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The T-(e + t,) problem of the theory of the Jahn-Teller effect is solved for an orbitally degenerate 
electronic state localized on a point defect in a crystal. The vibronic interaction with both T, and E 
vibrations is considered, with allowance for the dispersion of the lattice phonons, in the case when the 
coupling with the latter prevails. It is shown that the vibronic interactions leads to the onset of 
multiphonon electron-vibrational formations of the polaron type, which are coupled with the defect. The 
position and width of the local and pseudolocal vibronic states (resonances), due to the Jahn-Teller effect, 
are determined as well as the character and magnitude of their splittings under uniaxial deformation. 

PACS numbers: 61.70.Ey, 63.20.Kr, 63.20.Dj 

1. INTRODUCTION 

Practically all the observable effects in impurity cen- 
ters  whose electrons are in a degenerate or quasidegen- 
erate state are determined by the electron-vibrational 
(vibronic) interaction. The known mathematical diffi - 
culties of the theory of the Jahn-Teller effect, comect- 
ed with the need for taking into account the nonadiabatic 
mixing of the degenerate electronic states by the vibra- 
tions of the nuclei,'*2 are aggravated here by the infinite 
number of vibrational degrees of freedom. The quasi- 
molecular (cluster) model of the impurity center, usual- 
ly employed to interpret vibronic effects,'s4 describes 
satisfactorily also such integral characteristics as, for 
example, the shape of the envelope of the optical-ab- 
sorption curve. At the same time, the most distinguish- 
ing feature of the Jahn-Teller effect in impurity centers 
are the local and pseudolocal vibronic states (reso- 
nances), the position and width of which are essentially 
determined by the phonon density of states of the im- 
purity-free c r y ~ t a l . ~ * ~  

In the molecular (cluster) Jahn-Teller situations the 
energy levels and the wave functions of the vibronic 
state can be, at least in principle, determined with a 
computer. Despite the urgency of the problem, there is 
no general theory of vibronic resonances in the Jahn- 
Teller effect for impurity centers with account taken of 
phonon dispersion, and for the time being it is impossi- 
ble to solve this problem in general form even with a 
computer. Nonetheless, in a number of limiting cases 
of strong or weak vibronic coupling it becomes possible 
to obtain analytic solutions. Although such limiting 
situations are relatively rarely realized in concrete ex- 
periments and the corresponding solutions are as rule 
not suitable for a quantitative comparison of the theory 
with experiment, they do make it possible to understand, 
on a qualitative level, the nature of the vibronic reso- 
nances. 

The present paper is devoted to allowance for phonon 
dispersion in the Jahn-Teller effect for an impurity 
electronic T-term that interacts linearly both with T, 
and E vibrations, when the coupling with the latter is 
strong enough and predominates. The spin-orbit in- 
teraction which is usually appreciable for the T term, 

is in this case suppressed by the vibronic reduction 
factor K(T,)= 0 can be excluded from consideration. 

The Jahn-Teller instability of a cubic polyatomic sys- 
tem in the case of strong vibronic coupling with E 
vibrations lowers the local symmetry of the impurity 
centers to tetragonal. The frequencies of the normal 
vibrations of the lattice are then split, and since the 
vibronic interaction is localized near the impurity, 
specific local and pseudolocal resonances appear in the 
spectrum of the lattice vibrations. 

We determine in this paper the position and width of 
these vibronic resonances, as  well as  the character 
and magnitude of their splittings in interaction of low- 
symmetry perturbations. In the particular case of an 
interaction of an electron with one extremely narrow 
phonon band, the cluster model becomes applicable to 
the dispersion and, as will be shown, all the derived 
expressions go over into the corresponding results of 
the cluster model.') 

2. EXTREMA OF ADIABATIC POTENTIAL AND THE 
ASY MPTOTlC HAMILTON IAN 

We consider a defect in a cubic lattice whose crystal- 
field symmetry ensures the presence, in the electron 
energy spectrum, of an orbitally degenerate T term 
separated from all the remaining electronic states by 
an appreciable energy gap. For simplicity we confine 
ourselves to the case of a small-radius impurity cen- 
ter, whose electrons interact with the symmetrized dis- 
placements qrY of the nuclei only of the nearest coor- 
dination sphere. We note that this limitation does not 
deprive the Jahn-Teller effect of its multimode char- 
acter, since the displacements d the other atoms of the 
crystals are  elastically coupled with the displacements 
of the atoms of the first coordination sphere, and the 
impurity electrons are coupled with all the lattice vi- 
brations because of this interaction. which gives rise to 
the phonon dispersion. 

