
continues to exist a t  all time when p >  1, but narrows 
down rapidly. 

As t-rn, cp=-kV,t we get y,=(cp-rlr)/p. Since -1 
< y < 1, we get for integer r the restriction r , , , <  r<r,,, 
where r,,, =p(1- a)/na, r,, =p(1+ a)/aa. The number 
of mutually penetrating streams N =r,,, - r,,, =2p/s in- 
creases linearly with time. 

The concentration of each stream is 

The density is calculated by summing over r ,  which can 
be replaced by integration over the equidistant spec- 
trum y,, with Ay,=y,, -y,= r ~ r / p :  

At t -rn i t  is natural to regard the quantity 

a s  the velocity distribution function with normalization 
(17). The average velocity is 

The mean squared velocity of the "thermal" motion is 

Thus, with the exception o narrow regions containing 
density singularities, the system evolves into a homog- 

enous state with a distribution function (18), character- 
ized by a density n = 1, an average stream velocity u 
= V,, and an effective temperature 

Allowance for the thermal motion in the initial distribu- 
tion (1) leads to a spreading of the inhomogeneities and 
to a finite amplitude of the density peaks. The equilib- 
rium velocity distribution is established when account is  
taken of the collisions. Motions of the considered type 
a re  possible in a plasma consisting of cold ions and 
thermal electrons (see, e .  g., Refs. 3 and 4), in which 
case the potential is 
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We study the nonlinear penetration of an electromagnetic wave into a plasma upon development of 
modulational instability. We use an averaging method which employs the substantial scale difference 
between the plasma and the electromagnetic waves to fmd the change in the refractive index of the 
incident wave when the plasma is layered on a fine scale. We consider in detail the stationary self-action 
of an s-wave in an initially uniform layer of an overdense plasma with sharp boundaries. We fmd the 
field distribution and the dependence of the transmission coefficient on the amplitude of the field of the 
incident wave. 

PACS numbers: 52.35.Hr, 52.35.Py, 52.40.Db 

INTRODUCTION 

It is well known that the processes of the modulational 
instability of Langmuir waves, which lead to the form- 
ation of Langmuir solitons and of the corresponding in- 
homogeneities in the plasma density (cavitons), play an 
essential role when strong electromagnetic waves in- 
teract with a dense collisionless plasma. One usually 
studies the modulational instability in order to deter- 
mine the magnitude of the effective collision frequency 

v,,, which characterizes the additional electromagnetic- 
energy loss connected with the excitation of fine-scale 
electric fields. In that case one does not take into ac- 
count the fact that appearance of cavitons (plasma strat-  
ification) also leads to a change in the real  part of the 
refractive index of the electromagnetic wave and, 
thereby, to a change in the distribution of the large- 
scale electric fields in the plasma. It is clear that 
taking such "reactive" non-linear effects into account 
is important for the determination of the characteris- 
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tics of the absorption of the wave in the plasma and that 
without it the interpretation of experimental results 
when strong electromagnetic waves interact with a plas- 
ma is impossible. 

The problem of the effect of the stratification of an 
overdense plasma on the disperison characteristics of 
an electromagnetic wave was first  stated in Ref. 1. The 
present paper is a direct extension of Ref. 1 and is  de- 
voted to a study of the non-linear penetration of an elec- 
tromagnetic wave into an overdense plasma. When 
solving the problem we apply a variant of the averaging 
method which employs the substantial difference in the 
scales of the plasma and electromagnetic waves. We 
first  (Sec. 1) determine the stationary distribution of 
plasma waves which a r e  excited by the given pump 
wave field and after that we obtain, a s  the result of av- 
eraging over the characteristic scale of the instability, 
an equation which describes the self-action of the av- 
erage field in a medium with some effective value of 
the dielectric permittivity. As an example we consider 
in Sec. 2 the stationary self-action of a TEM-wave in an 
initially uniform layer of an overdense plasma with 
sharp boundaries. We find the field distribution in the 
layer and the way the transmission coefficient depends 
on the field amplitude of the incident wave. 

