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The thermodynamic characteristics of a ferromagnetic plate of finite thickness are calculated. The 
boundaries are described by a surface energy proportional to the square of the magnetization. A measure 
of the boundary energy is the coefficient of proportionality q which may have an arbitrary value and, in 
particular, may be either positive or negative. The effect of the parameter q (its sign and magnitude) on 
the nature of the transition and on the values of the thermodynamic quantities is described. The 
transition to a half-space is traced, and the role of fluctuations is analyzed. 

PACS numbers: 75.70.Dp 

1. INTRODUCTION the theory (see Refs. 9 and 10 and below). 

The effect of finite specimen dimensions on a phase 
transition of the second kind has repeatedly attracted 
the attention of investigators. I t  is impossible to give a 
complete enumeration of the papers devoted to this ques- 
tion (but see  the reviews, Refs. 1-3). Even if one ex- 
cludes the experimental investigations in this area,  one 
can note several different approaches to the theoretical 
study of the role of the surface: numerical calculations 
of the magnetism of this films that consist of afew atom- 
ic layers (in these papers, principal attention is paid to 
calculation of the critical dimension a t  which a coopera- 
tive phenomenon is first  possible in the system); inves- 
tigation by modern methods that a r e  being applied to the 

In a phenomenological approach to the investigation of 
a phase transition in a plate, one must bear in mind that 
in the immediate vicinity of T,, because of the unbound- 
ed increase of the radius of correlation, two-dimension- 
alization occurs: the order parameter ceases to depend 
on the coordinate along the normal to the boundary. Our 
treatment must of course not infringe upon this temper- 
ature range. Furthermore, a s  always, the phenomeno- 
logical approach is correct only outside the fluctuation 
region.11'12 An attempt to evade this limitation by mod- 
ification of the temperature dependence of the coeffi- 
cients of the expansion,' a s  we shall see ,  does not elim- 
inate the difficulties (see the Conclusion). 

solution of many-body problems; model Hamiltonians It has been showns that magnetic surface energy leads 
(Heisenberg, Ising, XY models) that allow for the ex- to a shift of the Curie temperature in a plate of finite 
istence of one or  severalboundaries"; and finally, use thickness. Since the sign of the magnetic surface ener- 
is made of the method of the self-consistent field and of gy has not been determined, the shift of Curie temp- 
a phenomenological approach that goes back to the Ginz- erature AT, =T,(d) - T, (d is the half-thickness of the 
burg-Landau method in the theory of s ~ ~ e r c o n d u c t i v i t ~ . ~  plate) may be either toward lower (z 7.0) o r  toward 

higher (z < 0) temperatures. A distinctive feature of 
We shall s tar t  from the phenomenological description 

the second case (z O), a s  was mentioned in Ref. 9, is 
of a phase transition that assumes a change of sign in 

the following: AT, does not approach zero a s  d- *. In 
one of the coefficients in the expansion of the free-ener- 

the case of a bulk specimen, between the high-tempera- 
gy density in powers of the order parameter. The dif- 

ture paramagnetic phase and the low-temperature ferro- ference of the surface forces from the bulk forces leads 
magnetic (T < T,) there is a special phase (in the inter- 

to nonuniformity of the magnetization in the boundary val T, < T < T,) characterized by the existence of sur- 
layer and thereby influences the phase transition. Theo- 

face magnetism: for T, T < T,, the magnetic moment retical and experimental investigations on uniform and 
nonuniform resonance in ferromagnetic fielms6 have A# 0, but i t  attenuates with distance from the surface. 

shown that the behavior of the magnetic moment at the For T -- T, (T > T,), the decay distance 6 becomes in- 
finite (6 - m for T - T,, T > T,). For finite plate thick- 

boundary of the specimen depends substantially on the 
ness, of course, there is only one transition, a t  T =T,, structure of the surface (for example, the surface aniso- 
where T, #T, (T, is the temperature a t  which a mag- 

t row may exceed the volume anisotropy by many times). 
netic momentd(z)# 0 appears in a plate of thickness 2d; 

