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Phase transitions occurring in a layer adsorbed on a metal surface are investigated within the framework 
of the Anderson Hamiltonian with allowance for the interaction between the adsorbed atoms (adatoms) 
and the electron-phonon interaction. A time-dependent functional of the free energy is obtained. It is 
shown that, depending on the model parameters, both first- and second-order phase transitions with a 
doubling of the two-dimensional adatom-lattice constant are possible, the system in question being 
described in one of the limiting cases by the two-dimensional Ising model with long-range 
antiferromagnetic interaction in a field. The temperatures at which these transitions occur are computed 
for different limiting cases. It is also shown that the existence of a long-wave superlattice 
incommensurable with the original adatom lattice is possible at low temperatures. The energy relations 
between the various types of superlattices and the collective excitations in them are considered. 
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5 1. INTRODUCTION face, and the structure with a doubled lattice constant. 
The latter structure is comprised of two adatom sub- 

The advances that have been made in the development lattices differing from each other in charge and dis- 
of experimental methods of investigating the structure tance to the surface (in the simplest case it is assumed 
of monolayers adsorbed on metal surfaces and the phase that the adatoms cannot undergo displacement along the 
transitions that occur in them when the temperature o r  surface). 
the degree of coating is varied (see Ref. 1 for a review) 
make the theoretical investigation of these phenomena 
essential. 

Any change that occurs in the positions of the ad- 
sorbed atoms (adatoms) during phase transitions in ad- 
sorbed layers is, generally speaking, accompanied by 
changes in the electronic state and, in particular, the 
charge of the adatoms. This connection between the lo- 
cation of the adatoms and their electronic state may 
turn out to be weak in certain particular cases. Then 

It was also shown that the structure with the doubled 
lattice constant can turn out in some parameter region 
to be unstable against the appearance of a new structure 
in which the charges of the adatoms and their equilib- 
rium distances from the surface in each of the sublat- 
tices vary periodically. The lattice constant of this , 

superlattice depends on the parameters of the model, 
and can be arbitrarily large and, generally speaking, 
incommensurable with that of the original two-dimen- 
sional adatom lattice. 

the investigation of the energy relations between the 
However, we did not consider in Ref. 2 the tempera- various states of the monolayer can be performed in 

ture  phase transitions, a s  well as the energy relations different limiting cases, either assuming the adatom 
between the various possible superlattices. To investi- charges to be fixed and introducing a pair interaction 

potential between them, or conversely, fixing the equi- gate these problems, we construct in 02 of the present 

librium positions of the adatoms and considering the paper on the basis of the model Hamiltonian proposed in 

various electron configurations (see Ref. 1 for a review Ref. 2 an effective Hamiltonian that depends only on the 
phonon variables. Further, in 03 we consider with the of these investigations). 
aid of this Hamiltonian the distinctive features of the 

In an earlier paper2 we proposed a model that takes temperature phase transitions that is accompanied by a 
account of the above-mentioned connection between the doubling of the lattice constant. In particular, we show 
electronic state and the structure of a monolayer, which in this section that the phase transition is described in 
leads to qualitatively new distinctive features of the the case of a sufficiently strong electron-phonon inter- 
phase transitions that occur in adsorbed layers. action by the Ising model with antiferromagnetic inter- 

We investigated in Ref. 2 on the basis of the Anderson action in an external field. In the case of a weaker elec- 
tron-phonon interaction the system is not described by model Hamiltonian with allowance for the interaction 
the Ising model. In this case the investigation of the between the adatoms and the electron-phonon interac- 
phase transitions is performed on the basis of the Lan- tion the ground state of the adsorbed layer. It was 
dau free-energy functional, which is derived micro- shown that different structures a r e  realized in the 
scopically from the effective Hamiltonian. 

