
relative change that occurs in the flux density of the 
wave over a unit length along the propagation direction 
a s  a result of the conversion of the wave into a plasma 
wave in the region of the jump in the form 

This ratio is  small under the conditions of the inequali- 
ty (4.4). 

The obtained solution can be used to construct a more 
complexsolution-of the type of a plasma facula (layer) 
in an unbounded plasma with c, > 0-having even two 
jumps. Treating the z = O  plane a s  a middle plane, and 
seeking the solution that describes the decreasing field 
for lzl -a, we arrive on account of the symmetry of 
the problem to a solution of the surface-wave type. 
However, the dispersion properties of such a wave 
( m > q *  E,,) will now be determined by another factor: 
the law of conservation of the wave-energy flux along 
the axis of the facula: 

Introducing the effective skin depth 

where B, is  the amplitude of the field a t  z =0, we obtain 
for a sufficiently large wave amplitude1 

so = L E : ~ ~ ~ A ,  
2n 

where A does not depend on the wave amplitude. 
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The linear interaction of waves in the region where the geometrical-optics approximation is violated is 
analyzed qualitatively on the basis of the Budden-Kravtsov equations that describe the propagation of 
the electromagnetic waves in a smoothly inhomogeneous magnetoactive plasma. It is shown that the 
interaction sets in when the polarization of the geometrical-optics waves is substantially altered over the 
spatial period of the beats between these waves. Conditions are obtained under which the efficiency of the 
interaction is characterized by a single parameter whose form can be established without solving the 
equations that describe this phenomenon. The plasma-parameter regions in which the interaction is the 
most effective at a specified scale of the inhomogeneity of the magnetic field are determined. The exact 
solution of the standard problem that describes the linear interaction in plasma layers of the transition 
type is analyzed. 

PACS numbers: 52.35.Hr, 52.40.Db 

The study of the sources of cosmic radio emission ordinary and extraordinary waves to  differ substantially 
calls for an exact account of those changes that the from those expected in the geometrical-optics appraxi- 
emission undergoes in the plasma located on the path mat ion. 
from the source to the observer. Because of the weak If the polarization characteristics of the radiation ' 

inhomogeneity of the electron density and of the mag- source a r e  known, then the parameters of the cosmic 
netic fields in the cosmic plasma (over scales com- 
parable with the wavelength), these changes can usually 

plasma in the interaction region can be evaluated from 
the observed polarization that is produced a s  a result 

be described in the geometrical-optics approximation, of the linear wave transformation. Diagnostics of this 
s o  that it is rather a simple matter to take them into type uncovers new possibilities of studying the plasma 
account. However, if the emission passes through near the earth and between the planets by reception of 
regions where the geometrical-optics approximation radiowaves from spacecraft. It is of interest also for 
does not hold, the situation becomes much more com- the study of processes in a laboratory plasma. 
plicated: a linear interaction ar ises  between the waves 
and causes the amplitude and phases of the emerging In a tenuous plasma (w,<< w, where w, i s  the plasma 
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frequeacy and w is the radiation frequency), a sizable 
interaction is realized only when the magnetic field is  
sufficiently inhomogeneous (see Ref. 1 and Sec. 2 of the 
present article!. Therefore an investigation of the in- 
teraction in a plasma situated in an inhomogeneous 
magnetic field becomes particularly significant. So 
far,  however, only preliminary qualitative concepts 
have been de~eloped,"~ based on Cohen's initial idea,3 
and two problems, of importance from the viewpoint 
of astrophysical applications> were solved concerning 
the interaction occurring when waves pass through a 
transverse or  zero magnetic field.5-8 What i s  common 
to these problems is the reversal of the sign of the 
projection of the magnetic field on the direction of 
propagation in the region of the wave interaction. At 
the same time, considerable interest attaches to the 
problem of the interaction in plasma layers of the 
transition type-from a quasihomogeneous plasma with 
one set of parameters to a quasihomogeneous with 
another set of values of these parameters. This prob- 
lem includes, a s  a particular case, the problem of 
radiation from a magnetoactive plasma into an isotropic 
plasma or  into vacuum. Under these conditions the wave 
transformation leads to the appearance of the s o  called 
effective limiting polarization, when the polarization of 
the radiation that emerges from the magnetoactive plas- 
ma differs noticeably from the polarization calculated 
in the geometrical-optics approximation. 