The harmonic Hamiltonian of the impurity-phonon 
Jahn-Teller system, with account taken of only terms 
linear in q,, of the vibronic interaction, is of the form 
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The first term in (1) i s  the usual phonon Hamiltonian of 
the lattice, with account already takenof the redefinition 
of the normal coordinates and of the phonon dispersion 
law by the impurity mass defect and by the replacement 
of the force constants. The indices r = E ,  T,; y E I' 
number the irreducible representations and their lines, 
in terms of which are transformed the symmetrized 
displacements q, ,, which are active in the Jahn-Teller 
effect of the atoms of the first coordination sphere. 
These displacements can be expanded in terms of the 
complete set of normal coordinates q, of the crystal: 

Here and below the summation over u runs through all 
the normal coordinates, i.e., all the values of the wave 
vector in the first Brillouin zone and all the vibration 
modes. 

For the explicit form of the coefficients a, ( ry)  (the 
Van Vleck coefficients) and their properties in the sim- 
plest case of a single-atom cubic lattice see, e.g., Ref. 
3. The matrices cry in (1) are  defined in the space of 
three real electronic functions $,(Y), $,(r), and $,(r) of 
the impurity T term, and are made up of the corre- 
sponding Clebsch-Gordan coefficients 

while V, and V, are the reduced matrix elements of the 
operator of the linear vibronic interaction-the con- 
stants of the linear vibronic coupling with the E and T2 
vibrations, respectively. 

The eigenvalues c of the potential-energy matrix 

are called the adiabatic potentials and constitute in our 
case multidimensional surfaces in the space of the 3N 
vibrational degrees of freedom of the crystal. Nonethe- 
less, the question of the extrema of E ( .  . .q, . . . ) is 
solved in the same manner as in molecule Jahn-Teller 
problems, for example with the aid of procedure of Opik 
and Pryce.' To this end it is  necessary t? solve the 
problem of the eigenvalues of the matrix U 

((a) i s  a column of three numbers a ,  a ,, and a,, and 
represents the adiabatic electronic function in the space 
of three states $,, $,, and $, of the electronic triplet) 
together with the extremum conditions 

and the condition for the normalization of the column 

The system (5)-(7) will be called the system of Opik 
and Pryce. From (4) and (6) it i s  easy to obtain the 
equilibrium values of the normal coordinates 

An explicit form of the expressions of (a(k,,la) in 
terms of a,, a ,, and a, can be easily obtained with the 
aid of (3). For example, 

Substituting (8) in (4) and using the orthogonality of the 
Van Vleck coefficientsS 

where f(w,) is  an arbitrary function of w,, we rewrite 
(5) in the form 

where 

Writing out the matrix equation (10) by lines, we ob- 
tain three equations that constitute (together with (7)), 
a system of equations for a,, a,, a ,  and c. We note that 
this system is of the same form as in the molecular 
case, when the electronic T term interacts only with 
two E and three T, vibrations. We use therefore the 
known solutions of this system.' The three types of 
roots are listed in the table. With the aid of (8), (9), 
and (2) it is easy to verify that in the tetragonal extre- 
ma only the q,, are displaced, in the trigonal only the 
qT2,, and in the orthorhombic both q,, and qT2,. Thus, 
the result turns out to be the same as in the molecular 
case with effective frequencies w, and w, as defined in 
(11). The adiabatic potential has three tetragonal, four 
trigonal, and six orthorhombic extrema, and the abso- 
lute minima, depending on the relation between the 
Jahn-Teller stabilization energies 

can become either trigonal or  tetragonal extrema, 
(12) 

whereas the orthorhombic extrema with Jahn-Teller en- 
ergy 

always occupy an energy position between the kigonal 
and the tetragonal extrema.' 

An investigation of the curvature of the adiabatic po- 
tential at the extrema can also be carried out by the 
method of Opik and Pryce, but additional difficulties 
are encountered here, due to the multimode character 
of the problem. In the present paper we consider the 
case when the vibronic interaction with the E vibrations 
prevails, i.e., when E,,(E)> E,,(T), and the three mi- 
valent tetragonal extrema are absolute minima of the 
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adiabatic potential. We investigate the curvature of one 
of them, corresponding for example to the solution a, 
=a,=O, a,=l, i.e., to the third column of the table. With 
the aid of (3) we can easily verify that for this minimum 

(a lCrsla)=- l ,  <alCEcla)=O, 

<aJCr,tla>=<alCT,(a>=(al cr,t1a)=O. 

