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Slow neutron scattering (SNS) by rotationally tunneling symmetrical systems of identical nuclei is 
considered. The doubly differential cross section of noncoherent scattering is calculated with account 
taken of the identity principle which establishes a correlation between the spin and coordinate (rotational) 
parts of the wave function, and is expressed in tenns of irreducible time correlation functions (ITCF) in 
which the averaging is over states belonging only to one irreducible representation of the symmetry group 
of the scattering system. The calculation of the ITCF is carried out for groups of three spin-1/2 nuclei 
with that tunnel in a retarding potential in a solid around the C, axis. The interaction of the rotation 
with the phonons is assumed to be weak. The temperature dependence of the SNS spectrum is considered 
in the region of small energy transfers, and the collapse of the tunnel multiplet is explained. 

PACS numbers: 24.90. + d, 25.40. - h 

1. INTRODUCTION 

In the theory of slow neutron scattering (SNS) by 
molecules, which was developed by van Hove1 and by 
Zemach and Glauber,' (see also Refs. 3-5), the doubly 
differential scattering cross  section @ B S )  i s  ex- 
pressed in terms of the temporal correlation functions 
(TCF) of the molecular motion. The identity principle. 
which establishes the correlation between the spin and 
the coordinate parts of the wave function of the scat- 
tering system, was not taken into account in Refs. 
1-5. However, when neutrons a r e  scattered by sym- 
metrical systems of identical nuclei in gases and in 
solids at low temperatures, when the motion is essen- 
tially of quantum character, the influence of the ex- 
clusion prinicple may turn out to be appreciable. The 
clearest example of this is  scattering by molecular 
hydrogen.' Zemach and Glauber7 attempted to take into 
consideration the exclusion principle by averaging the 
spin-dependent factor in the DDSS over the spin wave 
functions, which a re  characterized by a definite value 
of the total spin and transform like the basis functions 
of the irreducible representation of the permutation 
group of identical nuclei, and took into account a t  the 
same time the only averaged correlation between the 
spin and coordinate parts of the wave functions. Hama 
and Miyagis investigated the influence of this correla- 
tion on the SNS in methane gas and found that the cor- 
rections to the Zemach-Glauber approximation are  im- 
portant a t  temperatures below 10 K. Recent advances in 
the experimental techniquesg have made i t  possible to 
obtain high resolution, sufficient for the investigation of 
small energy-level splittings due to the rotational tun- 
neling of molecules and their fragments in solids. "-I4 

~ G l l e r l ~  considered SNS by four-proton tetrahedral 
groups (such as CH, and NH',) that tunnel in a crystal 
low-symmetry potential, and pointed out the impor- 
tance of correlation effects in SNS in molecular crys- 
tals at temperatures s80 K. In view of the neglect of 
relaxation processes due to the coupling of the rota- 
tion with other degrees of freedom of the crystal, 
Hiiller's theory does not describe the temperature 
dependence of the SNS spectra, and in particular the 
tunnel-multiplet collapse observed in Refs . 12 and 13. 

In the present paper, the DDSS on symmetrical sys- 
tem of identical nuclei is expressed in terms of the 
irreducible TCF (ITCF), which were introduced in 
Ref. 15, and in which the averaging is over states be- 
longing to only one irreducible representation of the 
symmetry group of the system. The general relations 
a re  applicable to SNS in a polycrystal that contains 
three-proton groups that rotate about a symmetry axis 
in a retarding potential (the methyl and ammonia groups 
in molecular crystals). The choice of this system is 
due to by its great abundance, simplicity, and the fact 
that i t  has been relntively well investigated. "-l9 

It is shown with the aid of the considered example that, 
depending on the singularities of the interaction of the 
rotation with the phonons , the temperature dependence 
of the tunnel spectrum of the SNS can vary. Conditions 
under which a collapse of the tunnel multiplet with in- 
creasing satterer temperature takes place. 