A qualitative analysis presented in this article of the 
problem of linear interaction applies to all the indicated 
problems dealing with the propagation of electromag- 
netic waves in a plasma with an inhomogeneous mag- 
netic field B,. We confine ourselves for simplicity to 
an investigation of only the outgoing waves (without the 
reflected ones) under conditions when there is no shear 
of the magnetic field (i.e., the component of the vector 
B, in a plane perpendicular to the wave vector k retains 
its orientation along the beam). The shear-induced 
wave transformation in a plasma is considered in 
another a r t i ~ l e . ~  The choice of the standard problem 
investigated in Sec. 3 was dictated by the almost com- 
plete absence of published investigated exact solutions 
for transition layers with inhomogeneous magnetic 
fields (see Ref. 10 in this connection). 

1. INITIAL EQUATIONS 

It is known" that in a homogeneous plasma with a con- 
stant magnetic field Bo there propagate two normal 
waves exp(iwt - zk. r )  with refractive indices 

and with polarization coefficients 

The index 1 and the plus sign pertain here to the wave 
of type 1, while the index 2 and the minus sign pertain 
to the wave of type 2. If q > 0 [see (1.4)], then these a r e  
respectively the extraordinary and ordinary waves, and 
vice versa if q < 0. The other quantities in (1.1) and 
(1.2) a re  
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a" sin' a  

q = ~ ( i - - v j c o s a  

E ,  and E ,  a r e  the components of the electric field in a 
plane orthogonal to the wave vector k (the y axis lies 
in the plane of the vectors Bo and k, while the x axis 
is perpendicular to the latter), (Y is the angle between 
Bo and k, u = w;/w2, v = wt/w2, where w is the wave 
frequency, and w, and w, a re  respectively the electron 
gyrofrequency and the plasma frequency. It is assumed 
throughout the article that there i s  no absorption or  
spatial dispersion in the plasma. 

In the case of quasilongitudinal propagation (q2 << 1) 
the polarization of the waves of both types is close to 
circular: K, ,, 1 ; in quasitransverse propagation, 
when q2>>1, the polarization i s  almost linear: K2 
= - K r l > > l  o r K 2  =-K;l<<l. 

In a smoothly inhomogeneous medium, where 

(A is the characteristic scale of variation of the rna- 
terial properties that determine the wave propagation), 
the geometrical-optics approximation is usually valid. 
I t  is described by the first  terms of the asymptotic 
expansion of the exact solution of the equations of the 
electrmoagnetic field in the parameter l/ko = c/w. 
This approximation, however, may be violated in those 
regions (1.5) where the condition 

is violated. In these regions, obviously, the dispersion 
branches nl (r)  and n2(r) come sufficiently close to each 
other, and the properties of the medium change sub- 
stantially over the period of the spatial beats between 
the waves of the two types. 

If the waves pass in the course of their propagation 
through a region where the geometrical-optics approxi- 
mation is not valid, then the asymptotic expansion of 
the exact solution of the linear field equations takes 
different forms on different sides of the indicated reg- 
ion (the ratio of the complex amplitudes of the waves 
of the two types changes). In this case one speaks 
of linear interaction of the waves in the inhomogeneous 
medium and of the conversion of waves of one type into 
waves of another type. 

An investigation of the problem of interaction in a 
three-dimensionally inhomogeneous magnetoactive 
plasma becomes simpler if in addition to the criterion 
of smooth inhomogeneity (1.5) we impose the condition 
of weak anisotropy of the medium: 

(ci is the Hermitian dielectric tensor of the magneto- 
active plasma, Spcij is the trace of the matrix ci j, and 
6 , ,  is the Kronecker symbol). 

In analogy with the method of the "quasi-isotropic" 
approximation of geometrical optics,12 we seek the in- 
duction of the electric field D and of the magnetic field 
B of the radiation in the form of an expansion in powers 
of l/k,, just a s  is done in geometrical optics of an iso- 
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tropic. medium. Then, using the smooth inhomogeneity 
(1.5) and the weak anisotropy (1.7) a s  small parameters, 
we arrive a t  a system of equations for the complex 
wave amplitudes f, ,,: 

in which 

Y =-q ' / 2 ( l+qZ) .  

In (1.8) and (1.9) the differentiation is with respect to 
the variable 6 = li,l,  where I is the length of the quasi- 
isotropic beam corresponding to a medium with re- 
fractive index1) n = (ill +n,)/2= &Ih. The form of this 
beam is determined by the usual eikonal equation with 
refractive index 11. The high-frequency electric field 
is  connected with the functions f,,, by the relations 

Here the function @ , ( l )  satisfies the equation div(ne2,l) 
= O  (1 is a unit vector along the quasi-isotropic beam). 
Since, as  follows from the system (1.8) 

along the beam, the equation for +, is in fact the con- 
sequence of the energy conservation law divS = O  for a 
monochromatic wave (S is the Poynting vector). 