Substituting (13) in (81, we get 

The equilibrium normal coordinates qLO) in (14) have a 
simple physical meaning. The electronic adiabatic wave 
function in this minimum is  $,(Y) (since a,=a,=O and a, 
=I), i.e., it has lower symmetry relative to the initial 
cubic symmetry of the impurity center. Owing to the 
electron-vibrational interaction, the atoms of the crystal 
lattice "feel" this decrease of the symmetry of the elec- 
tron density and adjust themselves to it by shifting their 
equilibrium positions. In particular, for Jahn-Teller 
impurity centers in ionic crystals, where the vibronic 
interaction is  electrostatic to a considerable degree, 
Eq. (14) describes the polarization of the crystal lattice 
by the low-symmetry distribution of the electron density 
at the impurity center. The static displacement (14) can 
be interpreted as a wave packet of normal vibrations of 
an impurity-free crystal. In other words, the low-sym- 
metry adiabatic state at the minimum becomes dressed 
by a "jacket" of initial phonons, i.e., we are dealing 
with multiphonon formation of the polaron type, which 
is localized on the impurity center. 

The curvature of the surface &(. . . q, . . . ) at the mini- 
mum can be obtained by constructing the correction of 
second-order perturbation theory in the small displact- 
ments Q,  =q. -q!@ from the minimum. We represent U 
of (4) near the minimum in the form 

where 

Taking into account the contribution made to the energy 
E ( .  . .q, . . . ) by 6l up to second order of perturbation the- 
ory and the contribution from & up to first order, we 
get 

where 

~-ZV,'/~V~', W~-a.(TtE)ar(TzE)+&(Ta~)ar(T~rl), (16) 

and w, is  defined by (11). 

TABLE I. Roots of the Opik and Pryce system in the multi- 
mode Jahn-Teller effect for the T term that interacts linearly 
with the E and T2 vibrations 

- - -- -. -- - 

Because of the electronic degeneracy, the adiabatic 
potential of the Jahn-Teller system does not have, gen- 
erally speaking, the meaning of the potential energy of 
the nuclei. However, if themotion of the nuclei is local- 
ized in such a region of q-space in which the considered 
adiabatic potential i s  separated by a considerable energy 
gap from all the remaining ones then, as is  well known, 
the criteria for the adiabatic approximation are satis- 
fied and &(. . . q, . . . ) acquires the physical meaning of 
the potential energy of nuclei moving in the averaged 
field of all the electrons. The energy gap that separates 
the lower sheet of the adiabatic potential of the T term 
from the upper sheets is  - (3 /2)~ , , (~)  in the vicinity of 
the tetragonal extrema. The characteristic energy of 
the nuclear motion is  KG,, where omax i s  the highest of 
the crystal-lattice vibration frequencies. 

The condition for the applicability of the adiabatic ap- 
proximation in the vicinity of the tetragonal extrema is 
therefore, first, satisfaction of the inequality 

and, second, localization of the nuclear motion near 
these extrema. The latter condition is satisfied in the 
case when the tetragonal extrema are absolute minima 
of the adiabatic potential and we are dealing with not 
very highly excited states of the nuclear subsystem. 
Actually, the delocalization of the nuclear motion be- 
gins when the energy of excitation of the nuclei becomes 
comparable with the height of the orthorhombic barriers 
that separate the tetragonal minima. 

We consider now the case of a relatively strong vib- 
ronic coupling with the E vibrations, when all the for- 
mulated conditions are satisfied and in the lowest ex- 
cited states the nuclear motion has the character of 
small vibrations near the tegragonal minima. If the 
amplitude Q,  =q, -9:''' of these vibrations is  low enough, 
then we can confine ourselves in the expansion of the 
potential energy &(. . . q, . . . ) in powers of Q ,  to the 
quadratic term, i.e., we can use expression (15). The 
Hamiltonian of the harmonic vibrations of the nuclei 
near one of the three tetragonal minima therefore takes 
the form 

Since tunneling between the tetragonal minima i s  sym- 
metry-forbidden,' the harmonic Hamiltonian (17) is 
asymptotically exact. It describes correctly the lowest 
energy levels of the spectrum, and the smaller a the 
larger the number of these correctly described levels. 
However, even at not very small values of a, provided 
the discarded anharmonicities are small, the correctly 
described region of the spectrum may turn out to be 
substantial. The criterion for this is smallest of Rw,, 
compared with the height of the orthorhombic barriers. 
Therefore the result described by the Hamiltonian (171, 
provided that the aforementioned criterion is  satisfied, 
is in this sense more accurate than can be obtained by 
perturbation theory in a (i.e., in v,) applied directly to 
the Hamiltonian (1). 