2. CROSS SECTION OF NONCOHERENT SCATTERING 

We consider SNS in a crystal, assuming for simplicity 
that all the tops a re  translationally equivalent and that 
the scattering is only by nuclei of one sor t  with spin I. 
We label the nuclei by a double index nu, where n = 1,2,  
. . . , N is the number of the top and a is  the number of 
the nucleus in it. The incident flux of neutrons is as- 
sumed to be unpolarized. The DDSS of the noncoherent 
scattering by the unpolarized sample, obtained from 
the general formula for the cross section,' can be re- 
presented in the form 

where S2 is the solid angle, Aw is the energy transferred 
to the neutron, k = ( k  1 ,  k' = I k' 1 , k  and ld are  respec- 
tively the momenta of the incident and scattered neu- 
trons, peg i s  the scatterer density matrix, B is the 
amplitude of noncoherent scattering by one nucleus, 
R, is  the radius vector of the nucleus with number 
nu, Q =ld - k is the momentum transfer, A F  is the 
Hamiltonian of the scatterer,  I,,, (nu), p = 0, &1 are  
the spherical components of the spin operators: 
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In the derivation of (2.1) we took into account the fact 
that the spin states of the nuclei in different tops a r e  
not correlated. 

Being interested in the contributirn made to the SNS 
by the rotation, we confine ourselves to the lowest term 
in the expansion of exp(iQ. R,,) in powers of the vi- 
brational (translational) displacements of the nuclei 
from the equilibrium position, introducing by the same 
token the rigid-top approximation. The radius vector 
R, can now be regarded a s  a vector directed from 
the symmetry center of the n-th top to the nu-th 
nucleus. The resolution attainable in experiment is 
approximately 0.4 ~ 1 0 - ~  eV =I00 MHz,' which exceeds 
by several orders of magnitude the values of the intra- 
molecular and intermolecular nuclear magnetic inter- 
actions in molecular crystals. On this basis, we neglect 
the magnetic interactions in the Hamiltonian F and 
assume that 

where H,(n), H,, and VTe a r e  the respective Harnil- 
tonians of the n-th top, of the phonon reservoir, and of 
their interaction. The phonon reservoir accounts for 
all the nonrotational degrees of freedom of the crystal. 
The Hamiltonain ~,(n) consists of a term corresponding 
to the rotational kinetic energy, and of a single-parti- 
cle potential that depends only on the rotational coor- 
dinates of the n-th top. The explicit form of H,(n) i s  
determined by the dimensionality of the problem and 
by the choice of the rotational coordinates (the Euler 
angles, the quaternions , etc . zO). The possibility of 
using the single-particle approximation for rotation in 
crystals [i. e .  , the absence of the terms ~(n,, n,) from 
Ff was discussed by H{ller.l4 One can expect this pos- 
sibility to apply well to molecular crystals with tops 
if the potential for the rotation is produced mainly by 
nonrotating atoms and/or if the tops a re  sufficiently 
widely spaced. By virtue of the form of the Hamil- 
tonian (2.3), the influence of the rotation of different 
tops on one another manifests itself in a higher order 
in V,, than the interaction of the rotation with the 
phonons. Therefore in the case of a sufficiently weak 
interaction between the rotation and the phonons, which 
is the case considered below, we can assume the ro- 
tation of the different tops to be independent and we 
can put N =  1 in (2.3). We shall accordingly omit the 
index n from now on. 

To calculate the DDSS we construct the eigenfunctions 
of the Hamiltonian F under the foregoing assumptions. 
Let the system of identical nuclei contained in the top 
be invariant to the operation of the point group G .  
Inasmuch as the energies transferred in the SNS a re  
small compared with the binding energies of the mole- 
cules and their fragments, i t  suffices to take into ac- 
count only the "physically realizable" symmetry trans- 
formations, which do not call for  surmounting impene- 
trable barriers (the Longuet-Higgins rule2'). This 
requirement leads in fact to the need for  taking into 
account only rotations of the tops as a whole. We note 

that if the rotation of the top occurs in a crystal poten- 
tial of sufficiently high symmetry, then the Hamil- 
tonian H, can have a symmetry group higher than G.  

