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A technique based on the general angular-momentum formalism is developed for the computation of the 
probabilities of quantum transitions at acceptor centers in crystals with a degenerate valence band. This 
technique is used to compute the probabilities of single-phonon nonradiative transitions between the 
levels of the discrete spectrum of the acceptor. It is shown that in the region of large values of the 
parameter qa the probabilities decrease rapidly with increasing qa (q is the phonon wave vector and a is 
the radius of the center) and that the transition to the ground state is a bottleneck in the intracenter 
relaxation process. As applied to the parameters of Ge, the computation of the lifetime of the first 
excited state of the acceptor leads to large values (up to roughly lo-' sec), in accord with the 
experimental data. 

PACS numbers: 61.70.Rj 

1. INTRODUCTION from the band by the impurity center, while the subse- 

In a wide class of semiconductors with a cubic lattice quent fast intracenter-relaxation processes virtually 
do not manifest themselves, and a r e  difficult to ob- the valence band is degenerate. This makes the energy 
serve. spectrum of shallow acceptor centers nontrivial and, in 

many respects, very interesting. After the original . 
work by Kohn and ~hechter , '  quantitative acceptor-cen- 
ter  calculations were performed with various degrees 
of accuracy by a number of authors. 2'5 Concomitantly, 
the optical spectra of such centers were investigated 
experimentally (for a review, see, example, Ref. 6). 
There i s  now clarity in respect to the classification of 
the acceptor levels, and an entirely satisfactory quanti- 
tative agreement between the theoretical and experi- 
mental data on the locations of the levels has been 
achieved. 

Meanwhile, the problem of the computation of the in- 
tensities of the quantum transitions between acceptor 
levels has virtually not been formulated. Such compu- 
tations a re  technically difficult, since, because of the 
multicomponent structure of the acceptor wave func- 
tions, the integration over the angular variables invol- 
ves a large number of spherical harmonics with differ- 
ent angular momenta. These difficulties a re  especially 
great in the particular case of calculations of the pro- 
babilities of nonradiative transitions occuring in accep- 
tors  with the emission of phonons. 

Little attention has on the whole been paid to single- 
phonon relaxation processes in shallow impurity cen- 

However, recently, Gantmakher and ~ v e r e v , '  in ana- 
lyzing the experiments on the magnetic-impurity oscil- 
lations of the low-temperature photoconductivity of 
p-Ge, arrived a t  the conclusion that the relaxation time 
of the first  excited state of acceptors in Ge is long: r 

lo-' sec. The preliminary results of our com- 
putations' agree with r -10" sec. Close values, r = 3  
x 10" sec (Ref. 9) and 7 = 6 x 10" sec, were also obtain- 
ed in the latest experiments, which were performed by 
Gershenzon et a1. ,lo using a completely different meth- 
od. 

A distinctive feature of the processes of relaxation to 
the ground state of shallow impurity centers is the ex- 
tremely strong dependence of the transition probability 
on the parameters of the centers. Physically, it ar ises  
a s  a result of the following circumstance. The charac- 
teristic wave vector, q, of the phonons emitted in a 
transition to  the ground state is given by the relation 
E,  -Esq, where s is the velocity of sound and Ei is the 
ionization potential of the center; here account i s  taken 
of the fact that the f i rs t  excitation potential of the center 
differs from E~ by not more than a factor close to two. 
Since E i  i s  connected with the radius, a ,  of the center 
by the relation E i  = e2/na (x is the permittivity), 

ters.  This is connected with the assumption usually qa=alX=e2/xfis=a'; (1) 
made in the analysis of the rate of recombination pro- 
cesses in semiconductors in the spirit of the cascade 
theory that the bottleneck is the process of carr ier  cap- 
ture from the band by one of the levels of the impurity 
center-generally speaking, not by the ground level, 
but by one of the excited levels. In this case the rate 
of relaxation of the excited states, i. e., the rate of 
transition of the captured carr ier  to  the ground level, 
is assumed to be sufficiently high. As applied to shal- 
low impurity centers, where the relaxation is a single- 
phonon process, this appeared to  be a particularly rea- 
sonable assumption. From such a standpoint, the com- 
putation of the probabilities of intracenter relaxation 
processes was not essential; the rate of the recombin- 