We note the local character of the perturbation de- 
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scribed by the last term of the Hamiltonian (17). In the 
"x-representation" this localization i s  included in the 
matrix 11 wXxll, which i s  the sum of two terms that are 
multiplicative in the indices. If we change over to sym- 
metrized displacements 

then the Hamiltonian (17) takes the form 

and the local character of the perturbation becomes ob- 
vious. 

Thus, aweak (in the sense indicatedabove) interaction 
impurity electrons with T, vibrations in the case of 
strong coupling with the E vibrations causes the adia- 
batic potential near the tetragonal minima to be de- 
formed and produces an additional defect of the force 
constants of the T, vibrations of the atoms of the first 
coordination sphere. 

3. VlBRONlC SPECTRUM 

It i s  easy to verify directly that the Hamiltonian (19), 
which describes small vibrations of the lattice at the 
tetragonal minimum, has tetragonal symmetry. If, for 
example, the atoms of the first coordination sphere 
form an octahedron, then the Jahn-Teller effect, in the 
caseof strong couplingwith the E,vibrations, makes the 
octahedron becomes prolate (or oblate) along one of its 
fourfold symmetry axes, with the symmetry lowered 
from 0, to D,,. The irreducible representations of the 
o group, in terms of which are transformed the normal 
vibrations that are of importance in the Jahn-Teller ef- 
fect, become irreducible and break up into irreducible 
representations of the D,, group: E,=A,,+ B,,, T,,=B,, 
+ E,. The symmetrized displacements of the atoms of 
the first coordinate sphere, which transform in accord 
with these irreducible representations, a re  linear com- 
binations of all displacements with group-0, sym- 
metry. In the considered case of the tetragonal mini- 
mum, they are simply 

The vibronic interaction, and consequently the Jahn- 
Teller lattice distortion it produces, are localized near 
the impurity centers. Obviously, the associated split- 
ting of the frequencies of the normal vibrations likewise 
has a local character. In other words, the state density 
should contain local and pseudolocal resonances that de- 
scribe the frequency splitting. 

The Hamiltonian (17) can be represented as  a bilinear 
form of phonon creation and annihilation operators, and 
therefore its eigenvalues can be obtained by direct dia- 
gonalization of a quadratic form, for example with the 
aid of the Bogolyubov-Tyablikov u-u transformation, a s  
well as by the method of Green's functions, the chain of 
equations for which i s  uncoupled in this case. Taking 
into account the local character of the perturbation, it 
is convenient to use the Schwinger variant of the 
Green's-function method. The integral equations of 
motion for phonon operators, as  can be easily shown, 

are in this case linear. Taking (19) and (20) into ac- 
count, we have 

Here 

Qrr(t) =exp (iHtih)Qp, exp(-iHt/h) ; 

Q;' ( t )  = exp (Mot/h)Qr,  exp ( - m , t / h ) ,  

I 

QEpu(t) =QC") ( t )  +2a&'S Gin)  ( t - ~ ) Q t ( ~ ) d t  
0 

I 

QEgV ( t )  =Q:' ( t )  +2aoEa JG?) ( t - r ) Q , , ( = ) d ~  

where H, is the Hamiltonian of the system in the ab- 
sence of a perturbation, i.e., at a = O ,  and ~ p ) ( t )  is the 
zeroth retarded Green's function: 

' , t>O. 

Equations (21) are the phonon analog of the known Lip- 
mann-Schwinger equations. Substituting (21) in the ex- 
pressions for the retarded Green's functions 

0 

we obtain 

G,  ,p(t)=GB (t)-G;O' ( t ) ,  Gnu ( t )=Gi0'  (t)t 

.. (22) 
G ( t )  =Gr"' ( t )  +2aoEa J G, '~  ( t - z )  GEs ( z )  dz .  

