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Dispersion phenomena in the propagation of radiation in 
media with time-dependent refractive indices 

L. A. Bol'shov and V. P. Reshetin 

Moscow Physicotechnical Institute 
(Submitted 31 August 1978; resubmitted 28 June 1979) 
Zh. Eksp. Twr. Fiz. 77, 191Ck1920 (November 1979) 

We consider the question of appearance of total internal reflection from a medium whose dielectric 
constant passes through zero and becomes negative within a time much longer than the period of the 
field. When the dielectric constant approaches zero the structure of the field inside the medium is 
determined mainly by dispersion effects. It is shown that the delay of the long-wave part of the radiation 
leads to formation of a slowly decreasing power-law tail in the radiation that had entered the medium in 
earlier instants of time. 

PACS numbers: 42.10.Fa, 78.20.Bh 

The  propagation of radiation in nonstationary media 
has  been extensively discussed recently ( see  e.g., the 

Physical  situations in which th i s  question 
arises are quite varied. By way of examples we can 
ci te  measurements  of the density of a nonstationary 
p lasma by optical and microwave methods, the prop- 
agation of optical and infrared radiation in resonant  
media, passage of rad io  waves through the ionosphere 
and their  reflection f r o m  it, propagation of micro-  
waves in ferrite-filled waveguides, and others .  The  
changes occurr ing in various parameters ,  such  as the 
degree of p lasma ionization, the resonant frequency 
of the medium, or the spin-wave frequency in a fe r ro-  
magnet, cause the dielectr ic  constant and the magnetic 
permeability of the medium t o  vary with time. In  par -  
ticular,  changes in  the refract ive index c a n  cause  
frequency shifts,  reflection, changes of pulse wave- 
forms,  and others. T h e s e  effects  have found numerous 

applications in radio engineering and in optical and 
infrared laser technology. 

T o  descr ibe  such  phenomena theoretically we can  u s e  
the fact  that a ru le  the change of the p a r a m e t e r s  of the 
medium in one period of the electromagnet ic  field is 
small .  T h i s  makes  i t  possible  to construct  a n  adiabatic 
a p p r ~ x i m a t i o n ' . ~  based on the inequality 

h e r e  T is the charac te r i s t i c  t ime of variat ion of the 
p a r a m e t e r s  of the medium, and Aw is the charac te r -  
i s t i c  scale of variat ion of the dielectr ic  constant of the 
medium c(w). However, the  adiabatic approximation de- 
veloped in Refs. 1 and 2 h a s  a r a t h e r  l imited range of 
validity. T h i s  is due to the use  of per turbat ion theory 
and to expansion of the complex electric field in t e r m s  
of the p a r a m e t e r  7: E = E f O ) +  E(')+ E ( 2 ) +  . . . , where  
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~ ( 1 ) -  ~ ( 0 )  ~ ( 2 ) -  
I , . . . We note that when a com- 

plex field is expanded in a series it i s  necessary to 
expand both the amplitude and the phase of  the field, 
and only terms that are small compared with unity can 
be discarded in the phase. In particular, at t<< w2T it 
suffices to retain in the phase the terms of first order 
of smallness in q. 

We develop in this paper a consistent adiabatic ap- 
proximation in media whose parameters vary slowly 
with time. By way of example of the use of the con- 
structed theory, we investigate the reflection of mon- 
ochromatic radiation from a transparent medium when 
its dielectric constant passes through zero at a certain 
instant of time and becomes negative. 

The literature (see, e.g., Refs.  3-6) reports also 
another approach to problems of the propagation of 
radiation in a nondispersing medium whose refractive 
index has a prescribed time variation. Various model 
dependences c ( t )  that lead to an exact solution o f  the 
wave equation have been considered quad- 
r a t i ~ , ~  h a r m ~ n i c , ~  and others). These included6 the 
propagation of radiation in a nondispersing medium with 
arbitrary c ( t )  satisfying the inequality w"G/at<< 1. 
It should be noted that the model of a nondispersing non- 
stationary medium has very limited applicability. In 
fact, in this model the instantaneous field frequency 
G(t) is  determined from the dispersion equation w %(t) 
= c2k2, i.e., c(w, t )  i s  considered at a certain fixed 
frequency w,. Comparing the solution of this equation 
z ( t )  = ckc -112(00, t)c with the instantaneous frequency 
w(t) obtained from the exact dispersion equation 
w2c (w ,  t )  = c2k2 we easily obtain an inequality that en- 
sures smallness of the field phase error 

The inequality (2) does not hold at wt>> 1 if the dielec- 
tric constant changes by even a small amount, and also 
at all values of the time as c - 0. 