1. EFFECTIVE PERMITTIVITY OF A STRATIFIED 
PLASMA 

We consider the normal incidence of a plane mono- 
chromatic wave with a frequency w close to the plasma 
frequency onto a plasma layer with a permittivity %(z) 
< O  while in the non-linear regime there ar ises  the 
possibility of illumination of the plasma.' The mechan- 
ism of the non-linear penetration is connected with the 
modulational instability of plasma oscillations which 
leads to a stratification of the plasma and the formation 
of waveguide channels in the skin layer of the incident 
wave. The initial se t  of equations for the slow (in the 
scale 2n/w) field amplitude E =E( t ,  x ,  z ) e ,  when we take 
into account the small  density perturbations arising 
from the action of the electromagnetic pressure a s  well 
a s  the linear spatial dispersion, has the form1 

2i aE -- azE a ' ~  
-+3rdl-+ [ eo ( z ) -n ]E=-k , -a -  
at a2 azz  ' 

where r ,  is the electron Debye radius, k,  = w/c, n is the 
relative density perturbation (No is its unperturbed val- 
ue), and V ,  =(T/M)ll' is the ion-sound speed. 

In the case considered the electric field is in fact a 
superposition of the fields of the electromagnetic and 
plasma waves which have essentially different spatial 
scales. This enables us  to use an averaging method and 
to get the solution of the se t  (I) ,  (2) in two stages. We 
first  of all find the plasma wave distribution in the plas- 
ma z =const which a r e  excited (in the quasi-static ap- 
proximation) by the given magnitude of the electric in- 
due tion 

After that by averaging (1) over the characteristic stra- 

tification scale we a r e  led to an equation which describ- 
e s  the self-action of the pump wave (averaged over the 
field stratification scale) in a medium with some value 
of the effective permittivity: 

The exact calculation of E,,, =D/g is connected with the 
first-stage solution of the non-linear Eqs. (1) and (2) 
and with a consideration of the development of the mod- 
ulation instability. 

The construction of the microstructure of turbulence 
(the non-linear stage of the modulational instability) 
is as yet far  from solved. There a r e  several approach- 
e s  to a solution of that and of the different 
models corresponding to them for the strongly turbulent 
plasma state. It is important that the effective permit- 
tivity i s  a rough characteristic of that state since i t  is 
essentially determined by the average dipole moment 
per unit volume of the strongly non-uniform (over a 
wavelength of the electromagnetic wave) plasma. Its 
calculation does not encounter the difficulties due to 
the actual details of the structure of the stratification, 
s o  that one can use any model for the non-linear reg- 
ime and expect at least agreement between the main 
qualitative features. The quantitative estimate of the 
effects considered may, of course, depend on whether 
we use a model of collapsing cavitons o r  a model of 
quasi-stationary interacting solitons. 

The se t  of Eqs. (1)-(3) takes only the stratification of 
the plasma in the x-direction into account although the 
modulational instability can, in general, lead to the for- 
mation of three-dimensional solitons and density cav- 
itons. We assume that in the case of linear polariza- 
tion of the field of the incident electromagnetic wave the 
characteristic size of the solitons and cavitons in the 
direction of propagation of the wave L,: L,<< LC This 
kind of assumption is corroborated by the well known 
results of a numerical study of the non-uniform modu- 
lational instability (see, e .  g., Ref. 5). 