To construct the complete single-particle wave func- 
tions it is necessary to know the symmetrized spin and 
coordinate wave functions that transform in accordance 
with the irreducible representations gr =@f,(g)} of the 
group G (i, k = 1 , 2 ,  . . . , s(I'), I' designates the ir-  
reducible representation). For this purpose i t  is nec- 
essary to choose the basis spin and coordinate wave 
functions and actually expand the irreducible represen- 
tations of the group that they make up in terms of 
irreducible ones. 25 The operator of the total spin 
of the system of identical particles i s  a symmetrical 
function of the individual spins, therefore the sym- 
metrized spin wave functions should be eigenfunctions 
of the square of the total angular momentum and of 
i ts  projection on one of the coordinate axes, (the z 
axis), and is characterized by a total apin j and by its 
projection M on the z axis. Accordingly we designate 
the spine wave functions by [ I 'a i jM) ,  where the index 
a = 1 ,2 ,  . . . , (Y (I') numbers the equivalent irreducible 
representatiors that enter in the expansion of the re- 
presentation of the G group. The coordinate symme- 
trized wave function will be designated by (I'sif), where 
the index 6 = 1 ,2 ,  . . . ,a(r) numbers the equivalent 
irreducible representations, and f is the set  of ad- 
ditional quantum numbers that characterize the coor- 
dinate wave function. Reorientation of the top a s  a 
whole corresponds to even permutations of identical 
particles, which the complete wave functions by virtue 
of the identity principle, remain unchanged (i . e . , they 
transform in accordance with A representation of the 
G group), and therefore take the form 

where r is the representation adjoint to I', and coin- 
cides for unitary representation with the complex-con- 
jugate representationzs: 

6 k r  (g) =99tkr'(g) ( K - I ) ,  1 l'aijM)= 1 raijM)'. 

To calculate the matrix elements we write down the 
sums over the numbers of the nuclei, which enter in 
(2. I ) ,  in symmetrized form: 

where the operators B(I'ni) a r e  linear combinations 
of the coordinate functions exp(iQ.R,), which trans- 
form like the basis functions of the irreducible repre- 
sentation, while the operators ~,(fai) are  linear com- 
binations of the spin operators I,, (a), which transform 
1-&e the basis functions of the adjoint representation 
I". The operators ~ ( I ' a i )  and ~ ( f o l i )  can be obtained 
with aid of the projection operators (N, i s  the number 
of elements in the group G) 

whose properties are2% - -  - 
P, ( r i )  Tp(l"ail) =Bpr.Gii,T,,(rui), 

P, ( r i )  B(rlai ' )  -GrrrGri*B(rai). 
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Substitution of (2.4) and (2.5) in (2.1) leads to an ex- 
pression for the DDSS per top 

-- B' " , ,,f, ,, (Fla,l~,ll T (Fat) 11 f f i id . )  = = 1 ( 1 + 1 ) 2 n k  
(2.8) 

x(F&i,j. 11 T+ (ya'it)ll filali d l )  ( B  ( ra i ;  0 )  B+ (r'a'i'; t))[$ih, 

where the summation is over r,, 6,, rz , b, ,  a,, az,  
r ,  0 ,  i, I?', o l ,  i', jl, jz, i,, iz, is, and i,. In the 
derivation of (2.8), we have used the Wigner-Eckart 
theorem 

and the orthogonality property of the 3j  symbols, and 
have introduced "irreducible" time correlation functions 
(ITCF), in which the summation is over states belong- 
ing to specified irreducible representations 

X<I',GZi,fzlei8'B+ (r'ari')e-"'lr,G,i,f,), 

where 

is the matrix element of the statistical operator of a 
scatterer in thermodynamic equilibrium, and q(I') i s  
the nuclear statistical weight of the level E,,, (Ref. 
23). 