ground state, depending on the parameters character- 
izing the model, namely the location of the electronic Section 4 of the present paper is devoted to the inves- 
level of the adatom relative to the Fermi level and the tigation of the various superlattices that a r i se  in a back- 
constants determining the interaction between the adat- ground of the lattice with the doubled lattice constant a t  
oms and the electron-phonon interaction. We investi- low temperatures. The acoustic branches of the col- 
gated the energy relations between the homogeneous lective-excitation (phase-oscillation) spectrum that 
structure, in which all the adatoms have the same ar ise  in a monolayer in the presence of incommensurate 
charge and a r e  located a t  equal distances from the sur- superlattices a r e  considered in 05. 
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8 2. THE EFFECTIVE HAMILTONIAN 

The model Hamiltonian proposed in Ref. 2 for a sys- 
tem of atoms adsorbed on a metal surface has the form 

where c; and a; a r e  respectively the operators of cre- 
ation of an electron in the metal and an electron local- 
ized on the j-th adatom; n, =c;c,, n j  =a;a g is the hy - 
bridization constant; E is the energy of an electron oc- 
cupying the adatom level; Uij is the interaction between 
electrons localized on different adatoms; qi is the oper- 
ator of displacement of an adatom from the equilibrium 
position corresponding to the level occupation number 
no; y is the electronphonon interaction constant. 

Assuming, as in Ref. 2, that the repulsion energy for 
electrons with oppositely directed spins, and occupying 
the same level, is the largest energy quantity of the 
problem, we exclude from consideration the states with 
two electrons occupying the adatom level. 

For the investigation of the dynamical and statistical 
properties of the two-dimensional adatom lattice, it is 
convenient to  eliminate the electronic variables and per- 
form the subsequent analysis on the basis of an effective 
Hamiltonian containing only the variables q,. 

It is easy to  show (see Ref. 3, Chap. 3) that the sta- 
tistical sum of the system (1) can be represented in the 
form of a path integral over the phonon variables: 

Z- ~ { q ~ ) ~ p { e x p ( - p ~ . )  T e x p  Ill.(.) +Ha-&) ] d l ] }  
uIP)-#db) 

(2) 
where the trace is taken over the electron states and 
/3 = (kT)-'. 

Below it  will be convenient for us in the calculation to 
shift the reference point for the adatom displacement by 
setting: 

and redesignate 

Let us set 

where 

Z o = S p [ e x p  ( - p H . ) ] ,  <. . . )=Z,- 'Sp [ e x p  ( -pH. ) . . . ] .  

It is well known (see Ref. 4, Chap. 3) that the quantity 
A X' = - T ln (Z,Z,-') is the sum of closed connected dia- 
grams in which Yqi(r) plays the role of an external field. 

Since we shall below be interested in small displace- 
ments qi, let us limit ourselves to the first  terms of the 
diagram series right up to  the terms of fourth order in 
the "field" yqi. At the same time, we can neglect in 
each order in yqi the quadratic and higher -order t e rms  
of the expansion in the interaction U, assuming, as be- 
fore in Ref. 2, that U << r, where I' =r$N(O) is the adat- 
om-level width. We shall also restrict  ourselves in (3) 
to the consideration of only the diagonal elements, Gii, 
of the electron Green function, since allowance for the 
off-diagonal elements Gij(i ~ j )  leads in the case of a 
fairly r a r e  monolayer only to the addition to Uij of the 
indirect hybridization interaction investigated in Ref. 5. 

It is significant that, for our choice of reference point 
for q i ,  the electron Green function Gii(w) possesses the 
property that Gii (w) =Gii(- w ) ,  a consequence of which 
is the absence of a cubic term in the expansion of A&P 

in powers of q,. 

Using the found value of A &P, we obtain from (2) the 
expression 

z=zo j D(q,)exp(--pi%).  (4) 

The effective Hamiltonian has the form 

"',O 

where 

The summation in (5) is performed over the discrete 
frequencies w, = 2nnT. 