-- 
Changing to the Fourier representation, the integral 

equation (22) becomes algebraic: 

from which we get 

Here 

As seen from (22) and (23), theAlg and B ,  lattice vi- 
brations, which were produced from the E, vibrations 
as a result of the Jahn-Teller distortion, have re- 
mained degenerate; their corresponding frequency re- 
mains the same as without the Jahn-Teller effect, i.e., it 
contains no vibronic singularities. The frequency density 
of the B,, vibrations stemmingfrom the T, vibrations 
likewise remained the same. ~t the same time,-the- 
spectrum of the frequencies of the Eg vibrations, which 
were produced from the T, vibrations, changed sub- 
stantially. The new dispersion law i s  described by the 
poles of the Green's function (23), i.e., by the roots of 
the transcendental equation 

G:' ( o )  = (4naod) - ' .  (25) 

At not too low values of o! there may occur in the for- 
bidden band a discrete root of (251, corresponding to a 
localized gap vibration. If we introduce the projected 
density of the initial T, vibrations of the lattice 

$' ( a )  =2 lrn G:" (o+ie )  
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then Eq. (23) for the frequency of the local vibration can 
be rewritten in a more convenient integral form 

In those cases when the density pk0)(w) is  known from 
alternate experiments or has been calculated analytical- 
ly, the integral in (26) can be obtained and Eq. (26) can 
be solved either graphically or numerically. 

It i s  of interest to investigate the new vibration den- 
sity 

Introducing the function 

which is connected with the initial density p$!(w) of the 
T ,  vibrations by the dispersion relation 

we obtain from (23) and (27) 

P. ,(a) -p? (o) ([I-2naodrT' (a)  ]a+[2naozapr'" ((oI1')-I. (29) 

As follows from (29), if the projected density of the 
T ,  vibrations p$O'(w) i s  not large in the spectral region 
near one of the roots w, of the equation 

i-2nc~o~~rr'~' (a) SO (30) 

then the modified vibration density in this region has a 
Lorentzian shape 

with a half-width 

If any one of the roots of (30) falls in the forbidden 
band, where p$w(w)=O, then the Lorentzian (31) degen- 
erates into a delta function, Eq. (30) with (28) taken in- 
to account is transformed into (26), and we arrive at 
the local vibration discussed above. In the general 
case, however, it i s  necessary, knowing p$')(w), to ob- 
tain the integral of (28) and to solve Eq. (30). A graph- 
ic solution of this equation is shown schematically in 
Fig. 1. It should be noted that in these spectral regions 
near the roots w, of Eq. (30), where the initial density 
of the T, vibrations i s  not small, the modified vibration 
density p,iw) differs substantially from p$O'(w), although 
it does not have a Lorentzian shape. 

A change in the curvature of the adiabatic potential, 
similar to that discussed above, occurs in the vicinity 
of each of the three tetragonal minima, leading in each 
of them to identically equal p (w). Therefore the ground 

% 
state of the system is  triply degenerate, and the multi- 
plicity of the degeneracy of each peak in p+(w) must be 
multiplied by three. If it is furthermore recognized that 
all the poles of the Green's function G+(w) are doubly 
degenerate, then it i s  obvious that all the local and 
pseudolocal states discussed above have sixfold degen- 
eracy. 

FIG. 1. Graphic solution of Eq. (30) for the frequencies of the 
local and pseudolocal vibrations resulting from the Jahn-Tel- 
ler effect for the T term on small-radius impurity centers in 
a silicon crystal. a) Phonon density p$'(w) for the Si crystal. 
The dashed lines show the pseudolocal vibrations of vibronic 
origin. b) The Hilbert transform r !)(w) of the phonon density 
of the crystal Si. The frequency w is plotted in units of w,,, 
and the function r;) in units of w:,. The black circles mark 
the roots of Eq. (30). 

The results are valid for any law of phonon dispersion, 
and particularly also in the absence of dispersion. The 
only requirements are that the coupling with the E vi- 
brations be strong enough, that the tegragonal extrema 
be absolute minima of the adiabatic potential, and that 
the adiabatic approximation be valid near these minima. 
We can therefore compare the results obtained above 
with the result of the application of perturbation theory 
in V, in the absence of phonon disper~ion. '~ 

Taking into account the condition for the normalization 
of the Van Vleck coefficients 

we obtain from (25) in the absence of dispersion, i.e., 
at w,=w,, 

whereas G (w) has the previous pole w =  w,. The poles 
Bzr of the phonon Green's function yield the energy of the 

elementary excitations, i.e., the spacing of the equidis- 
tant vibrational spectrum. In the notation of Ref. 10 
this means that 

h o = ~ , - ~ . = f i o , + ~ r c 2 ' - ~ . ' 2 ' .  