In the case of cyclic groups the representations a re  
one-dimensional, there a re  no indices i in the rela- 
tions written out above, and the ITCF (2.10) differ 
from that introduced in Ref. 15 only in the designation 
of the representation and by a factor that depends on 
the index of the representation r1 . We note that the 
cross section for  coherent scattering by symmetrical 
systems of identical nuclei is also expressed in terms 
of the ITCF (2.10). From the definition (2.10) we get 
the following properties of the ITCF: 

( B  (rai; 0 )  B+ (r'a'i'; t))r,:,'z$ = ( B  ( h i ;  - t )  B+ (rh'i'; ~))f:,:$:, 
(2.12) 

( B  (rai;  0 )  B+ (r'a'i'; t))C&f,& = (B+ (J?ari'; 0 )  B ( h i ;  - t + i ~ $ ) ) ~ $ ~ ~ .  
(2.13) 

<B (rai;  0 )  B+ (I"a'iP; t))2&tA* = ( B  (T'a'i'; 0 )  B+ ( M ;  - t))c$'iF. 

(2.14) 
From (2.10) and (2.11) follow also the qualitites- 

( B  (rai;  0 )  B+ (r'a'i'; t))a:;f? = ( p  ( t )  B+ (I"a'i'))f2i,tdt 
= ( r b l i j i  I eiFt p,,B (I'at)eiF' I r&sirfr) (ru6niJf, I B+ (r'a'i') 1 r l6 l i j l ) ,  

IJI (2.15) 

which show that the ITCF can be expressed in terms 
of solutions of the equation for the scatterer density 
matrix with initial condition 

The use of relations (2.15) and (2.16) is convenient 
in the case considered by us of a weak interaction of 
the rotation with the phonons, for in this case there 
exists a kinetic equation for the rotational density ma- 

tr ix,  which is obtained from the density matrix of the 
s c a t k r e r  by averaging over the phonon variables. 

3. NONCOHERENT SCATTERING BY SYMMETRICAL 
THREE-SPIN SYSTEMS 

We now make the results of the preceding section 
more concrete for the case of a solid containing tops 
consisting of three nuclei with spin 1/2, placed at the 
vertices of an equilateral triangle. The tops rotate 
about threefold symmetry axes. The index r takes on 
values 0 (A representation) and *1 ( E  representations). 
The values of the total spin j of the top a re  connected 
with r by the relation 

Taking into account the connection = -r , we can write 

and 
B (r)  =I/, (efQR~+e-re""~+erefQR~), 

where c = exp(2ni/3). Expression (2.8) reduces to the 
form 

dZo aBz k' 
= - _ .  
dQdo 3 2nk 

x & ( - ~ , ; * I . - I ~ ~ I I I T ( - ~ )  11-rz; s / ~ - l r ~ l ) 1 2  ~e K ; ' ~ ' ( W ) ,  
(3.4) 

r,r,r 

and 

To calculate the reduced matrix elements we wed  
the spin functions I I'jM)= I rM),  which take the formz4 

where, for example, in the state 1 ++-) the spins of 
nuclei 1 and 2 have projections +a, while the spin of 
the nucleus 3 has a projection - 4  on the z axis. States 
with M = -3/2 and -1/2 a re  obtained by replacing + by 
- in (3.6) from the rules for  multiplication of irre- 
ducible representations of the C, group it follows that 
the matrix elements in (3.4) differ from 0 only if the 
following relation is satisfied 

r l - r - rz=o ,  *3. (3.7) 

The nonzero reduced matrix elements 

have the values 

tol lr(o)  l l o ) = ~ T  ( I I I T ( O )  I I ~ ) = < - ~ I I T ( O )  1 1 - o = Y " / , ,  

From the complex-conjugate relation between the E 
states I rf)* = ( -I)C) we get in addition to the symmetry 
properties (2.12)-(2.14) the relation 

which makes it possible, in conjunction with Eqs. 
(2.12)-(2.14), to decrease the number of calculated 
ITCF. 
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4. IRREDUCIBLE TIME CORRELATION FUNCTIONS 
OF ROTATIONAL I N  A TRIPLE PERIODIC 
POTENTIAL 