In principle, the Hamiltonian (5) contains complete in- 
formation about the dynamic and statistical properties 
of the adatom lattice. The expression (5), exclusive of 
the term - 1  w 1 I q(w) 1 2 ,  could have been easily derived 
directly from (1) by assuming the qi to be adiabatic 
variables and eliminating the ni with the aid of the adia- 
batic condition 

acn>iaq,=o. 

The term - 1  w 1 I qi 1 describes the nonadiabatic contri- 
bution to the lattice energy. It is important for the in- 
vestigation of the dynamic properties of the system. In 
particular, a s  will be shown in 65, it determines the 
phonon attenuation. 

The simplest approximation that allows the computa- 
tion of the free energy of the various structures con- 
sists in taking into account in (4) only the extremal t ra-  
jectory {qi(r)) that minimizes the functional (5). Evi- 
dently, for this trajectory, qi(r) =qi, and the corre- 
sponding qi values a r e  found from the conditions 

(6) 
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Using the relation 

which follows directly from the equations of motion for 
the operators a;, and qi, we can easily verify that the 
Eqs. (6) coincide with the Eqs. (11) of Ref. 2 for 11/2 
- ni I << 1. Thus, the approximation used in Ref. 2 is 
equivalent to the neglect of al l  the qi fluctuations. 

Allowance in (4) for the T-independent trajectories 
that a r e  different from the extremal trajectories and the 
T-dependent trajectories corresponds to  the considera- 
tion of the thermodynamic and quantum fluctuations. 

8 3. THE PHASE TRANSITIONS WITH A DOUBLING OF 
THE LATTICE CONSTANT 

In Ref. 2 we showed that, for A > 0, there exists a 
range of values of the parameter ,!? where each individ- 
ual adatom can have two stable equilibrium positions, 
q, and q,, in which it possesses different occupation 
numbers, n, and n,. This means that, for Uij =0, the 
local minima of the functional X correspond to config- 
urations in which qi can assume the two values q:' 
={41, 42). 

For Uij #0,  two cases a r e  possible. If the interaction 
Ui, is sufficiently weak, to wit, if U(lrr)-' =u <<A, then 
it has no effect on the positions of the local minima q, 
and q,, and only determines the configuration energy. 
On the other hand, when u- A, the state of a monolayer 
of noninteracting adatoms having two possible equilib- 
rium positions loses any meaning a s  an initial approx- 
imation. 

Let us first  consider the first  case. Then the weak 
interaction Uij can be regarded a s  a perturbation that 
changes the value of the functional&Pfor each extremal 
configuration by the amount 

1 
- M o t  2 u , , ~ , ' ~ '  q:o' . 
2 

*.jet 

Thus, taking into account in (4) only the above-indicated 
configurations, and introducing the variables vi , which 
assume the values d, we easily obtain from (4) and (5) 
the expressions 

where 
(%I - x ~ ) ~  r X:  - XI' 

11, = Uq h = - ( 8 $ - 8 2 ) f  U- 
(2n)' ' 4n (2n)' ' 

and the quantities&P,,, =yql,, rml = ~ ( 1 / 2  -nl,,) a r e  the 
largest and smallest roots of the equation 8g/8&P=0. 

Above we neglected the fluctuations in qi relative to  
the equilibrium position q, o r  q,. This can be  done in 
the case when 

( (pi-91.21')~ (qi-q2)=. 

Computing the mean square fluctuation with the aid of 

FIG. 1. Phase diagram of 
the system for the case of 
strong electron-phonon in- 
teraction: I) structure of 
the "ferromagnetic" type; 

m gllk D *,I 42 * 11) ferromagnetic" complex structure structures. of the type; "anti- III) 

(5), we obtain the condition for the applicability of the 
expressions (7): 

Thus, when this inequality is fulfilled and the electron- 
phonon interaction is sufficiently strong (i.e., A >> u), 
the system is described by the two-dimensional Ising 
model with antiferromagnetic interaction in an external 
field. 