We recall that a dielectric constant with a parametric 
time dependence can be introduced into a nonstationary 
medium only subject to the following ineq~alityl*~.' [see 
(111 

&(a, t )  3, (3 

which is  violated when the dielectric constant c tends 
to zero. 

The indicated circumstances (neglect of dispersion 
and introduction of a dielectric constant with a para- 
metric time dependence as c - 0)  have led in the cited 
references to unphysical results, such as an electric- 
field energy that becomes infinite in all of space. 

2 .  The propagation of radiation in nonstationary media 
is  described by the following system of equations for the 
electric field E and induction D: 

a2D/atZ=caAE, (4) 

D= j E (t-t', t ) E  ( t ' )  dt'; 
-- 

( 5  

here c ( t -  t', t )  i s  the kernel of the dielectric-constant 
operator. As first noted b y  ~ i t a e v s k ; , ~  in the case of 

slow variation of the parameters of the medium this 
kernel has a weak finite-difference variation in terms 
of the parameter 7. The dependence of c on the time 
difference t - t' is the same as in the stationary case, 
i.e., it has a characteristic time scale -l/Aw, while 
the dependence on the second argument is determined 
by the character of the change of the parameters of 
the medium, i.e., it has a time scale -T. A solution 
of the system (4), (5) can be sought separately for each 
spatial Fourier harmonic. When expanding the integral 
equation (5) in powers of 7 ,  it must be remembered 
that when c changes by about its own order of mag- 
nitude the instantaneous frequency of each spatial har- 
monic is  changed, generally speaking, likewise by 
about its own order of magnitude, and it i s  therefore 
not convenient to seek a solution in a form close to a 
monochromatic wave. The solution of the system (4), 
( 5 )  can be found in the form 

1 

(E .  D )  - ( E k ( t ) .  D , ( t ) ) e q [ - - i j  & d r f  ikz]  . 

Here E,, Dk and S2, are slow functions of the time at 
9 e l .  

To  establish a connection between E,  and Dkwith the 
aid of ( 5 )  we can use the fact that the main contribution 
to the integral in (5) is  made by times t' that differ 
from t b y  - l / ~ w .  The changes of E,(t) and n,(t) during 
these times are small. Expanding E,(t) and n,(t) in 
terms of the parameter 17 near t'= t ,  we obtain a differ- 
ential connection between the induction and the field 
( for  the calculations that follow it suffices to  retain the 
terms of first order in q (Re fs ,  1 and 2): 

Expression (7)  contains the still unknown running 
frequency n,(t) and the spectral form of the dielectric- 
constant operator &(n,(t), t ,  which is defined in the 
standard manner'.2.7 

When solving the system (4), (7)  in the adiabatic ap- 
proximation, we take into account the fact that the die- 
electric constant of a slowly nonstationary medium 
& ( w ,  t )  can also be expressed as a series in the adiabatic 
parameter 71: 

e ( a ,  t )  =e(" ( o ,  t )  + e ( ' ) ( o ,  t )  +e (" (o ,  t )  + . . . , (9) 

where E'"'- w("-" and c'O'(w, t )  is  the quasistationary 
dielectric constant obtained from the stationary one by 
substituting in the latter the running values of the par- 
ameters of the medium. Thus, c(O'(w, t )  is  a universal 
function that does not depend on the mechanisms of the 
concrete processes that lead to changes of the para- 
meters of the medium. 

~ i t a e v s k 2  obtained a general expression for the 
first-order correction 

We shall show at the end of the paper that for (10) to be 
valid it is necessary to satisfy, besides the already 
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mentioned inequality (1) that ensures slowness of the 
variation of the macroscopic parameters, also some 
additional conditions. Thus, even the microscopic 
parameters must be slow enough. In the general case 
the corrections to the quasistationary dielectric con- 
stant must be obtained from the material equations of 
the medium. Of course, it is possible to construct an 
adiabatic approximation by starting from the material 
equations themselves without introducing the dielectric 
constant. 