X = ~ / 2 n ,  h being the phonon wavelength. For the usual 
values of the parameters in Ge-type crystals, the ef- 
fective "fine-structure-constant" a*-30 >> 1. There- 
fore, we meet here a situation that i s  the opposite of 
what obtains in the optics of atoms and impurity cen- ' 

ters,  where expansions in terms of multipole moments 
a re  valid in intensity calculations. For qa/2 >> 1, the 
transition matrix elements a r e  determined largely by 
the behavior of the wave functions in the vicinity of the 
singularity of the potential, i. e. ,  a t  small r,  and de- 
crease rapidly with increasing qa-not slower than 
(qa)%. For  qa/2 << 1, the probabilities decrease rapidly 
with decreasing q. 

ation processes is determined by the rate of capture The relaxation processes in shallow impurity centers 
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were first  considered by Ascarelli, Brown, and Rodri- 
guezll'12 within the framework of the hydrogenic model 
for a nondegenerate band in connection with the problem 
of recombination via such centers. It is clear from the 
foregoing that, a s  a result of the extremely rapid de- 
pendence of the probabilities on the parameters of the 
problem, attempts a t  a direct application of the obtained 
formulas to  semiconductors with a complex band struc- 
ture through the replacement of the Bohr radius by 
some effective "center radius" lead to a large uncertainty 
in the transition probabilities-up to several orders of 
magnitude. For  example, because of the degeneracy 
of the valence band, the acceptor wave function contains 
two scales,13 which a re  connected with the presence of 
two different masses (of the light and heavy holes); 
therefore, the concept of a center radius becomes am- 
biguous. In donors, the anisotropy of the effective 
mass has a significant effect on the probability values." 

At the same time, general qualitative laws a r e  well 
conveyed by relatively simple formulas that a r e  obtain- 
ed for the hydrogenic model. For T =0, in the limit 
qa/2 >> 1, we obtain for the probability of transition be- 
tween the s levels nl and nz (it is assumed that n2 < nl) 
the expression1' 

here D is the deformation potential, p is the density, 
s is the velocity of sound, and a is the Bohr radius. If 
we express the right-hand side of (IIa) in t e rms  of qa, 
then 

W 2  1 E,a 1 1 
w,,,= - 

ntips2aJ (n,n2) (pa)  ' qa=- --- f is (n.2 nZ2 ). ( I I ~ )  

It can be seen from the formulas (11) that the dependence 
of the probability on the parameters is indeed a rapid 
one, and i t  also follows from (Ilb) that, a t  fixed qa, the 
probability essentially depends on nl and nz. The right- 
hand side of (IIa) monotonically depends on nz a t  fixed 
nl; a s  a result, the transitions between neighboring 
levels predominate in the qa/2 >> 1 case. On the other 
hand, a t  small qa values the probabilities decrease rap- 
idly, and the relaxation a t  f irst  proceeds in steps signi- 
ficantly exceeding the level spacing. At this stage it 
proceeds relatively rapidly, and then, when qa/2 >> 1, i t  
abruptly slows down. 

The object of the present paper is to develop a tech- 
nique for computing transition probabilities for acceptor 
centers. We focus our attention on the computation of 
nonradiative-transition probabilities. The consistent 
description of these transitions within the framework of 
the effective-mass method is based on the use of the 
matrix Hamiltonian of the electron-phonon interaction.15 
In the problem with degenerate bands great difficulties 
a r e  presented by the integration over the angular vari- 
ables. Therefore, we restrict  ourselves to spherical 
bands, which allows us  to use the standard techniques 
of angular-momentum theory, thereby significantly 
simplifying the calculations. At the same time, this 
approximation adequately exact, in any event, a s  ap- 
plied to Ge. 

The numerical computations confirm the existence of 

long intracenter relaxation times; this question is dis- 
cussed in the final section of the paper. 