The problem arises of explaining the role of surface en- 
s e e  Ref. 10). ergy in the properties of ferromagnetic specimens a t  

temperatures close to T,. The approach adopted in the 
present paper is similar to the work of Ginzberg and 
~itaevski'I' (see also the paper of Ginzburg and Sobya- 
nin8), which applied to superf luid helium equations an- 
alogous to the Ginzburg-Landau equations. We shall de- 
scribe the special behavior of the magnetic system at  
the boundary by introducing a surface energy, which for 
simplicity we shall take proportional to the square of 
the magnetization: the coefficient of proportionality 
serves as  an additional phenomenological parameter of 

In Refs. 9 and 10, the treatment stayed within the 
framework of the Landau theory.13 The only things de- 
termined were the shift of the Curie temperature, the 
dependence of the mean magnetic moment of the plate on 
temperature in the immediate vicinity of the phase-tran- 
sition point Tcd, and the value of the magnetic-moment 
density a t  the boundary as T - T,. The present com- 
munication investigates in detail the effect of the sur- 
face energy on all the thermodynamic characteristics: 
in particular, a calculation is made of the level of fluc- 
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tuations of the magnetic moment in a plate of finite 
thickness. Principal attention is paid to the case of neg- 
ative surface energy.2' 

We shall s tar t  from an expansion of the free-energy 
density in even integral powers of the magnetic moment 
and of i t s  gradient (H is the magnetic field): 

One can derive many conclusions in terms of the coeffi- 
cients A, B, and C. But to obtain specific temperature 
dependences, one must specify precisely the tempera- 
ture dependences of A, B, and C. Following Ginzburg 
and sobyanins (see also the review by ~ u b a n ' ~ ) ,  we shall 
suppose that 

For estimates, one can take a of the order of the inter- 
atomic distance, &o the ferromagnetic moment of unit 
volume far from T,, p the Bohr magneton, and 0, f i t =  1. 
In general, the critical index of the coefficient C is non- 
vanishing but small,15 and we shall neglect the variation 
of C with T. We shall take account of later terms of the 
expansion off in powers of J only when the approxima- 
tion being used would be insufficient. 

The expansion (1) with the temperature dependence (2) 
of the coefficients is ,  according to Ref. 15, not correct 
over the whole range of values of J a n d  of 7. In the 
construction of a theory in which the order parameter is 
calculated from a differential equation (cf. the JI theory 
of He II~),  this fact introduces substantial, possibly even 
insurmountable, complication. As will be seen from 
what follows (see also Ref. 14), with positive surface 
energy the results of solution of the problem do not get 
into contradiction with the expressions (2). When < 0, 
we shall use the usual Landau expansion, supposing that 
the expansions (1) and (2) lead to  contradiction^.^' There- 
fore for < 0 we shall use the usual Landau expansion, 
supposing that Aa:? and that Band C a r e  constants. 
A E T  and that B and C a re  constants. 

In the interior of an infinite specimen, when the role 
of the gradient is insignificant and H=O, 

and 
f-=-A2/4B=- (p'/4p')A10~1 ~ l ~ l - ~ ,  T<O. (4) 

From (3) and (4) one can draw comparatively general 
conclusions about the values of the parameters 1 and p. 
Since the magnetic moment J- vanishes a t  T =T,, there- 
fore of necessity 

P p .  (5 
In the notation usually adopted (see, for example, Ref. 
16), f a l ~ l ~ ~ ,  wherea!>O; that is ,  21-p=2-a!, and 
the specific heat C,a I T I  -. In all existing theories, as  
compared with the experimental facts, the index a! is 
either very small or  zero (in the latter case, f may con- 
tain a logarithmically divergent factor, which is not 
picked up by the expressions (1) and (2)). In the greater 
part of the paper we shall assume that a! =0, i.e. 21 - P  
= 2 and 

[see (5)], while 
A - = ~ A ~  I T  1 " + ,  P C ~ .  (7) 

In Landau's theory, p = 0. If we suppose (see Ref. 17) 
that J - = I T ~  ' I 3 ,  then p =2/3. According to (I), the sin- 
gularity of the magnetic susceptibility X, of an infinite 
specimen is determined by the coefficient A,  

i.e., xo=l 71 14), and the behavior in strong fields by 
the coefficient B: 

The "parasitic" divergence when p f 0 can be removed 
by adding to (1) a term lLd6 with D >O W:D = ~ " T , / ~ M ~ ,  
j3" = I),  which, without changing the behavior of dm as 
T -T,, leads to a finite value of a s  T - T,: 

( H / 6 D )  115, h'u 1 S ( l + p l P 1 l L  and h~ 1 r 1 5p12. (9') 

If p < 2/3, the more stringent condition is the second; i f  
p > 2/3, the first. 