Substituting (7) and (9) in (4) and equating terms of 
like order in q, we obtain in the zeroth approximation 
the usual dispersion equation 

which makes it possible to find the phase of the wave 
in accord with Eq. (6) with sufficient accuracy at 
t<< wT2. The phase correction obtained from Eq. ( l l ) ,  
is of second order in q. From the first-approximation 
equation we can find the wave amplitude 

a as, an, ae(o)  ~ ( ~ ~ ~ ~ " l ) d E . = [ i ~ h z ~ ~ ~ ~ - ~ ~ ~ l  -- 2 8 ,  - - 
an, a t  at  a t  as, 

Equation (11) was used in the l i t e r a t ~ r e ' . ~  to find the 
instantaneous frequency of the wave. The amplitude of 
the wave, on the other hand, was obtained using addi- 
tional arguments such a s  the conservation of the photon 
flux or the weak-dispersion approximation. There is 
actually no need to resort to additional arguments at 
all. From (12) we can obtain the field amplitude in a 
slowly nonstationary medium: 

i as, awn'  -- Qk2--- de"' as, aecO) a (e(''skz) 
z a t  an: 2 s h ( ~ ) o ; 2 Q k ~ ~  I(F)-'I. 

The system (4), (5) has no turning points on the real t 
axis for any spatial Fourier harmonic, and the adiabatic 
solution (13) is valid at any instant of time. In prob- 
lems with sources or with boundary conditions it suf- 
f ices to choose a superposition of solutions (13) that 
satisfies the necessary additional requirements. 

In the next part of the paper we examine the establish- 
ment of total internal reflection, using cold plasma a s  
an example, but without specifying for the time being 
the nonstationarity mechanism. 

3. In the case of a cold plasma 

and the electric field of a fixed spatial harmonic takes 
the form 

where G;(t)= c2k2+ wi(t) is the solution of the disper- 
sion equation (1 1). 

We consider now the problem of reflection of radia- 
tion from the boundary of the plasma, when the plasma 
dielectric constant goes through zero and,becomes neg- 

ative (Fig. 1). In this case the wave regime of the 
propagation at t > 0 give way to cutoff of the light at t <  0. 
Total internal reflection from the plasma boundary sets 
in. In the reflection problem we must satisfy the con- 
dition of continuity of the tangential components of the 
electric and magnetic fields on the plasma boundary. 
When a monochromatic wave is normally incident on the 
interface, the electric field inside the plasma and its 
derivative with respect to the coordinate a re  connected 
with the field of the incident waveA exp(-iw,t) by the 
Fresnel formulas (provided that (l/w&) X a&/8t<< 1): 

~ ( t ,  0) - B ( t )  e-'"Q', E,' ( t ,  0 )  = i  00 eSh ( t )  B ( t )  e-"I; (15) 
-- - 

here B( t )  = 2A/(1+ ~ ' ' ~ ( t ) ,  &(t) = &'O'(wo, t). 

AS & -0  the condition (l/wo&)8&/0t<< 1 is violated. 
Expressions (15) for the fields E(t, 0) and El( t ,  0) a re  
no longer valid. However, the (x ,  t)-plane region 
subject to the influence of the altered boundary con- 
ditions is quite small (%<< ~ t / & ' / ~ ( t )  5 w;'). To find the 
solution of Eqs. (4) and (5) in this (x ,  t) region it suf- 
fices to expand w;(t)  in powers of t<< T near t =  0. In 
the general case this expansion is  of the form wj 
= w:+ wit + . . . Retaining only the expansion term lin- 
ea r  in time, we can find the exact solution of the wave 
equation; for lack of space, it will not be written out 
here. An analysis of this solution shows that retention 
of ~ ' / ~ ( t )  in the expression for B(t) is in this case an 
exaggeration of the accuracy. The correct boundary 
conditions at  (l/we)8c/Bt 2 1 are  

E ( t ,  0) =2Ae-'mot, E,'(t, 0 )  =0. (1 6) 

The regions where expressions (15) and (16) hold over- 
lap. 