2. THE BASIC EQUATIONS 

In the spherical approximation the Hamiltonian of the 
acceptor has the form 

where the J ,  a r e  the matrices of the moment J = g .  Let 
us, following Baldereschi and ~ i ~ a r i , '  choose the con- 
stant y to  be equal to Y = ( 2 ~ 2  + 3y3)/5; YI, y2, and y, 
a r e  the Luttinger parameters. The deformation-poten- 
tial Hamiltonian describing the interaction of the hole 
with the acoustic phonons has, in the spherical appro- 
ximation, the form 

where b ' = (26 + 3' 'b)/5; a ,  b, and b a r e  the deforma- 
tion potentials15; E , ~  is the strain tensor. The choice 
of 6' is made in much the same way a s  the choice of Y, 
and corresponds to the retention in He, ,,, of only the 
zeroth-rank spherical tensors; this definition of b' is 
close to the one used by Bir et al. l6 

We shall also describe the vibrations of the crystal 
in the isotropic model. Then the acoustic phonons 
split into longitudinal and transverse phonons, and 
their spectrum is spherically symmetric. We shall not 
consider the interaction with the optical phonons, since 
their frequencies in Ge exceed E,/tZ. 'I 

In the adopted model, the probability of transition of 
the hole from the state 1 into the state 2 with the emis- 
sion of a phonon of the v-th branch a t  low temperatures 
is equal to 

Here A E  =El - Ez, q is the wave vector of the emitted 
phonon (tZw,,(q) = AE), u,, =dw,/dq is the group velocity 
of the phonons, 

and the e"(q) a r e  the unit polarization vectors. The in- 
tegration over G?q in (3) is performed over the angular 
coordinates of the wave vector. 

As a result of the presence of spherical symmetry 
and a center of inversion, the hole wave function can be 
represented in the form 

where the Y , ,  a r e  spherical harmonics and the X, a r e  
the spin functions of the hole. The quantum number F 
determines the total angular momentum; M, i t s  compo- 
nent; L is equal to F- a or  F - $; I assumes the values 
1 = L,  L + 2; and n numbers of the levels with a given 
{LFM) set. The factors ( l m ,  Js/FM) a r e  Clebsch-Gor- 
dan coefficients (CGC). 

The computation I,, integrals includes integration over 
the angular variables of r and q, a s  well a s  over the 
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modulus of r. All the integrations over the angular 
variables can be performed in the general form; this 
will be done in the following section. Onthe other hand, 
the integration over r can be performed only approxi- 
mately, since the functions R,,, are  determined from 
numerical computations; we consider this problem in 
Sec. 4. 

3, THE INTEGRATION OVER THE ANGULAR 
VARIABLES 

The quantities I,, [see the formula (3)] contain two in- 
dependent integrations over angular variables: the 
integration in the matrix elements over SZ, (the angular 
variables of the vector r) and the overall integration 
over q . Since, technically, this problem is rather 
tedious, we shall apply the tools of angukr-momentum 
theory to the two integrations. 

Let us first write the expression for D,,c,, [see (211 
in terms of irreducible spherical tensors. Expanding - 
the tensor caB and the "direct square" 

in terms of irreducible tensors (Ref. 18, 0 107), we 
obtain 

In the irreducible tensors, the subscript enclosed in 
brackets indicates the rank of the tensor. The index p ,  
which numbers the tensor components, is written a s  a 
subscript for covariant, and a s  a superscript for con- 
travariant, components; for an arbitrary tensor, T&, 
= (-)k"T, I-, . The absence in (6) of a term with k = 1 
is due to the fact that the tensor E,, is a symmetric ten- 
sor ( E , ~  = cBu). 

The tensor E(V, q), defined by the formula (41, can 
easily be rewritten in the form of a spherical tensor 
in the coordinate system, Sq, whose Oz' axis is oriented 
along q. Let us  assign the index v = 0 to the longitudi- 
nal polarization and, for the transverse phonons, 
choose a s  the ev the complex unit vectors of circularly 
polarized waves and assign to v the values v =*l. Then 
in the S, system the components of the spherical ten- 
sors  corresponding to the vectors q and ev are  equal to 
4(1)p=iq6, ,, I\), = i6,,,,. According to (4) and the gen- 
era l  formula for the spherical-tensor product (Ref. 18, 
8 1071, we have 

for the remaining k all  the components z(,),, =O.  The 
components of the tensor E * )  in the coordinate system, 
S, fixed to the crystallographic axes can be expressed 
in terms of the &(,h with the aid of finite-rotation ma- 
trices (i. e. , Wigner's D functions; see, for example, 
Ref. 19, Ch. 4): 

where w,denotes the set  of three angles determining 
the mutual orientation of the systems S and S,. Inci- 
dentally, it follows directly from (7) that the interaction 
with the transverse phonons is determined solely by the 

deformation potential b '. Indeed, when v -1, p =*I 
also, and therefore the tensor d(o) = 0. 