Taking into account what we have said above we shall 
for the evaluation of ceft base ourselves upon the one- 
dimensional dynamical model of the non-linear stage of 
the modulational instabilitys in which the averaging 
method is applied most simply. The calculations given 
for this modeleq7 show that a s  a result of the develop- 
ment of the modulational instability a succession of 
solitons (along the x-axis) is formed which differ some- 
what in amplitude. As we noted already the effective 
dielectric permittivity is a rough characteristic of the 
system a s  it is sufficient to know for i ts  determination 
solely the way the average distance between the solitons 
and their average amplitude depend on the magnitude of 
the field of the electromagnetic wave which excites .the 
modulational instability. It is natural to expect that the 
distance between the solitons in the stationary case is 
the same a s  the scale of the perturbation in the linear- 
ized problem which grows fastest. For  instance, in 
Ref. 1 it  was assumed that the scale of the stratification 
is everywhere in the instability region the same and de- 
termined by the maximum value of the field at the ini- 
tial moment ( t  =O). The estimates which a re  obtained 
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i n  that case for the illumination parameters (penetra- 
tion times and threshold field intensities) describe 
rather well the observational data and some experimen- 
tal  relation^.^.^ We find in the present paper the sta- 
tionary solution of the set of Eqs. (1) and (2) in another 
limiting case where we assume a local connection be- 
tween the stratification scale and the field of the elec- 
tromagnetic wave. Such an approach, in contrast to the 
one used in Ref. 1, enables us to solve much more sim- 
ply the self-consistent problem of the penetration of the 
field into a dense plasma, taking reflection into ac- 
count. The structure of the fine-scale stratification is 
then determined by the following equation in dimension- 
less variables 

while the self-action of the average field (3) is des- 
cribed by the set  of equations 

where a(P, v )  and q ( v )  are  the amplitude and the phase 
of the wave; 

.3M a' 
8 = -- e,, 

4m o,' 

The bar in (4) to (6) indicates averaging over the period 
of the stationary field distribution in the planes q 
= const. 

We first  of all  turn to the determination of the trans- 
verse field structure. It is described by the solution 
of the integro-differential Eq. (4) which is a linear- 
fractional combination of several constants and an el- 
liptical function. However, it is in the general case in 
practice impossible to use this expression for the eval- 
uation of averages. It is therefore important to find 
a simple approximate solution. To do this we note that 
for a value of the induction equal to the threshold value 
for the modulational instability d, = 2-'I2 ( E l2 the field 
distribution is localized and has the form of a Lorent- 
zian soliton on a constant pedestal. We therefore ap- 
proximate the solution in the form of a sequence of such 
solitons on a common pedestal with a distance L be- 
tween one another: 

It is clear that the parameter L occurring here is com- 
pletely determined a s  a function of d because a s  d tends 
to dM=2-'121 E ( ~ / ~  the solution (7) must change to the 
exact solution (L - w). TO determine this behavior we 
use the averaged Eq. (4): 

Hence, up to terms of order1' of 1 /L2 we find the ex- 
pression 

which a s  d -dMis the same a s  the expression for the op- 
timum scale of the modulational instability. We can 
now, by using (6) and (8) evaluate 5, 2,  and a3 and ob- 
tain the following expression for the effective dielectric 
permittivity: 

e,ff (d>&) =2'"d/[n3"'( (2d2)  '"- I e I ) " sign d- (2'"d)'"l. (10) 

In the opposite case, d<d, there is no stratification 
and E,,, is equal to the unperturbed linear value 

It follows from (10) that in the approximation consid- 
ered the threshold field for illumination of an initially 
uniform overdense plasma differs somewhat from the 
one obtained earlier '  and is equal to 

that is, i t  exceeds somewhat (by a factor 1.17) the 
threshold for the modulational instability. At smaller 
values of d(d<d,,,) the stratification of the plasma is 
insufficient for its illumination and the plasma remains 
overdense. When d decreases the absolute magnitude 
of E , ~ ,  increases and reaches i ts  unperturbed values a t  
the threshold value (11) for  the modulational instability. 