The condition of weak anisotropy of the plasma, under 
which the system (1.8) is  valid, is satisfied either in a 
weak magnetic field 

0 '"a i -u ,  u < l ,  (1.12) 

or  in a tenuous plasma 

u t l ,  (1-u'"l>>u. 

In either case a t  u<< 1 we have approximately c =l - v, 
and in the case (1.13) we have c =1 at  u>>l.  The con- 
dition (1.12) corresponds to an almost isotropic plasma, 
while the inequality v <  1 ensures transparency of the 
medium. The condition (1.13) indicates closeness to  
vacuum, while the inequality I 1 - ulhl >> v excludes in 
this case the region of the electron gyroresonance u 
=1 where the strong anisotropy is preserved (without 
allowance for spatial dispersion) even in a tenuous 
plasma. In the case u<< 1 and v<< 1 the system (1.8) 
goes over into a system of equations equivalent to the 
system given in the article of Kravtsov and NaidaP6 
for the case v -1 see also the paper by Naida.7 

We note that in the one-dimensional case the system 
(1.8) was obtained earlier by Budded3 under weaker 
assumptions, namely that the reflected waves a re  
neglected and that the refractive indices a re  relatively 
close 

I n,-n, I e n , + n , .  (1.14) 

This relation is equivalent to the following two in- 
equalities: 

uusinZa< 1 i -v l  1 i -v -uI ,  U U ' " ~  cos a1 a 1 1-u-ul (1.15) 

and can be realized even in a strongly anisotropic plas- 
ma, where the criterion (1.7) is violated. According 

to (1.15) in a strong magnetic field u>>l  the refractive 
indices come close together if the propagation is close 
to longitudinal: sin2a << 1, even in a dense plasma 
(1 < V < < U ' / ~ ) .  In similar cases of sufficiently strong 
anisotropy, the system (1.8) describes normal incidence 
of waves in a smoothly inhomogeneous plane-stratified 
medium (see also Ref. 14). 

The system (1.8) makes i t  possible to  obtain the val- 
ues of the functions f ,OUt andf ,out and accordingly the 
radiation field a t  the exit from the plasma layer from 
the given values f and f; a t  the entrance. Because 
of the linearity of the system, f andf ,O"' can be 
represented a s  linear combinations off and f; : 

I t  is easy to  verify that the four qu_antities F ,  which 
make up the transformation matrix F take the following 
form 

In fact, the substitution j,,, =6,,,exp(- i ndt) leads to 
a symmetrical system of equations 

The f i rs t  column of the transformation matrix is  ob- 
tained if the solution (6,, 6,) is written for the boundary 
condition 6: =1  and 6F =O. Since the energy conserva- 
tion law (1.11) already specifies the relation between 
the moduli of 6yt  and 6 y t ,  we can introduce the notation 

where the possible phase differences a re  taken into ac- 
count by the factors exp(- i y) and - exp(- i y - i ~ ) .  The 
second column of the transformation matrix is obtained 
under the boundary condition 6';" = 0 and 6; =l. Simple 
substitution in the system presented above shows that 
the solution can be assumed here in the form (- 6,*,6:), 
where 6, and 6, a re  the previous solutions used to de- 
termine the f i rs t  column. This enables us to write 
down the transformation matrix in the form (1.16) if 
account is  taken also of the connection between 6,,, and 

f1,2' 

The quantity Q in (1.16) is the s o  called transforma- 
tion coefficient and determines the relative intensity 
of the wave of one type (at the exit) if the wave of the 
other type is incident on the layer. We have 

a t  f =O and 

a t  f $ =O. (It is obvious that 0 Q 1 .) The coefficient 
of transformation into this same wave is 1 - Q. This 
is  clear from the conservation law (1.11), which is 
taken into account also when the change is made to the 
last equations in (1.17) and (1.18). It follows from the 
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symmetry of the system (1.8) that the quantities Q 
(1.17) and (1.18) a re  equal. These definitions of the 
transformation coefficient justify the_ representation of 
the amplitude factors of the matrix F in the form used 
in (1.16). 