The calculation of the ITCF of a one-dimensional 
top with Hamiltonian 

hapa a AH, - - +V(cp), p=-i- V (9) =V ((p+2n/3), 
21 

(4.1) 
acp' 

where I is the moment of inertia, was considered in 
Ref. 15, where the Hamiltonian of the interaction of 
the rotation with the phonons V,# was not specified; it 
was only assumed that the smallness of Vvp i s  sufficient 
for the existence of a kinetic equation for the rotational 
density matrix 6 defined in the basis of the eigenfunc- 
tions ( I'v) of the Hamiltonian (4.1) ( f i ~ , ]  rv )  = E,,( fi)). 
The index v = 0,1,2 ,  . . . , number the torsional levels, 
while I' numbers the sublevels of the tunnel multiplet. 
The Hamiltonian of the interaction of the rotation with 
the phonons will be obtained here in explicit form. 

The Hamiltonian of a crystal with uniaxial rigid top 
can be represented in the general case in the form 

where M ,  is the mass of the s-th atom of the crystal 
( s = 1 , 2 , .  . . ), M, is the mass of the top, q is  the 
se t  of displacements q, of the crystal atoms (s = 1,2,  
. . . ) and of the center of gravity of the tops (s =0) from 
the equilibrium positions, I, i s  the moment of inertia 
of the free top about the rotation axis, and @(q) is the 
position of one of the minima of the rotation potential. 
If we make the substitutions y?' = cp - @(q) and q' = q ,  
and leave out the primes of the variables in the final 
expression, then the Hamiltonian (4.2) can be repre- 
sented in the form (2.3), where the Hamiltonian of the 
phonons is given by expression (4.31, and the Hamil- 
tonian of the top by expression (4.1) in which 

I is the effective moment of inertia of the top, and the 
Hamiltonian of the interaction of the rotation with the 
phonons takes the form 

where we have neglected terms of order @(')@(2)  and 
terms of higer order, which result from the expansion 
@ (q) = ?(O) + @(') + @(,) + . . . in powers of q. The 
angle brackets (. . . ) denote averaging over the phonon 
variables, i. e .  , over the equilibrium states of the 
system with the Hamiltonian He. 

In the classical limit we have 

Therefore in analogy with the vibrational-rotational 

interaction in the molecules, the term AV, and AVIp 
will be called the Coriolis interaction. This interac- 
tion in solids was introduced in Ref. 25, where i t  was 
used to explain the temperature dependence of the spin- 
lattice relaxation due to the rotational tunneling of the 
methyl groups. The term ~ [ c p  - @(q); q]  in (4.2) can 
be represented in our case of triple symmetry in the 
form of an expansion in cos(3n[cp - cp,,(q)]), n = 1 ,2 ,  . . . 
if i t  is  assumed that only the f i rs t  term i s  significant 
in this expansion, then 

Therefore 

V(rp) -'/,<Ua(q)) (f-cos +)='/,~,(~-cos 3 ~ 3 ,  (4.6) 
AVf-I/.[U,(q) -<U,(q) >] (l-coa 3cp). (4.7) 

We assume that the conditions discussed in Ref. 15 
for  the applicability of the kinetic equation for a rota- 
tional density matrix a r e  satisfied. An analysis of this 
equation has shown that in the infinite chain of equations 
for the matrix elements <r,vlp(t)lr,v), in terms of 
which the low-frequency Fourier components of the 
ITCF a re  expressed, under the condition 

exp (-RpB) =exp t-p (EII-EIo) I a1, (4.8) 

which i s  henceforth assumed satisfied, in the case 
1 I?, ( = 1 I?, I it suffices to take into account the two levels 
v = 0 and 1, while a t  I I', 1 # 1 I', [ i t  may be necessary to 
take into account all the below-barrier levels with E 
< V,, for which the tunnel splitting lil A,I = I E,,, - E,i 
is less than o r  of the order of the relaxation coefficients yzrz. The relaxation coefficients yF;v'," a r e  expressed 
in accordance with Ref. 15 in terms of the matrix 
elements 