Similarly, expanding e-'" in terms of spherical waves 
in the system S, (cf. Ref. 18, P34), and then going 
over to  the system S, we obtain 

e-'qr= C (4n)"[l] j r  (q r )  C Y,,'(Q.)D;~ (a,), 
where [ l ] =  (21 + 1)lr2 and the j, a r e  spherical Bessel 
functions. 

Now we can perform the integration over SZ, in the 
matrix elements M ( v ,  q). The integrand in this inte- 
gration contains three spherical harmonics arising 
from the wave functions of the states 1 and 2 and the 
expansion of the plane wave eelqr [see (5) and (911. The 
integral can be expressed in terms of the CGC (Ref. 18, 
0107): 

It follows from the Wigner-Eckart theorem that the 
matrix elements of the angular-momentum vector J 
entering into (6) can also be expressed in terms of 
CGC. The components of the spherical tensor corres- 
ponding to J are: 

Therefore, the components of the irreducible tensors 
(J@J)(,, can also be written in terms of CGC. 

Thus, the matrix element M(v, q) can be wholly ex- 
pressed in terms of a sum of products of a few CGC and 
two D functions. For the subsequent integration over 
SZ,, it is convenient to transform the product of the two 
D functions into a sum by expanding it in terms of D 
functions with different angular momenta (Ref. 19, Sec. 
4.6): 

From the above-presented formulas we obtain the 
following expression for the transition matrix element: 

where 

0 

The last summation sign in (13) denotes summation 
over all  the angular-momentum components that a re  
encountered twice. 

We carry out the transformation of this last sum. 

1117 Sov. Phys. JETP 49(6), June 1979 S. V. Meshov and f .  I. Rashba 1117 



FIG. 1. 

using Levinson's diagram techniquez0 (see also Refs. 
19, 21, and 22). We shall se t  the three-tailed vertices 
in correspondence with the Clebsch-Gordan coefficients 
according to the following rule: 

and with each angular-momentum component that 
enters into two CGC and over which a summation is 
performed, a line segment joining the corresponding 
vertices. Then the inner sum in (13) is represented by 
the diagram in Fig. 1. This diagram has three out- 
ward lines. Therefore, its dependence on the compo- 
nents of the angular momenta along the external lines 
should be the same a s  in the CGC (F2M2, jMl - M2/ 
F1M3; we shall compute the coefficient of proportional- 
ity below. 

In transforming the diagrams, we use the orthogon- 
ality relation for the CGC, which, in the diagrammatic 
representation, has the form 

as well a s  the fact that any diagram with two external 
lines is diagonal in their quantum numbers and does not 
depend on the values of the angular- momentum compo- 
nent: 

With the aid of these relations, an arbitrary three-tail- 
ed diagram can be transformed a s  follows: 

Let us  now return to the diagram in Fig. 1. Separat- 
ing out the part in i t  that is surrounded by points and 
transforming it with the aid of (18), we obtain 

Here the closed four-vertex diagram has been expres- 
sed in terms of the 6j symbol. With the aid of (19), 
the diagram in Fig. 1 can be reduced to  a simpler dia- 
gram, which, in its turn, can be transformed with the 
aid of (18): 

(P2M2,iMi-M,IPIMl>; (20) 

the closed six-vertex diagram has been expressed in 
terms of the 9j symbol. 

This completes the evaluation of the inner sum in 
(13), and we write out here the resulting expression for 
the matrix element: 

where 

In deriving (22), we took account of the fact that the 
factor (120, 10 1110) is nonzero only for even 11 + 12 + 1. 

It now remains to carry  out the integrationover nq in 
the formula (3). In order to use the orthogonality prop- 
erty of the D functions, let us  go over from integra- 
tion over a, to integration over w,. This can be done, since 
the system S ,  is specified up to a rotation about the 
vector q, and therefore one of the angles in the D func- 
tions is arbitrary; we can integrate over it and divide 
the result by 2n. As  a result, we have 

The entire dependence on M1 and M2 is contained in the 
square of the CGC. Normally, what is of interest is 
the transition probability summed over the mutually 
degenerated states belonging to the final level; after 
the summation over M2, we obtain in place of (23) the 
expression 

Substituting (24) and (6) into (31, and separating out 
the deformation potentials a and b', we obtain for the 
probabilities for the transitions in which longitudinal 
phonons participate the expression 

W2,,=daZ+9la6'+W (6') (2 5a) 

and for  those in which transverse phonons participate 
the expression 
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The computation of the coefficients 4 g, %, and Ce, 
requires knowledge of the radial functions. 