2. QUALITATIVE ANALYSIS. INTERACTION 
PARAMETERS 

The qualitative analysis of the linear interaction can 
be conveniently carried out by using in addition to the 
system (1.8) also the Ricatti equation that follows from 
it for the ratio P = - zjl/f,: 

where 
n,-nl 1 n1-2 - - ( n 1 - h )  ( i+q2 )  = - G ( d - - -  

2 1  q' 211' (2.2) 

(the prime denotes differentiation with respect to the 
dimensionless coordinate 5 = kol). On going from (1.8) 
to (2.1) we introduced a new independent variable q 
=-J @dg. According to (1.2) and (1.9), 

The ratio P determines directly the polarization coef- 
ficient of the radiation a t  any point along the beam [see 
(l.lO)]: 

The elements of the transformation matrix (1.16) a re  
expressed in terms of P in the following manner. The 
transformation coefficient Q and the phase cp are  ob- 
tained from the relation 

in which Po(qOu,) is  the result of the solution of Eq. 
(2.1) under the condition Po(qin) = 0 (only a wave of type 
2 is incident on the layer). The validity of (2.5) be- 
comes clear if we turn to formulas (1.16) and (1.17). 
The phase shift y, in turn, is defined by the relation 

nout ?out 

r- G ( q ) d q = - R e  J P,(r l )dq ,  

'in "in 

in which P,(q) is the solution of (2.1) under the same 
boundary condition. 

Formula (2.6) was obtained by integrating both parts 
of the substitution 

which makes it possible to change back from the Ricatti 
equation to  the system (1.8). 

It follows from (2.1) that the entire process of the 
change in the radiation polarization along the beam (i- 
clduing the interaction region) is determined by the be- 
havior of the characteristic function G(q) over the in- 
terval of the change of the variable q(1) in the considered 
plasma layer. 

From the form of the function q(q) (2.3) it is clear 
that when q changes from -a to +a the change of q 

takes place mainly where q2 -1, and consequently the 
values Kl ,, (1.2) correspond to elliptic polarization of 
the waves of both types. On the contrary, in the region 
of the quasitransverse propagation (q2 >> 1)  the variable 
q remains practically unchanged and stays close to  zero 
o r  n/2, while in the region of quasilongitudinal propa- 
gation (q2 * 1)  the values of q a r e  close to r/4. 

In the limiting case of infinitely large values of the 
characteristic function G (q) over the thickness of the 
entire plasma layer (i.e., when n, f n2 and q varies 
arbitrarily slowly along the beam) we can neglect in 
(2.1) the term i(P2 - 1). Then the solution of the equa- 
tion takes the form 

WOut 
P(qout)-P(qin)exp [ -2 i  J ~ ( q ) d q  ] 

"in 

and the transformation matrix (1.16) becomes diagonal 

This variant corresponds to geometrical-optics wave 
propagation 

tout 
Q=O, 2 ~ -  j (n,-nz)d5. 

tin 

When the interaction appears, the transformation co- 
efficient Q becomes different from zero, and 2y becomes 
different from the geometrical-optics "Faraday" phase 
difference 

For  large but finite values of the functions G (q) along 
the beam (IG (q)l>> 1, an approximate solution of (2.1) 
can be obtained in the form of an expansion in the small 
parameter l / a ,  if we represent ~ ( q )  a s  ag(q) where a 
>> 1 and 1 g(q)l 2 1. Then 

sout *out 
~ t ~ ~ ~ t ) = [ ~ ( q i ~ ) - i  J exp ( 2 i  j ~ ( ~ ) d ~ )  d n ]  e x p ( - 2 i  1 ~ ( ~ $ 6 1 )  

"in "in "in 

1 1 
90ut 

.- + [ P ( ~ ~ ~ ) + - ]  e x p ( - 2 i  j ~ ( n ) d n ) 0 . 1 0 )  
2G(llout) 2G (qin) sin 

(in the transition to the last equation, the integral is 
calculatedby the stationary-phase method). This result 
differs from the geometrical-optics solution in that it 
contains small terms of order of l /a.  

The transformationcoefficient is  not equal to zero but 
remains small compared with unity (weak interaction): 

?out 

Q= I I exp [2 i  j G ( q ) d q ]  d l  l z ~ ~ ~ l t l .  (2.11) 
"in "in 

where G,, is the smallest value of G (q) on the interval 
from qi. t o  qo,, . The phase shift 2y differs little from 
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the geometrical-optics phase difference: 

tout nout 

121- j (n,-n2)dC 1 I j d q / ~ ( q )  
tin nin 

tout 

-sin [ (n,-n2)di] / 2 ~ ( q i n ) ~ ( q o u t )  1 ~ 1 .  
tin 

In the other limiting case G(q) =0  (when n, =n2 but q 
changes along the beam), it follows from (2.1) that 

Then the transformation matrix takes the form 
tout 

cos A q  sin Aq 
#=ex* (-i j ndC ) ( 

-sin Aq cos Aq 1 ' 
fin 

where 

According to (2.14) the phase i s  q = O  o r  n, the phase 
shift is y=O, and the transformation coefficient is 

It is  clear from (2.5) and (2.13) that in the case under 
consideration the polarization ellipse of the total radia- 
tion does not vary along the beam: K =const. There- 
fore the matrix fi (2.14) effects a simple transformation 
of two resolutions of this polarization ellipse: from a 
resolution into two orthogonal ellipses of the polariza- 
tion of geometrical-optics waves a t  the input to the 
layer to a resolution into two orthogonal polarization 
ellipses of the polarization a t  the exit from the layer. 