P I  C,:=(~U,I i - cas 3pIrvr> 
and the spectral densities 

At temperatures satisfying the condition (4. a), the 
tunnel structure of the torsion levels in the SNS spec- 
trum can manifest itself only for not very high bar- 
r iers ,  for which the splitting of the ground level A, 
greatly exceeds the attained resolution, which 
amounts to approximately 100 MHz. If we bear in mind 
the experiments on SNS from methyl groups,10*1q18 
then we must consider barr iers  V 3 s  400 cm-' for  which 
calculation by the quasiclagsical formula, obtained in 
Ref. 26 using the value r = 1 . 8  A for the interproton 
distance in the methyl groups and I -I, leads to A, 
2 300 MHz. The value of ti0 for the methyl group i s  
100-200 cm" . For  the ammonia groups r 3 1.4 A and 
A, 2 300 MHz a t  V3 s 700 cm-l. For such barr iers ,  the 
third torsion level lies either near the barr ier  o r  
above the barrierzs and one can assume the inequality 

r r 1 A,) > ly,: Ir,l + Ir,l, tobe satisfied, sothatwe can 
confine ourselves to a two-level approximation. The 
matrix elements p; for the below-barrier levels differ 
from zero only because of the finite penetrability of 
the barr ier  a t  r=  0, and increase rapidly with increas- 
ing v . ' ~  
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exp (-AFQ), Aoll AI 1, (~oo'l~~rl)'(f  

Neglecting terms of order EBA, << 1, we obtain for 
the DDSS 

where 

Let 0 and ig be the spherical angles of a vector Q in 
a coordinate system whose z axis coincides with the 
symmetry axis of the top, the zx  plane passes through 
one of the minima of the potential V(cp). Then 

To calculate the matrix element BFr2 we use the 
tunnel appro~imation~'*'~ for the wave function and ex- 
pand the exponentials in (3.3) in a Taylor series about 
the values cp = 0 and &2n/3. With accuracy of order 
(QR)'ti/41SZ we can confine ourselves to the f i rs t  term 
of this expansion (ti/4Za - 1/40 for the methyl groups). 
For  the SNS in a polycrystal i t  is necessary to average 
the DDSS over the angles 0 and 9 . We denote the re- 
sult of the averaging by a superior bar 

ba -- sin Qr B -  1+2- 
Qr d a d o  k )6(u)  

) 

Here r =RS is the distance between the nuclei in the 
top. Thus, the SNS spectrum in the region of small 
energy transfers (<<tin) consists of the elastic-scat- 
tering line [the first  term in the right-hand side of 
(4.1411 and a tunnel multiplet corresponding to inelastic 
scattering with change of the quantum number r. 

If we put in (4.14) formally A, = 0 and T,, = T,, = T, 

then this expression goes over into the results obtained 
on the basis of the classical model of reorientation 
jumps around the C3 axis through angles *2n/3. '"la 

In the limit of a vanishing rotation interaction with 
the phonons T,, , T,, - m and we get from (4.14) 

sin Qr (4.15) +- I--  
. 2 (  Qr 

) 6 - A ) + ( + A  1 ] V,P+O. 
3 

The expression in the curly brackets (the scattering 
law) i s  given in Ref. 28. 

An analysis of the explicit expressions for the ITCF 
correlation times T,, and T,, and for  the effective 
tunneling frequency A, has shown that their tempera- 
ture behavior depends on the relations between the 
quantities 

~ - ( P O I ' ) ~ ~ P ( Q ) ,  h (@)  = ' / a ( ~ ~ ~ ) ~ j p ( ~ ) ,  ~ = ' / ~ ( c ~ ~ ' ) ' j ~ ( Q ) ,  
C.(U) ='/r(cm0-~..I) Ye(o), d- (pot1-porO) ' j p  (B), I A,I . 