Everywhere above we assumed that the problem is 
spherically symmetric. However, we can obtain a 
generalization of the formula (23) with allowance for 
the splitting of the levels by the crystal field. 

4. EVALUATION OF THE INTEGRALS INVOLVING 
THE RADIAL FUNCTIONS 

To compute the matrix elements T,,, we need to know 
the radial functions, which can be found only by numer- 
ical methods. We prefer a qualitative analysis allowing 
us to elucidate the main trends to a discussion of the 
numerical results. 

As has already been noted in the Introduction, the 
hole transitions into the acceptor ground state (with 
energy transfer -Ei t o  the phonon) occur when qa>> 1, 
where a characterizes the dimension of the center. 
Therefore, here we give for the probabilities W the 
asymptotic formulas that foilow from the asymptotic 
behavior of the matrix elements [see (1411 a t  large 
q. It is, a s  usual, determined by the behavior of the 
integrand in the vicinity of the singularity, i. e., a t  
small r .  The investigation shows that, for qa/2 >> 1, 

i. e., W decreases not slower than mq4. In Ge the 
ground and first  excited states a r e  the states lri and 
lr, (see Ref. 15);' to which correspond the values L 
=O and 1, respectively. Therefore, W ~ ~ , , C  q-6. Of 
course, the formula (26) cannot be used for a quanti- 
tative comparison of the probabilities for the transitions 
between the various levels, since the coefficient that 
should be attached to the right member depends essen- 
tially on all  the quantum numbers3); this is clear even 
from the form of the formula (IIb). However, the for- 
mula (26) allows the comparison of the probabilities 
for the transitions that a r e  accompanied by the emis- 
sion of longitudinal ( I )  and transverse (t)  phonons. With 
allowance for (3), we find that the probability W E  s5, 
and, a s  a result of the appreciable difference between 
the velocities (s , /s ,  "21, i t  might be  expected that the 
transverse phonons would not play a significant role 
in the first  transition. 

For  transitions between close excited acceptor states 
with small qa, 

It is worth drawing attention to  the fact that, a s  a re- 
sult of the matrix structure of He, ,M,  here, in contrast 
to the case of optical spectra, monopole transitions with 
L1 = L2 and L1 = L2 k 2 a r e  possible; the intensities of the 
other transitions a r e  of higher order in qa. At small 
q the intensities decrease not slower than mq4. A com- 
parison of (26) and (27) leads to the conclusion that the 
most intense should be the transitions in the intermedi- 
ate qa range; in this respect, the picture i s  the same 
a s  in the case of nondegenerate bands (see the Intro- 
duction). 

Let us  now present some results of the numerical 
computations; more comprehensive data will be pub- 
lished separately. All the computations were carried 
out by us with ground- and excited-state radial func- 
tions, which were kindly made available to us  by Doc- 
tor N. 0. Lipari. These functions were given in the 
form of sums, 

R ( r )  = r s z  Qi exp ( -a , r )  , 

containing up to twelve terms, the successive values 
differing from each other by roughly a factor of two. 
The accuracy of these functions may be determined 
partly by the locations of the corresponding energy 
levels relative to  the ground level lr',. For  the three 
lowest excited levels fr,, 2r,', and 2r,, the corres- 
ponding values a r e  equal to 5.89, 7.31, and 7.54 meV. 
The experimental level-energy values for a boron im- 
purity in Ge are, according to Ref. 23, equal to  6.24, 
7.57, and 7.94 meV; the discrepancies a r e  apparently 
due mainly to the departure from the effective-mass 
method. 