If the change of q in the plasma layer is appreciable 
( l ~ q l  -1, i.e., if the polarization of the geometrical- 
optics waves changes appreciably) the variant G (q) =0  
corresponds to a strong wave interaction. The trans- 
formation coefficient is Q = $ if one transition from the 
quasitransverse propagation to quas ilongitudinal propa- 
gation or  vice versa takes place over the thickness of 
the plasma layer ( ~ q  =* n/4). The quantity Q becomes 
equal to unity when ~q =* r/2, i.e., in the case of a 
double interchange of the character of the propagation 
in the plasma layer (for example, transition from 
quasitransverse to  quasilongitudinal and then back to 
quasitransverse pr~pagat ion) .~  

Formula (2.16) was obtained for a layer in which 
G(q) =O. Using the substitution = (1 - P)/(l  +P), 
which transforms Eq. (2.1) with the function ~ ( q )  into 
an analogous Ricatti equation with a function 6(q) 
=G -'(q), and using a solution of the type (2.10), we can 
easily write down the solution of Eq. (2.1) for the case 
when the function G(q) remains small along the beam: 
I G (q)) << 1. This solution introduces small corrections 
in the value of Q determined by formula (2.16). The 
phases q and y a re  also slightly altered compared with 
the variant with G(q)=O, by an amount of the order of 
IG(q)\ <<I. 

It is  clear from (2.16) that a small change of q along 
the beam (1 Aql << 1) leads to the appearance of only a 
weak interaction: Q <<I. The foregoing is valid not only 
in the case I G (q)1 << 1, but also for plasma layers with a 

function2' IG(Q)~ 5 1. [In accord with the foregoing, Q 
<< 1 also in the case I G (q)) >> 1, but now already a t  all  
increments Aq along the beam.] 

Summarizing the foregoing, we can state that an ef- 
fective interaction with the transformation coefficient 
Q -1 can be realized only in layers in which the charac- 
terist ic function G (q) decreases to values I G  (q)1 5 1 in 
the interval 1 - 1. 

Under the conditions of a cosmic plasma, the radio 
waves usually travel along routes that contain sections 
with quasitransverse (q2 >> 1 ) and quasilongitudinal 
(q2 << 1 ) propagation and the transitions between them. 
On the route that includes one transition, the increment 
is  Aq =* n/4; on a route containing two transitions the 
increment is Aq =* n/2. In these cases, a s  is  clear 
from the foregoing, the interaction is weak (Q << 1) if 
I~(q)1 >>I, along the entire beam. The interaction re- 
mains weak if the function G(q) decreases to values 
1 G (q)1 1 only in a small interval 1 ~ q l  << 1, and retains 
large absolute values in the remainder of the route. 
However, the interaction becomes effective (Q -1) if 
I G (q)1 2 1 in a large interval I Aql - 1. Finally, the in- 
teraction is strong when I G  (q)l << 1 on the interval 
1 A V ~  - 1 ; at  Aq =* n/4 and Aq = * n/2 the transformation 
coefficient is  close to its maximum values 4 and 1, 
respectively. All these conclusions can be confirmed 
by analyzing the phase structure of the Ricatti equation 
(2.1 1. 

It is clear therefore that in the case when the change 
of the function G(q) in the interval 1 -1 is comparable 
with or  less than the value of the function itself, the ef- 
fectiveness of the interaction in the plasma layer can 
be characterized by the parameter G ={c(qOk;. Here q, 
is  a fixed value of the variable q from the interval 1 ~ 8 1  
-1. As is clear from the definition (2.3) of 7, the in- 
terval I - 1 must include the region of values q2 - 1 
(since q changes little a t  q2 >> 1 and q2 << 1). Therefore 
the interaction parameter can be defined by the ex- 
pression3) (Ref. 1 ). 

We note that the value q2 = 1, depending on the sign of 
q, corresponds to a value q = 3n/8 o r  q = n/8 [see (2.3)]. 