For analysis of the role of the surface energy, we 
shall use the expression 

in which the integral is the volume part of the free en- 
ergy, the second term the surface part (the coefficient 
2 appears because of the two identical boundaries of the 
plate). Not being interested in the effects of a n i s o t r ~ ~ ~ , ' ~  
we shall suppose that the vectors d and H a r e  parallel 
to each other and to the plane of the plate, which occu- 
pies the layer Iz l <d.  Having the symmetrical case in 
mind, we shall seek d ( z )  for 0 $2 s d ,  adding the bound- 
ary condition at z = O  

We describe the surface part of the f ree  energy, like 
the volume part, phenomenologically: 

The coefficient C is introduced in Fs for the sake of 
convenience. Strictly speaking, y8 is not the total sur- 
face energy. When ys = O  the surface energy is nonzero. 
In fact, the natural boundary condition of the variational 
problem (1 0) without allowance for requires vanish- 
ing either of &(d) or  of dJ/dz I ,,. In the second case 
the term c(dA/dz)* in f is simply unimportant (J= 
const(z)), and the surface energy is zero; but in the 
first  case (A(d)=O) the term ~ ( d d / d z ) ~  must be taken 
into account: -4 depends on the coordinate z near the 
boundary, and consequently the surface energy is non- 
zero. As we shall see, the condition A(d) = O  corre- 
sponds to q -- + w. We have retained in (12) only the 
first  term of the expansion of in powers of d 2 ,  since 
there is no basis for expecting the parameter q to van- 
ish within the temperature interval of interest to us. 

The minimum of the free energy (10) is attained by the 
solution of the equation 

2Cd2.M/dz'=2AA+4BAS-H, 

that satisfies the boundary condition 
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Equation (13) of course permits solution in the form of a 
quadrature, and therefore the whole analysis reduced to 
an investigation of integrals of a definite form and to 
solution of a transcendental equation, which contains a 
function of the parameters that cannot be expressed as  a 
combination of elementary functions (the integral in 
question reduces to an elliptic integral; see  below). An 
exception is the "plate of infinite thicknessw-a half- 
space: in this case the solution can be expressed as a 
combination of exponential functions. 

2. HALF-SPACE 

In this case i t  is convenient to place the origin a t  the 
boundary, i.e., to suppose that the magnetic material 
occupies the region z L 0. Condition (11) is moved to in- 
finity, and condition (14) to zero: 

We begin with the case H=O and T < T ,. Both for q > 0 
and for q < 0, the .A=&) relation looks formally the 
same: 

here 

As 111 -,, is determined by the condition (15), 

and Am is given by the expression (3); when q > 0, A, 
<&, and vanishing of Am (for T - TC) is accompanied 
by vanishing of 4; thereby 0 for T 2 T,. Here A, 
vanishes faster than &. According to (18) 

A. 1 r s n = ( d - ' I q )  ( B / C ) ' " - d o l  l q ,  q>O. (19) 

It should be noted that the index p has dropped out of this 
formula. If q = m ,  t h e n 4  = O  for all T; when q =0, ac- 
cording to (18), 4 =Am (that is, d ( z )  2 Am). 

When q < 0 and T s T,, the surface moment does not 
vanish: 

As= 1 q  1 (CIB) '&. (20) 
In the phenomenological approach, q is an arbitrary 
constant; but formula (20) shows that there must exist 
(in a microtheory) a bound to the value of 14 1 (when q 
< 0). For example, the transition Iq 1 - m is inadmis- 
sible:' since i t  leads to A,-- m. 