2. SELF-ACTION OF AN ELECTROMAGNETIC WAVE 
IN A DENSE PLASMA LAYER 

Once we have found the function E,,, we have the usual 
non-linear electrodynamic problem. To  get some idea 
about the structure of the solution and in order to find 
the electrodynamic characteristics of a dense plasma 
layer we turn to the simplest stationary case. We con- 
sider normal incidence of a plane wave from the va- 
cuum onto an initially uniform plasma layer which is 
bounded by the planes z = I  and z = -1. Using the emis- 
sion condition (z --m) the field in the vacuum has the 
form 

E-Eo exp ( tkoz)  +E, exp ( - ikoz) ,  z>l, 

(13) 
E=E2 exp ( i koz ) ,  z< (-l) , 

where Eo, E,, and E, are ,  respectively, the amplitudes 
of the incident, the reflected, and the transmitted wav- 
es .  

Inside the layer the distribution of the amplitudes and 
phases of the field a re  described by the set of Eqs. (5), 
(6). The parameter C in them corresponds to the ener- 
gy flux density in the wave which is transmitted (through 
the layer), written in dimensionless variables. The 
self-consistent dependence of the induction d on the 
average field ii which need in what follows is deter- 
mined by the equation d = &,,,(d)ii, where c;,,,(d) is des- 
cribed by Eqs. (lo), (11). One easily establishes that i t  
is not single valued. However, it is clear from an an- 
alysis of the non-stationary problem of the stratifica- 
tion and the subsequent illumination that the transition 
from E,,, determined by Eq. (10) to E occurs for an av- 
erage field corresponding to the threshold field for the 
modulational instability (I?, = dM/ 1 E J ). 
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Thus we a re  led to the following set  of equations 
which describe the self-action of the average field: 

FIG. 1. 

It must be supplemented by the condition that the field 
Z and the derivative dZ/dq a r e  continuous both a t  the 
boundaries of the layer z =d and in those points inside 
the layer where the average field is comparable to the 
threshold. 

The solutions of the set  of Eqs. (14) to (16) were stud- 
ied qualitatively through looking a t  the behavior of the 
integral curves in the (5, d Z / d ~ )  phase plane of the sy- 
stem and numerically for  the purpose of determining 
theway the transmission coefficient T= I E ,  VIE, I depends 
on the amplitude b, = a,/a, of the incident wave. For a layer 
of length koL = 5, 1% ( =0.1 this dependence is shown in 
the figure and has a hysteresis character which is ra- 
ther normal in such  case^.^^-'^ It is clear that for some 
values of the field of the incident wave total transmis- 
sion (T =1) becomes possible. These resonance states 
a re  characterized in the figure by a number which is 
determined as the ratio of the length of the layer to the 
period of the non-linear wave. We note that the depen- 
dence (of T on b,) which we have described is in the 
resonance region considerably smoother than in the 
case of a cubic non-linearity. 

Depending on the magnitude of the energy flux density 
C there a re  two forms of solutions of the set  (14) to 
(16). When C c C* = 8.1 the layer splits up into a se- 
quence of regions with overdense (unperturbed) and 
transparent (stratified) plasma. In.the case C > C* the 
whole layer turns out to be transparent (stratified). 
The transition from one kind to the other kind of solu- 
tion for C =C* is explained by the existence of two res- 
onance states with the same number. 

In this paper we have restricted ourselves to an anal- 
ysis of only reactive non-linear effects giving as an ex- 
ample the determination of the effective permittivity 
and the finding of the non-linear field structure in the 
plasma. After solving that problem the change in the 
power of the incident wave dissipated in the plasma due 
to a change in the real  part of the refractive index can 
be found by standard methods: 

In the case considered the size of the region occupied 
by the field increases by approximately a factor 2 a s  
compared to its value evaluated using the linear form- 
ula, while the maximum value of the field increases 
by a factor 2 to 4. It is clear that this fact fundamen- 
tally changes the quantity P even in the simplest case 
of purely collisional losses. 

We note in conclusion that the effects of the change 
in the dielectric permittivity of the plasma a s  a result 
of the development of the modulational instability of the 
Langmuir oscillations can also play an essential part in 
problems about the interaction between a plasma and 
high-current electron beams. 

') The expansion up ta terms of order L'' corresponds to the 
exact solution of (4) and because of this turns (8) into an 
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