This definition means the following. If the plasma 
contains a region with a substantial change of the po- 
larization of the geometrical-optics waves K,,, (1.2) 
(i.e., hq1 -1 along the beam), and if the relative change 
of the characteristic function G(q) is  smaller than or  
comparable with unity in this region, then the values 
of the interaction parameter make it possible to  assess 
the effectiveness of the wave transformation: 

We note further that according to (2.2) 
"out tout 

2 J ~ ( q ) d q =  J (n,-n.)dt. 

'in gin 

I t  follows therefore that on the beam segment from 
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5, to 5,,,, which coincides with the region of the ef- 
fectiveinteraction 0 - 1, I G  (q)1 5 I) ,  the absolute 
value of the integral 

Lout 

5 (n1-n2)R 
(in 

does not exceed unity. Since the condition I (n, - n,)d 51 
-1 defines the spatial period of the beats between the 
geometrical-optics waves, it is clear that the effective 
interaction in the plasma is realized when a substantial 
change of the polarization of these waves takes place 
in the indicated period (i.e., when the period of the 
beats spans an interval I hql -1). The interaction is 
connected with the fact that the polarization of the total 
radiation does not manage to follow the changes of the 
polarization of the geometrical-optics waves, s o  long 
a s  this change takes place over a distance shorter than 
o r  of the order of the indicated period of the beats. 

In a magnetoactive plasma, the interaction parameter 
(2.17) is determined by the expression 

8ud(l-v) cos'a 
G'=[2(n,-~1~)li,&]~I,~-,= 

(I-v-a) (1-u-u+uu cos'a) 
u''. sin' a 

x{$[ 2(i-v)cosall-' I ql-l. 

The curly brackets contain here the quantity k d , ,  
where 

is the scale of variation of the quantity q along the 
beam in the region qZ -1. It is important that the ef- 
ficiency of the transformation is determined only by the 
character of the variation of q ( l ; ) ,  while the derivatives 
of the refractive indices n,,, o r  of any other combina- 
tions of the plasma parameters along the beam are  in 
fact of no importance. According to (2.19), 

If v<<l and a-u-11-ul -1. An investigation of the 
general expression for G shows that the interaction pa- 
rameter decreases substantially compared with (2.20) 
if one of the following conditions is satisfied: 

[the inequality v<  1 ensures transparency of the plasma, 
and v<<uIh ensures mutual proximity of the dispersion 
curves n, .2(l;)1. 

If the scale A, is determined principally by the change 
of the magnetic field along the beam:' then we can put 
in (2.19) u =a([), v =const, a =const. In the region (2.21) 
the interaction parameter is then 

Go=2"~kou (I-u) " cos' a 

and in the region (2.22) 

In a tenuous plasma (v<<l) the parameter (2.23) cor- 

responds to the previously introduced1 interaction pa- 
rameter Go, which describes, in particular, wave 
transformation in a neutral current sheath of a plas- 
ma.8 The interaction defined by the parameter G, 
(2.24) has not been investigated before. 

Let now the main contribution to  the scale A, be 
made by the change of the direction of the magnetic 
field. Putting in (2.19) a = (Y (5), u =const, v =const we 
find that in the region (2.21) the interaction parameter 
takes the form 

This is a known parameter that characterizes the trans- 
formation occurring when a wave passes through a weak 
transverse magnetic field (see Refs. 2, 3, and 15). 
This transformation was investigated in Refs. 5 and 6. 
Next, in the region (2.22) we have 

G - JZk,v sina 
~ - ~ l ~ l ~ a - ~ .  (2.26) 

The parameter (2.26) was obtained in a preceding 
paper.l To  our knowledge, no study was made of the 
transformation of waves under conditions when this 
parameter is valid. 

It is easily seen that in a sufficiently tenuous plasma 
(v<< 1)  all four interaction parameters (2.23)-(2.26) 
contain small  quantities which a r e  not contained in the 
expressions for the parameter (2.20). Because of this 
circumstance, in the cases (2.23)-(2.26) the interaction 
effect sets in at larger values of A, or in a less tenuous 
plasma than in the cases when formula (2.20) is  valid. 

3. THE STANDARD PROBLEM 

In the investigation of standard problems it  is con- 
venient to use the equation 

This equation can be obtained from the system (1.8) 
after eliminating the function f, and changing w e r  to  a 
new unknown 

and a new independent variable q (2.3). Exact solutions 
of (3.1), expressed in terms of well investigated func- 
tions, a re  known only for  a limited number of charac- 
teristic functions ~ ( q )  (see, e.g., Ref. 16). It must be 
noted, however, that each standard solution corres- 
ponding to a given form of the function G(q) describes 
an entire class of plasma layers. This is clear from 
the definition (2.2) of ~ ( q ) ,  which imposes one differen- 
tial constraint 

on the choice of the functions u([), a(l;), and v(5) that 
determine the variation of n, ,,(g) and q(5) along the 
beam. 