Using the boundary conditions, we obtain an inhom- 
ogeneous equation for each Fourier- Laplace harmonic 

E* 

where 
"0 - 

k ( t )  - ( o o ,  t ) ,  

and B(t) is determined by (15) and (16). We note that 
since the boundary conditions exert an influence during 
a short time t-  w;', it suffices to use the expression 
(14) for B(t) in the calculation of the field at t>> T. 
This approximation results in a negligibly small e r ro r  
in the field amplitude at q<< 1. 

FIG. 1. Time dependence of the dielectric constant. 
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The system (5), (14) can be solved by variation of the 
constant in the solution (14) obtained above for the 
homogeneous system of equations (4) and (5). The final 
result for the field i s  

where cr<O. The integral with respect to time in (18) 
diverges formally at the lower limit, since an infinite 
increment of the phase of the wave accumulates over 
an infinite time interval. To  simplify the exposition, 
we shall assume that B(t)- 0 a s  t - k* and that the de- 
crease of B(t) takes place over times much longer than 
all the characteristic times of the problems. To  facil- 
itate the investigation of the field at t>> T, we rewrite 
(18) in the form 

lo+- 

E ( z ,  t)=- J dkF,(t)ei"+B+exp[-hot-lk+lz]; 
2n in-- 

(19) 

the function Fk(t) is defined here by the relation 

and the indices * label here and below quantities taken 
at the respective instants of time t =  rt*. 

The investigation of the integral in (20) i s  aided by a 
simple mechanical analogy: ~ , ( t )  is the amplitude of 
the natural oscillations of a mathematical pendulum 
with variable frequency a#), set in motion by a mono- 
chromatic force of frequency w,, The principal con- 
tribution to F,(t) is made by the resonance regions 
(Sl,(t)= w,), inasmuch as at large values of the detuning 
n,(t) - w, the integrand oscillates strongly. The func- 
tion Fk(t) can be calculated in explicit form for  those 
oscillators hl,(t) which pass relatively rapidly through 
the resonance region, a s  well a s  for oscillators whose 
frequency a s  t -  -* is close to the frequency of the 
driving force. Using the first  case the stationary phase 
method, we obtain the following expression for Fk(t) 
at 6k= k-k-<O and 16kI >>l /cT 

the stationary phase point t$ is  here a root of the equa- 
tion a,@:) = w,. 

If 6k >> l / c T  but 6k >0, the function F,(t) is expon- 
entially small. Its value i s  determined by that singu- 
larity of the integrand in (20) which is closest to the 
real axis. 

In the second case, at 16k 1 << l /cT, the main con- 
tribution to the integral in (20) i s  made by negative 
instants of time 1 t' 1 >> T and the nonstationary character 
of the medium manifests itself only in the phase of the 

function F,(t): 

here A,(t) : S2,(t) - a;, k- = H(--). 
We proceed now to calculate the field E(x, t). Differ- 

ent groups of spatial frequencies correspond to definite 
regions (x, t). The field can be calculated in those 
regions which correspond to wave packets with l /cT 
< k <k- and packets with wave vector near the Fk(t), 
pole located on the real  axis at the point k =  k-. The 
pole of Fk(t) corresponds to wave packets that entered 
the medium before its dielectric constant changed sub- 
stantially. Using the stationary-phase method, we can 
describe the propagation of that part  of the momentum 
which is made up of wave packets with frequencies from 
k>> l / c ~  to k not too close to k-, namely / 6k I >> l/cT. 
At 

~ ' ~ . + t / ( ~ ~ t ) ~ ~ < ~ < v ~ ~ + t ,  v~+~-zBv, .+T (v,.+=(anh+/ak)r,L) 

the expression for the field (18) takes the form 

The stationary point k, is here the root of the equation 

S Vk0.  = x,  " k 0 ( f )  - (+ (%)),=,, . 
'I, 

Expression (23) describes the change of the field in- 
side the plasma, from values of the order of -A(T/ 
~ , t 2 ) ' / ~  on a distance of the order of x- ~, '_t/(w,t)"~ 
from the boundary to values of the order of A reached 
atx close to V;t. Expression (23) becomes much 
simpler in twd intermediate regions. Located a t  

is the long-wave part  of the pulse, which i s  described 
by the universal expression 

It is of interest to note that the fall-off of the field in 
the tail part of the pulse is a power-law function of 
both the time and the coordinate. The field fall-off 
E m x / P f 2  is  the same for  different functions ~ '~ ' (w, ,  t) 
on going through zero. 