Qualitatively, the phase diagram of a system having a 
statistical sum of the form (7) is known (see, for ex- 
ample, Ref. 6). It is shown in Fig. 1. In the region of 
low temperatures T < T,(h) and weak "fields" h < hcl the 
system possesses long-range "antiferromagnetic" or- 
der, which in our language, means the presence of two 
adatom sublattices in which the adatom charges and 
equilibrium positions a r e  different. The antiferromag- 
netic order disappears at T > T,(h), so  that the system 
undergoes a second-order phase transition into the dis- 
ordered phase a t  T = T,(h). 

The characteristic values of h,, and T,(O) a r e  of the 
order of f U(n, - %)* - UA. Clearly, here T,(O) should 
not be too high, so  as not to  violate the inequality (8). 
Substituting T,(O) into (8), we obtain u << A, which was 
assumed in the derivation of (7). 

Notice that the deviation of the interaction Ui, from 
the interaction with only the nearest neighbors leads to 
the possibility of the existence of complex structures a t  
low temperatures. In particular, at T = O  the transition 
from the phase with the doubled lattice constant into the 
homogeneous phase, in which all the adatoms a r e  in the 
same state, occurs when h is increased from h,, to 
h, =+U(n, -nJ2 by means of an infinite number of tran- 
sitions, as a result of which there a r i se  phases with an 
ever-increasing number of adatoms in the unit cell. 
The width of the region h, - h,, depends on the ra te  of 
decrease of the potential Ui, with distance, and is equal 
to zero for interaction with only the nearest neighbors. 

Let us now consider the case when 1 A 1 -u and the 
problem does not reduce to the Ising model. It would be 
easy to  compute the f ree  energy of the system and find. 
the phase-transition temperature T, in the extremal 
approximation. In this approximation, the free energy 
coincides with (5), and the whole dependence on tem- 
perature is determined by the TZr-' te rm in the expres- 
sion for A, a term which ar ises  simply because of the 
smearing of the Fermi  distribution a t  finite tempera- 
tures. On the other hand, it is well known that the 
short-wave fluctuations can have a significant effect on 
the T, value. In our case these fluctuations a r e  large 
because of the "softness" of the individual-adatom vi- 
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brations, whose frequency w - w, 1 A 14 is low when 
1 A] <<I. Below we show that it is precisely these vi- 
brations that determine T, when 1 A 1 << 1. In this sense 
the situation is very different from, for example, the 
Peierls  transitions, where T, is determined by the Kohn 
anomaly in the polarization operator, a s  a result of 
which there appears a term -In (T/c,), instead of the 
electronic contribution - (T/r)2. 

To investigate the phase transition, let  us construct 
the Landau functional, averaging it over the short-wave 
fluctuations. Neglecting the quantum fluctuations, and 
setting in (5) 

where q, is found from the condition af lo) /8q0 =O,  
%(O) =R/q i  =go and N is the number of adatoms in the 
monolayer, we transform (5) into the form 

2 
+ - %.N-'~='.C x  ( k , )  x  ( k z )  x ' (k ,  + k,)  

k,,k, 

1 
+ TN-I x  ( k l ) x ( k 3 )  x ( k 3 ) x a ( k ,  + k, + li,) , 

k,,k,,k, 
1 

where 

The free energy of the system 

can be expanded in a perturbation-theory ser ies  in the 
nonquadratic-in %-terms in (9), and is the sum of all 
the connected closed diagrams in which the role of 
Green's functions is played by the mean quantity 

while the bare vertices in which three o r  four Green's 
functions intersect a r e  respectively Q&P,N-"~T-~, 
4N-IT-' (see, for example, Ref. 7). 

For T - T,, the integrals over momentum in each or - 
der of the perturbation theory diverge at momenta close 
to k, = (in,  in)  [we assume that uQ is monotonic in the 
Brillouin zone and has a minimum a t  k =  kc], which leads 
to singularities in the second derivatives of 9 at  T = T,. 