Among the exact solutions of the linear interaction 
problem, the simplest is the case when ~ ( q )  is constant, 
when the general solution of (2.1) can be expressed in 
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terms. of elementary functions: 

(the constant Co is determined by the value of P at the 
entrance of the layer). The transformation coefficient 
Q can be easily obtained from (3.3) with the aid of re- 
lation (2.5): 

Equation (3.4) goes over into (2.16) a s  G'O. 

The dependence of the transformation coefficient on 
the parameters G and Aq has an oscillating character, 
since the region of the interaction i s  not localized in- 
side the layer that includes the entry to and the exit 
from the layer (the points qin and qou,). 

To illustrate the results of the qualitative analysis of 
the linear interaction, we consider in greater detail the 
standard problem with the function G(q) in the form 

where qin >qou, > 0. The role of the interaction parameter 
(2.17) in the case of a transition from the quasitrans- 
verse (qi, >> 1 ) to the quasilongitudinal (q,,, << 1 ) propa- 
gation is played here by the positive quantity p =G (3n/8) 
= ~ ( q ) l ~ , .  At the entrance and exit, where 

qin=n/4+'i2arctg pin. q011t=n/4+ '/2arctg pour, 

the function ~ ( q )  assumes infinitely large positive val- 
ues, and in the middle of the layer it reaches a minimum 
value G,, > 0. In accordance with the qualitative picture 
of Sec. 2, we can state that the chosen form of G(q) 
ensures validity of the geometrical-optics approxima- 
tion on the edges of the interval, the interaction region 
G(q)a 1 can be located only in the central part of the 
interval Aq = q,,, - q, (at G,,, 5 1 ). On the other hand, 
if G,, >> 1, then geometrical optics i s  valid over the 
entire layer and there is no linear interaction. 

According to (3.2), the characteristics of the con- 
sidered layers with G(q) in the form (3.5) should be con- 
nected by the relation 

pin-pout n1-n2 
1(0)= - +qo.t, 0- j ------ ag. 

l+exp (2'/'o/p) 2 (qz+i) ',- 
(3.6) 

, ~ 

The function q(u) recalls the Epstein transition layer.17 
However, the function q(5) represents the Epstein layer 
only under the condition that o is proportional to 5, 
i.e., under the condition n, -n2m (q2 +l)lh. From the 
form (1.1) of n,,, it is clear that the last condition is 
realized if the quantity c/&lh remains constant along 
the beam (see (1.3) and (3.6)j. 

An example of a concrete realization of this standard 
problem is interaction in a strong magnetic field u 
=const >>I, v=const <<ulh, a(g)<<l, when the in- 
homogeneity of the plasma layer along the beam is en- 
sured by variation of the direction of the magnetic 
field: the angle a ( t )  decreases monotonically along the 
beam from a, to  a,,, . The interaction parameter p 
coincides in this case with GII  [Eq. (2.26)]. In the other 
limiting cases discussed a t  the end of Sec. 2, the pa- 

rameter p is identical with Go, G,, and GI. 

The solution of Eq. (3.1) with the function G(q) (3.5) 
reduces to hypergeometric functions .'7 Using their 
asymptotic representations, we can find the transfor- 
mation matrix (1.16). We present here only the ex- 
pression for the transformation coefficient 

where A i j  =Kiout - K,, ( i ,  j =1,2). According to (3.7), 
effective transformation (Q -1) occurs under the con- 
ditions p s 1 and I ~ q )  - 1. In particular, for a layer 
containing a transition from quasitransverse propaga- 
tion (qi2, - a) to quasilongitudinal propagation (q:: - O), 
the transformation coefficient takes the simple form 

In this case Q is a function of only the interaction pa- 
rameter p ,  and in full correspondence with the results 
of the qualitative analysis of Sec. 2 the quantity Q -1 
a t p S 1  andQ<<l  fo rp>>l .  