At x -S v L ~  the field increase is faster than linear, and 
in the region 

Vh-+T<Vh.+t-xQIVk-*t 

it is  described by the following asymptotic expression: 

The wave numbers of this part of the momentum a r e  
close to k-, and the field amplitude reaches a value 
on the order of A. 

The radiation that has penetrated into the plasma be- 
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fore its dielectric constant had changed substantially 
occupies the region 

The expression for the field in this region is determined 
by the pole part of Fk(t) and is  of the following form 

1k.x - iod - i f At- dr + + &-e(l) d r ]  . (2 6) 
-m -m 

Since the regions of applicability of expressions (23) and 
(26) do not overlap, it is impossible to calculate the 
field in the intermediate region (x - v L ~ )  - VLT. The 
field in this region is  of the order of A, and its form 
depends substantially on the character of the variation 
of the plasma frequency with time. The distribution of 
the field amplitude inside the plasma at t>> T is shown 
in Fig. 2. The qualitative picture of field formation in 
the medium can be visualized by considering the prop- 
agation of wave packets with different spatial frequen- 
cies. The wave number of the packet depends on the 
time of entry into the plasma and changes from k= k- 
as t --- to k= 0 at t =  0. At t<O the dielectric con- 
stant becomes negative and the radiation no longer en- 
ters the plasma. At a given instant t>> T the spatial 
frequencies of the wave packets increase with increas- 
ing distance from the plasma boundary. The wave 
packets produced at I tl<< T have small wave numbers 
and, according to the dispersion equation ( l l ) ,  prop- 
agate slowly into the interior of the plasma. The bulk 
of the radiation that had entered the plasma at 1 t ) >> T 
consists of wave packets with k = k, and propagates with 
a velocity -V;, greatly outstripping the long-wave 
packets. Thus, the long-wave packets lag in time, by 
ever increasing distance, the bulk of the radiation, 
and forms a decreasing power-law tail. 

For radiation propagating in a real plasma with c" 
# 0 the frequency SZk(t) = S2L(t)+ iSZ;(t) is a complex 
quantity. In the case 

QCaQ;, (a/)  -I (~2C)~tc i ,  Qkf '~~ l  

it is possible to take the energy dissipation into ac- 
count. To this end it suffices to replace Qk(t) in the 
phases of expressions (14) and (23)-(26), which des- 
cribe the field in a nonstationary medium, by S2L+ ihl,.. 

The expressions derived above enable us to describe 
the appearance of total internal reflection from an 
arbitrary transparent medium, particularly from a 
resonant gas. It suffices for this purpose to substitute 
in (14) and (23)-(26) the frequency SZ,(t) obtained from 
the dispersion equation (11) with c(w, t), corresponding 

FIG. 2. Dependence of the electric field intensity on the 
coordinate at t >> T: 1-at the instant of time t l ;  2-at the 
instant of time t2 (t, >t i ) .  

to the considered medium. The asymptotic form of 
the field (24), based on the approximate solution of the 
dispersion equation at small k, also remains valid, 
for as c(wo, t)- 0 the dispersion equation for waves 
with frequencies w = wo takes the universal form 

which coincides with the dispersion equation for a 
plasma a s  w - o,. 

4. To conclude the paper, we consider some of the 
simplest models of the change of the degree of ioniza- 
tion of a plasma, models that permit calculation of the 
increment ~("(w, t) to the quasistationary dielectric 
constant. The density of the electronic component of 
the plasma, which determines the high-frequency die- 
electric constant, can be altered by ionization, re- 
combination, sticking to neutral particles, plasma 
motion, etc. These processes change not only the num- 
ber of electrons, but also their distribution function. 
The change of the polarization of the medium is con- 
nected both with the change of the electron density and 
with the change of the electron velocity distribution 
function. It is  important here whether the distribution 
function of the newly produced electrons is capable of 
adjusting itself to the matched oscillations of the field 
and of the already present electrons. 