If, however, we split the domain of integration over 
k into the regions Ik-k,l <Q<<1 and Ik-kcl >Q, and 
first  perform in all  the diagrams the integration over 
the momenta far  removed from kc, then we obtain dia- 
grams containing integration just in the vicinity of k, 
with renormalized bare vertices. The totality of these 
vertices determines the Landau functional. (The ver- 
tex-renormalization procedure is described in detail in 
Patashinskir and Pokrovskir's review a r t i ~ l e . ~ )  

Let us consider the parameter range where I S2(kc) I 
<< a(0) -u. In this case we can show that we can, in r e -  
normalizing the vertices, limit ourselves to the low- 
est -order perturbation theory if T(ru2)-' << Q2 << 1. In 

FIG. 2. Renormalization of the vertices of the free-energy 
functional: the heavy lines represent the correlatms 
(1x0 I ~ ) ~ ,  the number of dashed lines corresponds to the or -  
der of the vertex; a point in a circle represents the bare 
fourth-arder vertex, a heavy point the bare third-order 
vertex. 

Figs. 2a and 2b we show the diagrams that make a con- 
tribution to the renormalization of a&). Assuming that 

we can se t  ~ ~ ( k ) = c I k - k 1 ~  for ~ < I k - k , l  <<I. Thus, the 
the two diagrams in Figs. 2a and 2b diverge logarith- 
mically a t  small I k - & I ,  and therefore it is precisely 
this region that makes the largest contribution to  the 
integrals when lnQ-' >> 1. Finally, the renormalized 
a&) has the form 

where 

The conditions Q2 >> I S2(kC) I /C and Q2 >> T(ru2)-' a r e  
equivalent to the condition Q >> rc-'(T), where rc(T) is 
the correlation length in the region of temperatures far 
from the transition point. For T 2 T, we have rcZ 
- I a (&) I c-'- I &2(kC)1 W1(0); therefore, we can, with log- 
arithmic accuracy, se t  lnQZ = ln I ~(0)/51(k,) I in (10). 

Besides the "fluctuation" diagrams containing integra- 
tion over k, and proportional to the temperature T, we 
should a lso  take into account the diagrams, like those 
shown in Figs. 2c - 2e, that a r e  nonzero a t  T =O. Sim- 
ple computations yield for the fourth-order vertex the 
value : 

where 

Notice that the term proportional to the imparted mo- 
mentum 1 kl a r i ses  as a result  of the assumption made 
by us here, as well a s  in Ref. 2, that the interaction 
Uij - ( & - R~ I and, thus, decreases slowly. It should 
be taken into account when I b 1 << 1. The numerical co- 
efficients in ( l l ) ,  a s  well a s  everywhere below, a r e  de- 
fined according to the equalities (see a lso  Ref. 2) 

The sixth-order vertex given by the diagrams in Figs. 
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2d and 2e is equal to  

Investigating the equation for X,, we easily find that 
d>O for all  ,!?, 5, and u(0). Thus, the Landau function- 
a l  has the form 

where a, T,, b, h, and d a r e  defined in (10)-(13), 
@(k) = %'(kc +k), and c =(a2 - b,) (a, + b,)"u(O). 

Let us first  consider the region of the parameters 
where b > 0 and a(&) <0. In this case, when b is not too 
small, we can neglect the last two t e rms  in (14). 

The Landau theory then predicts a second-order tran- 
sition with a doubling of the lattice constant a t  T =Tc. 
Comparing the fluctuation contribution to the thermal 
capacity with the magnitude of the jump arising in the 
Landau theory, we find the temperature region in which 
we can neglect the fluctuations: 

Thus, the transition temperature computed by us  is 
asymptotically exact a t  large In 151(0)51 '(kc)\. 

Now let b <O. In this situation, a first-order transi- 
tion accompanied by a doubling of the lattice constant 
should, according to the Landau theory, occur a t  the 
temperature 

T,= (bz/4d-Q(k,))a-'. 