As V,-m we obtain from Eqs. (16) and (21) of Ref. 10 

E ~ ( "  (A , )  -E:" (T,) =E:" (E) - ~ o " '  (T,) =o; 
2 VrZ (33) E,"' (TI) -En"' (T,) =E,"' (T,) -E:" (T,) = - --7 ha,=-aha,, 
3 V E  

which in fact corresponds to the poles given above. 

The vibronic-level splitting described by Eqs. (23) i s  
shown schematically in Fig. 2. From a comparison 
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FIG. 2. Scheme showing the splitting of the lowest vibronic 
levels of an impurity-phonon system in the absence of phonon 
dispersion: a-equidistant vibrational spectrum of the system 
in the absence of vibronic coupling with the T2 vibrations, b- 
partial lifting of the random degeneracy with Jahn-Teller in- 
teraction with the T2 vibrations, c-splitting of the vibronic 
levels by a weak trigonal deformation. 

with the vibronic levels of the Jahn-Teller cluster i t  
becomes clear that the sixfold-degenerate local and 
pseudolocal states discussed above and due to the vi- 
bronic interaction with the T ,  vibrations correspond to 
random degeneracy of the T, and T ,  terms (see Fig. 2). 

4. INFLUENCE OF UNIAXIAL DEFORMATIONS 

Since the motion of the nuclei in the lowest vibronic 
states i s  localized near the tetragonal maxima, i.e., in 
those regions of configuration space of the nuclear dis- 
placements where the adiabatic approximation i s  valid, 
the influence of the deformations can be reduced to a 
bending of the adiabatic potential. The change of the co- 
ordinates, of the depth, and of the curvature of the 
tetragonal minima, due to the deformations, can be ob- 
tained by the same methods as  in Sec. 1, i.e., with the 
aid of the procedure of Opik and P r y ~ e . ~  

The tetragonal deformations oriented along the z axis 
(faurfold axis) are  taken into accaunt by the perturba- 
tion 

It is clear even from general considerations that under 
the influence of the perturbation (34) the three tetragon- 
al minima cease to be equivalent. Two of them are 
raised in energy by ~ / 2 ,  and one i s  lowered by E. This 
leads to a lifting of the sixfold degeneracy of the local 
and pseudolocal vibronic states, which was discussed in 
Sec. 3. The two randomly merged triplets T ,  and T ,  are 
each split into a singlet and a doublet. As a result we 
obtain two randomly merged singletsA ,+A, and two 
merged doublets 2E separated from them by 3 4 2 .  In 
addition, the tetragonal deformations redetermine the 
curvature of each tetragonal minimum but, as shown by 
a calculation by the method of Opik and Pryce, the en- 
suing additional splitting of the vibronic levels is of 
next order of smallness compared with the splitting 
3&/2 considered above. 

The trigonal deformations can be taken into account by 
the perturbation 

which redetermines the potential-energy matrix and ac- 
cordingly i ts  eigenvalues-the adiabatic potentials. In- 
asmuch as when accaunt i s  taken of the perturbation (35) 
the total Hamiltonian remains invariant to rotations 
about one of the threefold axes, which transform the 
tetragonal minima into one another, it is clear that the 
three tetragonal minima, while remaining equivalent, 
are simultaneously shifted in energy by an equal amount 
under the influence of the perturbation (35). All the 
changes in the spectrum can be due only to the modifi- 
cation of the curvature of the minimum, and since this 
modification i s  the same in all three minima, it suffices 
to consider one of them, for example the same one that 
was considered in Sec. 2. Obviously, small deforma- 
tions cannot alter greatly the Opik and Pryce solution 
(5)-(7) considered above (see Eqs. (13) and the follow- 
ing). 