To illustrate the q dependence of the coefficients of 
the formulas (25a) and (25b), we show in Fig. 2 plots 
of d(q) and %(q) for two transitions. Plotted along the 
abscissa axis is the quantity qa/2, where a is the Bohr 
radius, determined from the mass m = (m, + m,)/2 (m, 
and m, a r e  the light- and heavy-hole masses); i t  deter- 
mines the characteristic scale for the variation of the 
wave function a t  small distances. The curves in Fig. 2 
exhibit the general behavioral trends established above 
in the analytical investigation; they decrease rapidly 
a s  we move away from qa/2 -1. They also show how 
strongly the transition probability depends on the loca- 
tion of the acceptor levels: a change in the energy by 
a factor of one and a half leads to roughly an order-of- 
magnitude change in the probabilities. ') 

In Table I we give the values of the coefficients of the 
formulas (25a) and (25b) for the principal transitions 

qa/2 

FIG. 2. Dependence of the coefficientsd and% on qa for the 
transitions lr;-lr$ (the solid curves) and 2rI-lr7, (the 
dashed curves). Also indicated are the theoreticat values (T) 
of the parameter qa (according to Lipari) and the experimental 
values of qa for several third-group impurities. 
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TABLE I. to us, and to  L. N. Shchur for working out the program 
e 

Transition 1 1 3 ,: 

between the four lowest levels; the remaining two tran- 
sitions have a lower probability. Also given in the table 
a r e  the theoretical energy values for the corresponding 
transitions and the values of the parameter q,a/2 (for 
the longitudinal phonons). The q, and q, values were 
determined from the phonon dispersion curves. " 

5. FINAL REMARKS 

The parameters given in Table I allow us  to find the 
transition probabilities from the formulas (25a) and 
(25b). Close values have been obtained for the deforma- 
tion potentials b and b by various authors; we take b 
=-2.2 eV, b =-4.4 ev2' and, consequently, b ' =-2.4 
eV. In contrast, the value of the "isotropic" deforma- 
tion potential is not very reliably known. Two values 
a =2 evZ5 and a =-5.62 ev2' a r e  given in the literature. 
We give the values of the probabilities W =  W, + W, for 
the corresponding transitions in the last columns of 
Table I. The probabilities change, on the average, by 
one order of magnitude, depending on the assumed value 
of a .  

It can be seen from the table that the lifetime, T, of 
the lowest excited state lr, is indeed long compared to 
the lifetimes of the higher excited states.=' For each 
of these states we can indicate at least one transition 
whose probability exceeds T-' by a factor of 10-100. 

The uncertainty in the computed T value a r i ses  largely 
as a result of the existing uncertainty in the value of the 
potential a .6' But the spread of the experimental values 
for T (Refs. 7, 9, 10) is also considerable (see the In- 
troduction). Therefore, we cannot give a particular 
preference to any of these values of a .  Since the theory 
indicates the presence of a strong dependence of T on 
the chemical shift (cf. Sec. 4), it would be interesting 
to  measure T for different impurities of the third group. 

The obtained high T values agree entirely with the 
magnetic-impurity-oscillation mechanism based on the 
inelastic scattering of electrons by excited acceptors. ' 
But the question of the role of the competing mechanism8 
connected with the exciton decay on ionized acceptors 
remains, for the present, open. 

The above-developed general method of computing 
probabilities can be applied in the theory of a number 
of other phenomena, e. g., in the theory of hypersound 
absorption by acceptors in deformed crystals and in 
magnetic fields, of the contribution of acceptors to 
thermal resistance a s  a result of resonance scattering 
of phonons on the split ground level of the acceptor, etc. 

We a r e  grateful to V. F. Gantmakher and V. N. 
Zverev for valuable discussions, to Dr. N. 0. Lipari 

and performing the computer calculations. 

 he second factor in this formula differs from the one given 
in Ref. 11. 

2 ' ~ h e  number standing to the left of r is the ordinal number 
of the level with the given symmetry. 

3 ' ~ h e  complete asymptotic formulas for the probability of the 
f i rs t  transition a r e  derived in Ref. 8. 

4'0f course, the short-range potential of the impurity leads not 
only to a chemical shift of the levels, but also to a change in 
the wave functions; however, the role of this factor is  diffi- 
cult to assess .  