Temperatures higher than the transition temperature 
T, (T >T,, i.e., A> 0 )  require separate treatment (weare 
considering the case q < 0). When = 0, 

As always, 1, is determined by the boundary condition 
(15): 

When z - m, the magnetic moment vanishes exponential- 

ly: 
- 

d , ( z )  x Z ~ X e x p  ( - z / 6 , - x ) ,  6.=(C/A)"=2'"S,. (23) 

The index s emphasizes that this has to do with surface 
magnetism. The difference between 6, and 6, has the 
same cause a s  does the difference in the susceptibility 
x to the left and to the right of T, [see (8)]. The exist- 
ence bound T, for the surface magnetism is determined 
by the condition for vanishing of A,: 

r .=(aq) ' /p .  (24) 

The measure of nonuniformity of the magnetic-moment 
density is different far from the boundary and in the 
boundary layer: far from the boundary, it is 6, or  6,, 
which i s  proportional to 1 T I - ' ' *  and becomes infinite for 
T - T,. In the surface layer, 

d ( z ) = . ~ , ( i + q z ) .  (25) 

The fact that 6, and 6, become infinite at T =T, shows 
that a t  this temperature the relation A = & )  is a power 
law: 

This expression can be obtained by a limiting process 
from formulas (21) and (16). 

Thus the transition from the paramagnetic state 
through surface magnetism occurs a s  follows: A(z )  1 0  
for T > T,. At T =T,, 4, appears; for T, < T T,, the 
moment l ( z )  is determined by formula (21); for T -- T, 
(T > T,), A- = 0 and 6,- a. At T =T,, a nonvanishing 
& appears; for T a T,, the momentvK=.,@(z) is given by 
the formulas (16) and (17); for T- T, (T <T,), 6,-m. 
The phase transition a t  T =T, is called a surface tran- 
sition, that a t  T = T, an extraordinary one (see, for ex- 
ample, Ref. 18). 

The transition to a state with a surface magnetic mo- 
ment is accompanied by a discontinuity AC, of the spec- 
ific heat, which is easily determined from the expres- 
sion for the surface density of free energy f,, valid near 
T, (T s T,), 

fa=- (@--A (T) ) Z ( ~ ~ ~ ~ z )  ". (27) 
From this and from (24), 

where S is the area  of the surface of the magnetic ma- 
terial. 

We shall now consider the effect of a magnetic field 
H applied, as we have said, parallel to the surface. The 
equation for Adz) can be formally integrated, but i t  i s  
more convenient to write the solution a s  an integral and 
to extract the consequences from it. In both cases (q 
5 0) 

The value of is determined by minimization of the 
homogeneous part of the free-energy density f [see (1) , 

and that of A, by the boundary condition (15), 

According to (29) and (30) we have in the interior of 
the specimen, apart from a preexponential factor, 
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A - - A ( z )  mexp ( - ~ / 6 ~ ) .  

6,=[C/ (4 .Hm2(H) + H / 2 A ,  ( H )  ) 1". 

The magnetic field decreases the depth of penetration- 
a natural result, signifying a tendency of the field to 
magnetize the specimen uniformly. In small magnetic 
fields (H-- 0). 

In large magnetic fields, 6, = ( 2 ' / 3 ~ / 3 ~ ~ " 3 ) 1 / 2  [see the 
remark after formula (9)]. 

Equation (31) enables us to determine the value of As 
#Aw. Treating a1 q l as a small parameter, we have 

In the contrary limiting case, when q6S,>> 1,  

When q < 0, just a s  in the absence of a field, formally 
As- - if 1 q 1 - 03 [but see  the remark after formula 
(20)]. The asymptotic behavior of 6% differs insignifi- 
cantly from the behavior of 6H [compare (35) with (32) 
and (33)l. 

3. PLATE OF FINITE THICKNESS (q > 0) 

As we have already said, a detailed discussion of the 
behavior of the thermodynamic characteristics in this 
case has been given in a paper of one of the authors.14 
Here we shall restrict  ourselves to a summary of the 
results on the limiting transition from a plate of finite 
thickness to a half-space at temperatures in the imme- 
diate neighborhood of T, (1 71 - 0, d- -. According to 
Refs. 9 and 14, for d # .o the transition from the para- 
magnetic phase to the ferromagnetic i s  a phase transi- 
tion of the Landau type, even if we suppose that P # 0 
whereas I #  1 [see (1) and (211. For d =-, the nature of 
the singularities depends on the values of P and I .  This 
shows that a t  large thicknesses d there is a narrow 
range of temperature (the narrower, the larger d)  with- 
in which the temperature variation of the thermodynamic 
characteristics of a thick plate differs substantially from 
the temperature variations of the characteristics for a 
half-space." The nonanalytic variation of the coefficients 
A and B with 7 manifests itself in a nonanalytic varia- 
tion of the coefficients of the expansion of the thermo- 
dynamic characteristics in (T - T,,)/T,, with the plate 
thickness d. From Table I one can see  the correlation 
between the behavior of the characteristics of a half- 
space with respect to T and of the characteristics of a 
plate with respect to d. The last line of the table gives 
the temperature variation of the correlation radius r, of 

TABLE I. 