Using perturbation theory to solve this system and 
confining ourselves to terms linear in r ,  we get 

Substituting (36) in (8) and in (2), we find that in the con- 
sidered tetragonal minimum, with account of the trigon- 
al deformation (35), we have 

To determine the curvature of the potential surface 
near the minimum with coordinates (37), it i s  necessary, 
following Opik and Pryce,' to find the correction of sec- 
ond order in the small displacements Q, =q, -41') to the 
energy at the minimum. For this purpose it  is neces- 
sary to know not only the column I?,) corresponding to 
the ground state of the matrix fi+ W,, at the minimum, 
but also the columns of the excited states la l )  and la,) 
at this point. Recognizing that the contribution of the 
elastic energy of the normal vibrations to the potential- 
energy matrix i s  a multiple of the unity matrix and does 
not affect the elements of the columns (a , )  and laa), to 
determine the latter it suffices to diagonalize the matrix 

with qp7 from (37). Using perturbation theory for this 
purpose, we obtain in the first order in 

1 
E ~ - E J ~ ( E ) - T .  I U Z ) = ~  ( ), 

-2~/3A 

whereas the column (a , )  from (36) corresponds to the 
eigenvalue 
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E,=-2E,, (E) . (39) 

Taking into account the contributionmade to the poten- 
tial energy by the linear term of the expansion of 3 in 
powers of Q,=q, -91') up to second order in the small 
displacements Q ,  from the minimum, and taking into 
account the contribution from the quadratic term up to 
first order of perturbation theory, using (36), (38), and 
(39), and retaining only the terms linear in T, we get 

I (. . . Q.. . .) =-E,,(E) +Lz ax2Qp.'-am.' (Q:+Q:) 
2 

2 a ~ o . ~  2uroE2 3-"zb2 (2a) " (40) 
-- 

Elr(E) Q c Q c  7 Qc (Qc+Q3 + A Qe (Qt+QJ , 

where a, w,, E,,(E) and A are defined respectively in 
(151, (ll), (12), and (36), and Qr7 are given by (18). 

The Hamiltonian with the potential-energy operator 
(40) determines the new integral equations of motion 
for the operatorsQ.,(t), which take into account the tri- 
gonal perturbation 

Qe(t)=Q?' (t)- j G:' (t-s) IQc(s)+Q.(s) Ids; 
813 

We have throughout t 30. 

From (31) we find, in the approximation linear in T, 

that the retarded Green's functions 

D*=<QP* QnI Qr* Qn) 

take in the w representation the form 

D,(Q) -26;' (a) { l -4naarZ[i*~/E~~(E)  1~:' (a) I-'. (42) 

As seen from (42), under the influence of trigonal de- 
formation the double degeneracy of the E, vibrations that 
stem from the T, vibrations, noted in Sec. 3, is lifted. 
It is easy to find from (42) that the splitting of the local 
and pseudolocal vibronic resonances at the frequency w, 
(w,  is one of the roots of (30)) is given by 

where r;'')(w) is defined in (28). 

Since there are three equivalent tetragonal minima, 
the singlet single-phonon states corresponding to the 
poles of the functions D+(w) and D_(w) are encountered 
three times each, so that as a result all the single-pho- 
ton excitations are triply degenerate. In particular, in 
the absence of dispersion, when the problem reduces to 
the cluster problem, we obtain three triplets in place of 
the aforementioned sixfold degenerate excited state (see 

Fig. 2b). These threefold degenerate terms are the re- 
sult of splitting of each of two randomly merged triplets 
Tl+T2 into a doublet and a singlet of the trigonal group: 
T,=A,+E(~), T,=A,+E(~). These splittings are equal, an 
and the randomly degenerate terms Al+E (b)  and A,+E (a) 

make up the aforementioned triplet (see Fig. 2c). 

CONCLUSION 

The Jahn-Teller effect on an impurity center rear- 
ranges substantially thevibronic states of a crystalnear 
an impurity. As a result of the strong vibronic interac- 
tion, localized states of the polaron type are produced 
and represent low-symmetry inhomogeneities of the 
electron density, surrounded by a multiphoton jacket. 
At the same time, the initial cubic symmetry of the 
system is preserved. The ground state is a degenerate 
triplet, but the initial adiabatic electronically degener- 
ate ground state becomes hybrid, vibronic. In other 
words, the dressed quasiparticles localized on the im- 
p r i t y  retain the symmetry properties of the bare 
quasiparticles. 

The vibronic impurity spectrum contains local and 
pseudolocal states, which correspond to vibrational ex- 
citations of the crystal lattice deformed by the Jahn- 
Teller effect. The position and width of the correspond- 
ing vibronic resonances in the lattice-vibration density 
are determined not only and not so much by the con- 
stants of the vibronic coupling, as  by the form and 
structure of the initial density of the vibrations of the 
impurity-free lattice. In contrast to the local and 
pseudolocal vibrations due to mass defect and force 
constants, vibronic resonances have a higher degener- 
acy multiplicity, which is lifted in a rather unique man- 
ner under the influence of low-symmetry electronic 
perturbations. 