In deriving the functional (14), we neglected the quantum 
fluctuations. We can take them into account by replac- 
ing a(k) by w2o0" + (w ( r-' +S2(k) in a l l  the diagrams 
and, besides the integration over k, carry out a sum- 
mation over o. It is easy to  show that, if the short- 
wave cutoff satisfied the condition w , r - ' ~ - ~ / ~  << Q << 1, 
then we can, in renormalizing the vertices, limit our - 
selves to the lowest orders  of the perturbation theory. 
As a result of the consideration of the quantum fluctua- 
tions, we obtain temperature-independent corrections 
to the vertices in (14). In particular, the correction t o  
a&) found from the diagrams in Figs. 2a and 2b is 
equal in order of magnitude to U,I'-'U-~'~, s o  that the 
correction to  T, will be small if w,~- 'u-~" << 1 I(I&) I .  
4. THE LONG-WAVE SUPERLATTICE 

Thus far, we have not taken into consideration the 
term proportional to  (k l  in (14). Meanwhile, the pres- 
ence of this term makes the appearance of a structure 
whose wave vector differs slightly from the vector 
I& =(M, M), which corresponds to the doubling of the 

lattice constant, energetically advantageous. We shall 
call such a structure a long-wave superlattice, bearing 
in mind here that i t  develops in a background of the 
original lattice with a doubled lattice constant, and that 
each of the two sublattices has a Large lattice constant. 

In this section we shall, using the functional (14), in- 
vestigate the possible types of superlattices in the 
mean-field approximation a t  T =O. F i rs t  of all, i t  is 
convenient to  transform (14) with the aid of the wave- 
length and order-parameter scaling transformations 

and the energy transformation F -const F into the 
form 

F= j h r  [ ~ i ~ n Q ( k . ) 0 ~ + ~ ~ ~ +  --ma : 1 +A {q k21Q (k) l 2  

where 6 =b(3d( WOE) 1 )"/2 and A =4h2(3dc)'. Since we 
shall be interested below in the region 1 b 1 << 1, 1 I 
<< 52(0), 0 - 1, we can evaluate the values of h and d a t  
the points where b = O  and a(&) =0. Then it follows from 
the equations for &cb with allowance for these conditions 
that 

Notice that the functional (14') does not contain a 
parameter having the dimensions of length, and equal to 
the lattice constant of the two-dimensional adatom lat- 
tice. In other words, the functional (14') has been writ- 
ten in the continum approximation, and does not contain 
t e rms  that could describe the interaction of the struc- 
tures in question with the adatom lattice. Below we 
shall show that the constant of the superlattice that min- 
imizes (14') can have any value, and that it is a contin- 
uous function of the parameters. Thus, the superlattice 
constant can turn out to be incommensurable with the 
adatom-lattice constant. In this case, when allowance is 
made for the t e rms  describing the interaction with the 
adatom lattice (the commensurability energy), the ap- 
pearance of effects connected with the interaction of the 
incommensurable structures is, in principle, possi- 
ble.9*'0 However, since we a r e  confining ourselves to 
the investigation of the long-wave superlattices, the 
commensurability energy is represented by t e rms  into 
which the amplitudes enter with a very high power. 
Consequently, these t e rms  a r e  insignificant in the re-  
gion where the value of the order parameter connected 
with the superlattice in question i s  small. This is the 
case a t  least near the thresholds of a second-order 
transition and in the vicinity of a first-order transition 
if the @ jump a t  the threshold of the first-order transi- 
tion is small. Thus, we exclude the commensuracility 
effects from consideration. 

Naturally, all the foregoing equally well applies also 
to the commensurability effects that a r i se  in the inter- 
action with the metal substrate. 

We shall seek the minimum of (14') on the class of 
periodic superlattices: 

95 Sov. Phys. JETP 50(1), July 1979 V. E. Kravtsov and A. G. Mal'shukov 



1 
Q (r) = -T Q ( k )  e i k ' = ~ , + z  A (G')eiG", 

Nk 
G.f O 

(1 5) 

where G' =mG, +nG, (m, n =0, 51, *2., .) a r e  the r e -  
ciprocal-lattice vectors of the superlattice. 