"since the smallness of the probabilities of the transitions to 
the ground state is connected with the fact that the factor qa 
is large for these transitions, the question a r i se s  whether the 
processes in which a large number of phonons participate 
could not compete with the single-phonon processes,  on 
account of the fact that phonons with smaller qa values a r e  
emitted in these processes. However, the many-phonon 
transitions should have a smallness in powers of the electron- 
phonon coupling constant. Allowing for the smallness of this 
constant in Ge, a s  well for the fact that the probabilities dif- 
fer  by only one-two orders  of magnitude, we find it difficult 
to expect the contribution of the many-phonon processes to 
be substantial. 

" ~ e s i d e s  this, it is necessary to take account of the well- 
known difference 27 (see also Ref. 15,332) between the val- 
ues of the deformation potential under homogeneous-deforma- 
tion and long-wave conditions: the second of them naturally 
enters into the transition matrix elements. 
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Threshold instability and inhomogeneous states in 
nonequilibrium superconductors with optical and tunnel 
quasiparticle pumping 
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A theory of the threshold instability in nonequilibrium superconductors with narrow quasiparticle sources 
(the electromagnetic field frequency, w, and the voltage, V, across the junction satisfy the condition 
w - 2444, V - U < A )  that was predicted in an earlier paper by the present author [Sov. Phys. JETP 
39, 862 (1974)l is developed. It is shown that, as a result of the development of the instability, a 
transition into an inhomogeneous state, which comprises regions with different finite (nonzero) order 
parameter values, is possible. The individual regions are separated by transition layers of width of the 
order of the quasiparticle diffusion length. In the case of a fixed voltage, V, across the junction (or of a 
given electromagnetic-field frequency o), the inhomogeneous state is nonstationary. When the current 
through the junction is fixed (for a given level of absorption), the inhomogeneous state becomes 
stationary since the relative phase volume is fued by the current. A broad range of experimental 
phenomena are well described by the theory. 

PACS numbers: 74.50. + r 
INTRODUCTION proposed by the present author,' is based on the exis- 

It has been observed in a number of experimental in- 
vestigations that nonequilibrium superconductors with 
optical and tunnel injection of quasiparticles go over 
into a new inhomogeneous state. The nature of the 
inhomogeneous state of superconductors that a r e  far  
from being in thermodynamic equilibrium has been in- 
tensively discussed in recent years. Two inhomoge- 
neous-state models a re  known. The first  model, f irst  
considered by Chang and ~ c a l a ~ i n o '  and Baru and Suk- 
hanov6 (see also Ref. 7) is based on possible anomalous 
diffusion of nonequilibrium quasiparticles (the diffusion 
model). It is assumed that the diffusion proceeds from 
a region with a large value of the order parameter A 
(consequently, with a low quasiparticle concentration 

into a region with a low A value (and a high n),  owing 
to the gradient a A / a  r .  The instability condition in this 
model is extremely sensitive to  the energy distribution 
of the nonequilibrium quasiparticles. Computations 
carried out with distribution functions satisfying a kin- 
etic equation with a wide*'' and a narrow"'12 quasi- 
particle source showed that the diffusion instability is 
apparently not realized under these conditions. This, 
of course, does not eliminate the possibility of realiz- 
ing the diffusion instability in appropriate situations. 

The second inhomogeneous-state model, which was 

tence of a nonunique dependence of the order parameter 
on the quasiparticle-pump power P (or another corres- 
ponding parameter). In this model, the stratification 
of a homogeneous superconductor into regions of the 
normal (A = 0) and superconducting (A+ 0) phases (or 
into regions with different values of A) can occur a t  a 
definite value, Po, of P .  For  P = P o ,  the energies of the 
phases with different A a r e  equal, and the existence of 
a stationary phase boundary of width of the order of the 
quasiparticle-diffusion length or  the coherence length 
is possible. This model is applied in Ref. 13 to non- 
equilibrium superconductors with tunnel injection [the 
superconductor-insulator-superconductor (SiS) junc- 
tion]. 

According to Refs. 9 and 13, the inhomogeneous state 
is a nonstationary state for both optical pumping (fixed 
electromagnetic- field frequency) and tunnel injection in 
a fixed-voltage regime (fixed voltage, V, across  the 
junction) with the exception of the V = Vo regime. The 
phase boundary moves with a velocity proportional to 
p -Po. If we neglect the time it  takes the new phase to 
fill the sample, then the transition occurs discontinu- 
ously (first-order transition). 

A stationary inhomogeneous state is attained in a 
regime in which a constant current flows through the 
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