now the line shift due to the change of the 
transi t  time at a pressure  typical of experiment, p = 4  
mTorr.  At this pressure,  the impact resonance width 
is r +v = 8 x lo4 Hz. Since this width is much less than 
the value BAW,, we can est imate the line shift due to 
the joint action of the impact and transi t  broadenings 
by using Eq. (18). When T, changes by a factor of 2, so  
that the parameter ( r + v h ,  changes from 1 to 2, the 
resonance shifts by approximately 40 Hz. The value of 
shift due to the quadratic Doppler effect and to the mag- 
netic hyperfine structure of the line can be estimated 
by using the resul t s  of Ref. 6. The shift under approxi- 
mately the s ame  conditions is -20 and 10 Hz, respec- 
tively. Thus, at p = 4 mTor r  the dominant contribution 
to the resultant resonance shift, when the transi t  t ime 
is varied, is made by the collisions. When the pres-  
s u r e  is decreased, as is seen  from Eq. (18), the con- 
tribution of the collisions decreases in proportion to 
the square of the pressure ,  s o  that in the pressure  r e -  
gion p s  1 mTorr  the main contribution to the change 
of the position of the vertex of the resonance is made by 
the quadratic Doppler effect and by the magnetic hyper- 
fine structure. 

We estimate now the resonance shift when the satura-  
tion parameter  I, changes from zero to unity at the 
s ame  pressure  p = 4  mTorr.  For a standing wave [ ~ q .  
(27)] we find that the resonance shifts by approximately 
70 Hz. The shift due to the hyperfine structure is in 
this  case  approximately equal to -400 Hz,' and the 
shift due to the quadratic Doppler effect is - 30 Hz. 
Thus, for  the e) component the main contribution to 
the dependence of the position of the maximum of the 
resonance on the saturation parameter  is made by the 
magnetic s t ruc ture  of the line. Therefore in Refs. 8 
and 9 they used for  frequency stabilization the E com- 
ponent of the very same vibrational-rotational methane 
transition that has no magnetic hyperfine structure. 
The shift of the resonance maximum with changing 
saturation power, measured in Ref. 9, turned out to 
be smaller  by only a factor of 4 than the shift of the 
F:') component at the same pressure.  So la rge  a shift 
cannot be attributed to the quadratic Doppler effect. 
It appears that this shift i s  caused by the effect dis- 
cussed in Sec. 4. A detailed calculation of the shift is 
difficult, since there is no information on the line- 
broadening parameter s. 

The influence of the recoil effect on the resonance 
shift in methane in the pressure  region p 2  1 mTorr  is 

negligibly small ,  s ince the scat tering amplitudes in 
collisions in the upper and lower states are practically 
equal. However, at lower pressures ,  when the impact 
width of the resonance becomes commensurate with the 
radiative width, the recoil  effect may exer t  a discern- 
ible influence on the shift. Fo r  example, at p =O. 1 
mTor r ,  ( r + v h o  = 1, we obtain a value + 10 Hz for the 
shift of the maximum of the resonance when the sa tura-  
Lion parameter  changes from I, = 0  to I, = 1. 

We are grateful to I. I. Sobel'man for  helpful discus- 
s ions. 
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