Since the Hamiltonian (14') is invariant under rotation 
through any angle, to the minimum of (14') clearly cor- 
respond structures with I G, I = I G, I =G, the amplitudes 
satisfying the parity condition: A (GI) =A (4' ) , IrnA (GI) 
=O. The amplitudes of the harmonics A (G') and the 
quantity G a r e  found from the conditions for extrema: 

By fixing the various superlattice symmetries by pre- 
scribing the angle, 8, between G, and G,, and investiga- 
ting the system of equations (16), (17), we can find the 
nature of the transition into the state with a superlattice 
and the energy relations between the various superlat- 
tices. 

Let us first of all consider the one-dimensional super- 
lattice, which corresponds to 8 =O. We shall assume 
that the superlattice ar ises  smoothly, so  thatA (GI)-0 
in the vicinity of the stability threshold for the struc- 
ture with the doubled lattice constant. Then the exis- 
tence domain of the superlattice is found from the con- 
dition for the violation of the positive definiteness of the 
quadratic form (14') inA (GI) upon the neglect of all the 
terms of higher order inA(G1). It is easy to show that 
this occurs when 

the coefficient in front of [A (GI) / ', where 

vanishing a t  the stability threshold [which corresponds 
to the equality sign in (18)]. This means that, in the 
vicinity of the stability threshold, the superlattice is 
described by a near-harmonic function of wave vector 
I G I =k,. The higher-order harmonics A, =A (nG) a r e  
quantities of higher order in smallness: A (nG)-An(G). 

In order to find the dependence of A, on the param- 
e ters  p andA near the stability threshold 0 =p,(A), it is 
necessary to take into account in the equation aF/aA,=O 
the terms -A:, a s  well a s  the terms -A,A,A,, which 
have the same order of smallness a s  the A: terms. As 
a result of the solution of Eqs. (16) and (17) with this 
accuracy, we easily find with allowance for (18) that 

For A < 2 the superlattice is formed a t  @ >PC, while for 
A > 2 the existence domain of the superlattice is the re -  
gion where @ < p,. 

The expression (20) for A: shows that the solution to 
Eqs. (16) and (17) that corresponds to a smooth forma- 
tion of the superlattice exists only for 1217 <A <4. Out- 
side these limits the transition into the state with a 
superlattice occurs discontinuously at B <PC if A < 12/7 
and a t  0 > 0, if A > 4. Let us recall that the parameter A 
is determined only by the character of the decrease of 

the interaction U(I R, -Rj  I). For the dipole-dipole in- 
teraction U- I R ,  -Rj13, A - 2.1, so  that the superlattice 
is formed smoothly. However, allowance for the Frie- 
del oscillations can change the magnitude of A and, to- 
gether with it, the nature of the transition. Notice that 
the possibility of a first-order transition in the present 
case is connected with the allowance for the t e rms  
-A ,A, in Eq. (16). Therefore, it is natural to  assume 
that A, -A, in the resulting superlattice, s o  that this 
superlattice can differ quite sharply from the harmonic 
super lattice. 

The two-dimensional superlattices (0 # 0) can be in- 
vestigated in similar fashion. A preferred one among 
them is the hexagonal superlattice, which corresponds 
to the value 8 =ST. The fact that there a r e  in this case 
three wave vectors G,, - G,, and G, - G, with equal 
magnitudes (i.e., such that I G, I = 1 G, I = / G, - G, I ) and 
a null resultant leads to the appearance in the equation 
a ~ / a A ,  = O  of t e rms  -A,Af, whereas for all  other values 
of 0 the nonlinear-in A ,-term in this equation is of 
the same order of smallness1' as A:. As a result, we 
have from (16) and (17) for A, the equation 

where f(A) =- (60 +25.31/2)A2 +(336 +80-3112)A -(352 
+64-31'2)1. 