The local and pseudolocal vibronic states due to the 
Jahn-Teller effect should manifest themselves in all the 
spectral characteristics of the impurity crystals. In 
optical transitions to the impurity T term, for example, 
vibronic resonances are present in all the multiphonon 
replicas of the zero-phonon line, thereby substantially 
complicating the corresponding curve of the coefficient 
of the impurity absorption of luminescence. 

A comparative analysis of the infrared (IR) absorption 
and Raman scattering of light makes it possible to se- 
parate the considered vibronic states from the local and 
pseudolocal vibrations due to the impurity mass defects. 
Thus, in the case of an octahedral surrounding of the 
impurity, the latter are transformed in accordance 
with an irreducible representation T, of the group 0 
and are dipole-active. This means that they determine 
the spectral density of the IR absorption. At the same 
time a light beam scattered, say, at a right angle to the 
incident beam, contains information on the T, vibra- 
tions that are active in the Jahn-Teller effect, and says 
nothing about the T, vibrations, which make no contri- 
bution to the Raman scattering, being parity-f orbidden. 

In those cases when the Jahn-Teller effect leads to 
the appearance of a low-frequency vibronic state, it can 
substantially influence the relaxation processes in EPR 
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spectra, the  temperature dependences of various im- 
puri ty  susceptibilities, the specif ic  heat, and others .  

The author thanks Yu. B. Rozenfel'd f o r  numerous 
helpful discussions and I. 33. Bersuker f o r  stimulating 
interest in the work. 
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Self-induced transparency is a diphenyl crystal containing 
pyrene and excited by its own stimulated emission 
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Yu. E. Sheibut 
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Physicotechnical Institute of the Kazan' Branch of the USSR Academy of Sciences 
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The optical self-induced transparency in a diphenyl crystal activated by pyrene is investigated 
theoretically and experimentally in the 1.6 to 4.1 K temperature range. For the first time in self-induced 
transparency studies the same crystal has been used as the generator of the stimulated radiation and as 
the object of the investigation. Optical pumping is carried out at 3530 A; generation and self-induced 
transparency occur at 3739 A which corresponds to the LB,,-lA, transition in pyrene. The self-induced 
transparency in the crystal studied was accompanied by a delay in the pulse (by 8-9 nsec) and by a 
characteristic kinetics of deformation and its shape (self-broadening, self-compression, selfdivision, 
depending on the pulse intensity at the entry into the resonant medium). Both an analytic and a 
numerical solution of the self-consistent problem of passage under conditions of a nonequilibrium level 
population density difference are obtained. The electric dipole moment is found by a computer search of 
the solution for an experimentally determined kinetics of pulse deformation in a resonant medium. 

PACS numbers: 78.45. + h, 78.20.Dj, 42.65.G~ 

1. INTRODUCTION 

The phenomenon of self-induced t ransparency  (STY 
cons i s t s  of the bleaching a resonant medium when a 
laser pulse propagates through the  medium (under con- 
ditions of nonlinear ccherent  interaction) and its power 
exceeds a definite threshold. The SIT is charac te r ized  
by a substantial delay of the pulse in  the resonant  med- 
ium, by its self-broadening (or  self-compression, de- 
pending on the s ignal  power enter ing the  sample) ,  and 
by a definite deformation of the pulse w a v e f ~ r m . ~ * ~  The  
SIT method makes  it possible to de te rmine  the ir- 
revers ib le  relaxation t imes,  the electric dipole mo- 
ment of resonant t ransi t ions,  and other  spectroscopic 

In  the present paper, the  SIT procedure is used to 
investigate a diphenyl c r y s t a l  activated with pyrene. 
T h i s  is a m e m b e r  of a new class of objects-impurity 
molecular  c rys ta l s .  Prior to this  investigation, only 
one publication7 reported observation of SIT in a s imi-  
lar object, namely in pentacene inp-terphenyl, without 
indication of any part icular  detai ls  on the conditions 
and s ingular i t ies  of the real izat ion of the effect. The 
s ingular i ty  of the SIT in our  study lies in the fact  that 
the c r y s t a l  is excited by its own st imulated emission,  
i.e., it is simultaneously the radiation genera tor  and 
the object of the investigation. A numerical  analysis  of 
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