The parameters a and c determine the rates of vibra- 
tional relaxation (the lifetime and the torsion states 
relative to transitions with change of the quantum 
numbers v ) ,  while the quantities b,(w) and c,(w) at 
w = 0, and ( A, 1 determine the rates of the phase re- 
laxation in the system of tunnel sublevels of the v-th 
torsional multiplet. The parameters b,(w), c ,  cv(w) 
and d for the below-barrier levels a re  different from 
0 only because of the finite penetrability of the barr ier .  
In the present paper the calculation of the spectral 
densities j,(w) and j,(w) for the concrete models of the 
phonon spectrum will not be considered. We discuss 
briefly two principal limits. 

1) Rapid phase relaxation: 

In this case 

~=-~--4b, (0)  + (a4-2c) e-"", 

~ ~ - l = b .  (A,) +co (A3 + (u+c) E - ~ " ,  

where iv= A, +ImyVv.'O If the dynamic shifts1' Imy, 
a re  small compared with A,, then the temperature de- 
pendence of A, i s  determined by the degree of satis- 
faction of the inequality b,(l A, I ) + c,(l A, I ) >> a + c. The 
better this inequality is  satisfied, the smaller the 
second term in the right-hand of (4.18) and the weaker 
the temperature dependence of A t .  

2) Fast vibrational relaxation: 

In this limit 

rEil =4b.(0) +4 [b, (0) + 

It follows from the last expression that if the quantum 
rate of the transitions between the states with v = 0 
and v = 1 is comparable with the tunnel splitting of the 
excited level, then a t  a 2 c the effective tunneling fre- 
quency A, depends strongly on the temperature, and 
with increasing temperature a collapse of the tunnel 
multiplet takes place (A, - 0). This effect is observed 
in SNS from ammonia12 and methyl13 groups. Under 
the conditions a'>> A12 and a>> c, neglecting the dynamic 
shifts, we obtain from (4.21) the relation A, = A o  
- ( A, ( exp(-iEO), which was introduced earlie?' from 
qualitative considerations to explain the experiments 
on magnetic resonance and which was used in analogy 
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in  Refs .  12 and 13 to descr ibe  the tempera ture  de-  
pendence of the tunnel f requencies  in  the  SNS spec t rum.  

We c a l l  attention in conclusion t o  the fac t  that  the 
ITCF correlat ion t i m e s  are not expressed  in terms of 
the l i fe t imes on the levels. At low tempera tures ,  the 
main contribution to 6 and 71; is due to phase re- 
laxation. 

The author  is deeply grateful  to T. N. Khazanovich 
contacts with whom contributed much to the per for -  
mance of the work. 
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A detailed investigation is made of the influence of radiation on the motion of channeled particles in a 
crystal. It is shown, in particular, that radiation can lead to an increase in the angular divergence of a 
particle beam in a channel. The analysis of the relaxation of the transverse energy via radiation takes into 
account the multiple scattering of the channeled particle in the crystal. 

PACS numbers: 61.80.Mk 

INTRODUCTION 

It is known (see Refs .  1-4 and the bibliography there -  
in) that spontaneous radiative t ransi t ions between 
t ransverse-energy levels  of a channeled part ic le  lead 
to intense x and g a m m a  radiation, accompanied by  
relaxation of the t r a n s v e r s e  energy.  F o r  light chan- 
neled par t i c les ,  as noted by us  earlier, the process  
of radiatiave damping of the t r a n s v e r s e  energy can  
play a noticeable role  alongside the nonradiative de-  

channeling p r o c e s s e s  that  lead to an inc rease  of the 
t r a n s v e r s e  energy.  In th i s  case, general ly  speaking, 
self-focusing of a beam of channeled part ic les  is 
possible .  

The  effect of radiative focusing of a beam of chan- 
neled par t i c les  was  considered a l s o  by  o thers  .5-7 How- 
e v e r ,  the resu l t s  of ~ a r ~ s h e v s k i r  and Dubovskaya, = as 
shown by u s  earlier,8 turned out to b e  completely in 
e r r o r ,  Wedell 's paper7 also contains conclusions that 
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