Let us first  consider the case when f (A) > 0. This, in 
particular, occurs in the case of a dipole-dipole inter- 
action between the adatoms. If the sign of A, is chosen 
so  that the linear-inA,-term in (22) is negative, then 
Eq. (22) can have two solutions in that range of the pa- 
rameters where the structure with the doubled lattice 
constant is still stable. Of the two the solution with the 
larger /A,  I is the local minimum of F. When 

p=p.+ (8-3A)'A2[361 4-'/zAI"(A-2)f ( A )  I-' 

this minimum becomes deeper than the minimum cor- 
responding to the structure with the doubled lattice con- 
stant, and a first-order transition into the state with a 
superlattice occurs, the amplitude of A, a t  the transi- 
tion point being equal to 

Let us note that in the case under consideration the 
first-order transition is due to the interaction between 
the harmonics A (G,), A (- G,), and A (G, - G,) , and, for  
small A,, the superlattice is the resultant of three 
waves with wave vectors G,, G,, and G, -GI. A for- 
mally similar problem has been considered by McMil- 
lan" in connection with the phenomenological investiga- 
tion of the production of charge-density waves in lay- 
ered systems. It is also  clear that, at least near the 
stability threshold B =&(A), the hexagonal superlattice 
that a r i ses  via a first-order transition is energetically 
more advantageous than any superlattice that can a r i se  
a s  a result  of a second-order transition, since it has a 
finite amplitudeA,+O at  the stability threshold. It fol- 
lows from this, in particular, that, in the case of the 
dipole-dipole interaction between the adatoms, the 
hexagonal superlattice is energetically more advanta- 
geous than the one-dimensional superlattice in the vi- 
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cinity.of the stability threshold. However, in the pres- 
ence of cleavages on the surface the energy relation can 
change in favor of the one-dimensional superlattice. 

Now let f(A)<O. It can be shown that in this case all  
the solutions to (22) a r e  unstable. This means that 
there occurs in the stability region for the structure 
with the doubled lattice constant a first-order transition 
into a superlattice state in which the higher harmonics 
cannot be considered to be weak. 

8 5. COLLECTIVE EXCITATIONS OF THE ACOUSTIC 
TYPE 

As is well known, the degeneracy in energy terms of 
the ground state of the incommensurable superlattice 
with respect to uniform displacement leads to the ap- 
pearance of collective oscillations with an acoustic 
spectrum. Let u s  compute the spectrum of these exci- 
tations for the case of the one-dimensional, and the 
two-dimensional hexagonal, superlattice. For this pur- 
pose, let us se t  in (15) 

where 6q(Gr, r )  is a slowly varying function of the co- 
ordinates. Substituting (15) into (14'), expanding in 
terms of the small deviations 

6cp (GI, r) = 6cp (G', q) e'qc 

q 

and diagonalizing the obtained quadratic form, we find 
for the acoustic branch of the eigenvalues in zeroth 
order in [ A  (G') I : 

w2 (q) =sZq2 cos2 a, 

where 

for the one-dimensional superlattice (a is the lattice 
constant of the original adatom lattice). 

For the hexagonal superlattice there a r e  two acoustic 
branches: longitudinal and transverse, for which s2 has 
respectively the values: 

Knowing w2(q), we can easily derive for the acoustic- 
type collective-excitation spectrum the expression 

where $ ( w )  =w2 +iw!r-lw i s  the analytic continuation of 
the frequency dependence of the coefficient attached to 
I q(w, k) 1 in the functional (5). 

It can be seen from (23) that the decrement of the col- 
lective excitations in the region of small q is high. 
This is connected with the absence of a gap in the sin- 
gle-particle electron-excitation spectrum and the pos- 
sibility of absorption of the acoustic-wave energy 
through the production of such excitations. 

The authors a r e  grateful to  V. M. Agranovich for use- 
ful discussions. 
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