It should be noted that according to (3.8) we have Q - $ if p - 0. This result becomes perfectly under- 
standable if it is  recognized that a t  P = O  (i.e., G =0) 
the radiation polzrization is not changed by propagation 
in the plasma layer (see the discussion of the variant 
~ ( q )  = 0  in Sec. 2). If a linearly polarized wave of one 
type (say, ordinary) is  incident on the entry to the layer 
(where q: >> 1), then a t  the exit from the layer (where 
q&, << 1) such a polarization corresponds to super- 
position of two circularly polarized waves of equal in- 
tensity-ordinary andextraordinary. In accordance with 
the definition (1.17), this leads to  a value Q =$. 

The correctness of the qualitative analysis of the 
linear interaction presented in the present article is 
confirmed by results of an analysis of concrete prob- 
lems on the propagation of electromagnetic waves 
through a quasitransverse magnetic field5.6.7 and through 
a neutral current sheath," and also by analysis of a num- 
ber of standrrd problems concerning linear interaction 
of the limiting polarization type, which were investi- 
gated p r e v i o ~ s l y . ~ ~ " ~  

l'1n the quasi-isotropic approximation, the refractive indices 
are calculated only accurate to quantities of order (nl - nz)z/nz 
<< 1, therefore the assumption n, +n,e 2&lJ2 is  valid. 

2'0vei the small interval I ~q 1 << i it is convenient to seek the 
solution of (2.1) in the form of a series in Aq. As a result we 
get Qa (AV)~<< 1. The interaction therefore turns out to be 
weak for quasilongitudinal propagation (q2<< I) ,  quasitrans- 
verse propagation (cj2>> 1). and in a tenuous (v<< 1) inhomo- 
geneous plasma with a homogeneous magnetic field (u= const, 
(Y = COIIS~). In all these cases, as is  clear from (1.4) and (2.3), 
the increment Aq along the beam is  small. 

3 ' ~ e  note that in his article, cohen3 used the term interaction 
parameter for the function G(q) rather than for the quantity 
G (2.17) introduced here a d  previo~sly.'*~ 

4 ' ~ h e  corresponding conditions for this can be easily found by 
turning to the definition given above for Aq in terms of the 
derivative of q (1.4) (see Ref. 1 in this connection). 
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A soliton system subject to perturbation. Oscillatory shock 
waves. 
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We study a system of solitons of the perturbed Korteweg-de Vries equation with nearly equal 
amplitudes. We show that in that case there may exist quasistationary systems with a large number of 
solitons for well-defined relations between the amplitudes. Such systems become stationary when there is 
a piston which compensates for the damping of the solitons and their mutual repulsion. Using such an 
approach we give a detailed description of the soliton structure of oscillatory shock waves. 

PACS numbers: 02.30.Jr 

1. In the present paper we study effects which occur 
when a permanent perturbation acts on a system of 
solitons, and we consider from that point of view the 
structure of shock waves in weakly dispersive media. 
To fix our ideas we consider here waves which a re  de- 
scribed by the perturbed Korteweg-de Vries ( K ~ V )  
equation 

where R i s  a (generally speaking non-linear) operator 
acting upon the function u(x, t) .  The general approach 
discussed here and several of the results turn out to be 
valid also in a number of other cases. 

As far  a s  the deformation 6u(x, t) is concerned we 
shall discuss here only i t s  "tail" part which is described 
by the e ~ ~ r e s s i o n s ~ * ~  

6u- = lim 6u = xzeq, 
z--- 

Indeed, 6u(x, t) is transformed into a flat tail already 
at a few soliton lengths behind the soliton, and this 
can also be seen from numerical solutions5 obtained 
for R = a2/ax2). 

The characteristic time scale, defined by the per- 
The evolution of a single perturbed KdV soliton is turbation, is' t,, =t,/.q, where t,= ( 2 ~ ) ~  is the char- 

described by the acteristic time connected with the unperturbed soliton. 
11 (2. t)  =u,(z, ~ ( t ) )  +6u(z, t ) ,  

u.(z, X )  =-Zx2 sccllZ Z, z=%lz-f (t) I ,  

where 

e= dt -5 4% jn~u.~sech~za, 

If, therefore, there a re  two solitons with greatly dif- 
(2) ferent amplitudes (6H=x2 - ~ ~ - x ~ , , ) ,  the time it takes 

the larger soliton to pass through the smaller one is of 
the order of t,. As t,<< t,, the interaction of the soli- 
tons does not appreciably interfere with the effects of 

(3) theperturbation. 
-- 

However, this interference may turn out to be im- 
d 5  -=422-- portant if the solitons have almost the same ampli- ' ~ R [ u . ~ ( r s e c h z z + t b z + L 2 z ~ d z .  
at 4 x 3  

- - (4) tudes, i. e. , xi , tx2 >> 1 h 1 .  We shall therefore consider 
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