In the case of rapid ionization, when the ionization 
time is much shorter than the period of the field os- 
cillations in the medium, the phase of the oscillations 
of the newly produced electrons is  not equal to the 
phase of the field. Therefore the initial conditions for 
the equation of motion of these electrons in the wave 
field 

reduce to zero conditions after averaging over the en- 
semble of the electrons produced at the instant t = to: 

(x is the coordinate of the electron). The induction D is  
connected with the electric field E by the relation 

where dn/dt is the rate of production of electrons at 
the instant of time to. Equation (27) has a solution sat- 
isfying the zero boundary conditions, in the form 

After substituting (29) in (28) we obtain with the aid of 
(5) and (8) 

aze(o)  
e (oo, t )  =e(') (ae, t )  +i- 

dooat' (30) 

where E(~) (W, ,  t )= 1 - W;/W~. The increment to the 
quasi-stationary dielectric constant . 

is in this case double the increment (10) calculated in 
Ref. 7. 
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In the case of slow ionization (the ionization time is 
much longer than the period of the field), the electrons 
manage to adjust themselves in the course of their 
production to the phase of the field in the medium. 
From the point of view of the contribution to the dielec- 
tric constant, this ionization process admits of a model- 
dependent description in which i t  is assumed that any 
parameter in the electron equation of motion (mass, 
charge, natural frequency) varies smoothly with time. 
We assume for example, that the electron mass 
changes, starting with infinity, and reaches a value 
m near t = to, and the change of mass per oscillation 
period of the field is small. I t  i s  easy to show that in 
this case the first-order increment to the dielectric 
constant coincides exactly with (10). 

It is easy to show, using similar models, that in the 
case of fast  recombination 

eE 
( ~ ( t ,  to))= -ti-O(t-t,)]e-'+ 

mooz 

(here B(t) = 1 at t > 0 and 9(t) = 0 at t <0) and the incre- 
ment to the quasistationary dielectric constant is zero. 
In the case of slow recombination c'"(w0, t) also co- 
incides with (10). The difference of c(')(w,, t) from 
zero in the case of fast recombination was obtained 
in Refs. 1 and 2 a s  a result of an e r ro r  in the differ- 
entiation of the current with respect to time. 

Thus, depending on the character of the micropro- 
cess that leads to the change of the parameters of the 
medium, the increments to the quasistationary dielec- 
tric constant can differ substantially. 

It is of interest to examine the following physical 
situation. Let a stationary degree of ionization be at- 
tained in the medium as  a result of competition between 
simultaneous ionization and recombination. Assume 
that one of these processes is fast and the other slow 
compared with the period of the field propagating in 
the medium. In this case the quasistationary dielectric 
constant does not depend on the time. Nonetheless, 
since the increments E"' due to various microprocesses 
do not cancel each other, the field in the macroscopic- 
ally stationary medium will change a s  the wave prop- 
agates. The cause of this circumstance is the irrever- 

sible energy exchange between the field and the medium 
in the presence of the fast processes. On the other 
hand if the microprocesses that lead to the nonstation- 
arity of the medium are  slow compared with the times 
of variation of the field in the medium, there is no ir- 
reversible energy exchange between the field in the 
medium. This physical situation corresponds to the 
analysis of PitaevskiiP7 and the increment to the 
dielectric constant can in this case be obtained from 
the general formula (10). In the case of slow ioniza- 
tion and recombination, an adiabatic invariant is con- 
served, namely the number of quanta of the propagat- 
ing radiation N =  a(l E, I2/i2,) a(~(~'i22,)/8~2,. 

In the case of propagation of one spatial harmonic, 
the amplitude of the electric field varies in the models 
considered above in the iollowing manner: 

I a','. (t) -$OW ionization and recombination 
I EL I a R;'(t) -fast recombination 

Q-'/, r (t)-fast ionization. 

The expressions obtained here for &(')(a, t), together 
with Eqs. (23)-(26), solve completely the problem of 
total internal reflection from the plasma. 

The authors a re  deeply grateful to A.M. Dykhne, M.A. 
Leontovich, A.P. Napartovich, and A.N. Starostin for 
a discussion of the results. 
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