Quantities Plate 

the fluctuations. It must be emphasized that the results 
reproduced in the table relate to an arbitrary value of 
the positive coefficient q #O.  The results relating to the 
J ,  theory of He II in a fine capillary8 a r e  thereby general- 
ized (in our notation, they correspond to q = +-). Ref. 8 
furthermore gives (see 63.3) certain results relating to 
a nonvanishing value of the order parameter. In a com- 
parison with our results, i t  is necessary to bear in mind 
that the parameter 1/X of Ref. 8 is equivalent to our q; 
in Ref. 8, an expansion is carried out in powers of X. 

4. PLATE OF FINITE THICKNESS (q < 0) 

In order to determine the spontaneous magnetic mo- 
ment, the specific heat, and other characteristics, i t  is 
of course necessary to solve equation (13) with the 
boundary conditions (14) and ( l l ) ,  to substitute the solu- 
tion in (lo), and to perform the appropriate differentia- 
tions. Since the solution is completely determined by 
the value of the magnetic-moment density a t  the origin 
[when z =0, A(z =O) =A(o)], one must begin with a sol- 
ution of the dispersion equation, which we write for H 
= O  in the following form (see Introduction): 

where 

A=d ( I A I IC) '", 7  =A/qZC, q = B A 2 ( 0 )  /q2C, 

5 = d ( d ) / A ( O ) .  
(37) 

We note that here it proved more convenient to intro- 
duce dimensionless parameters different from those 
used in Ref. 14. The parameters A and y describe the 
"conditions of the problem"; they describe the plate 
dimension and the temperature, while q and I describe 
the quantities being sought. Formally the range of var- 
iation of y is from -a to +.o. When y < 0, equation (36) 
requires satisfaction of the condition 

q G l r l / 2 ,  

which means that for q < 0 the magnetic-moment density 
in a plate of finite thickness is larger than 4 [d(z) 
&A(O) >.At,]. 

The region of existence of magnetism (q a 0) is bound- 
ed by the curve 

I+$" 
A= ln- 

( y - i ) " x  ' r > l ,  

shown in Fig. 1. Equation (38) determines the variation 
of the Curie temperature T, =Tc(l + red) with plate 
thickness: 

A (r,s) = C A = / ~ ' ,  A th A= 1 q  Id. (39) 

We shall give an expression, in terms of the parameters 
introduced above, for the mean value, over the plate 
thickness, of the magnetic moment: 

d 

%=d-l I A (z) dz. 
0 

The integral (40) has been evaluated," and we have 
Z = A - 1 ( ~ ~ ~ ~ ~ ) ' "  l n { [ ( 5 ' - l ) q / ( y + 2 q )  ]"+[l+q(52-l)/(y+2q)]'").(41) 

The other characteristics in general cannot be express- 
ed in terms of A, y, q, and I by means of elementary 
functions. 
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TABLE 11. 

FIG. 1. Phase plane in the variables A = d ( l A  I /c)"' and y 
= A / q 2 c  when q < 0 .  

Since 7d > 0, the magnetic moment i s  nonzero even a t  
T =Tc. 

Consideration of a plate of finite thickness when q C 0 
shows especially clearly the inapplicability of the expan- 
sions (1) and (2) to this case: the presence of a nonan- 
alytic variation of A and B with 7 leads to singularities 
of y (T ,  d) a t  T =To, while, at the same time, for d # m 

there must be only a single transition point T =T,. One 
might attempt to use an expansion in fractional powers 
of the magnetic moment (see Ref. 15). This possibility 
has not been analyzed in detail. But i t  seems to us  that 
with allowance for a quadratic variation off with (dd/  
d ~ ) ~  (this is the basis of the J, theorys), only an expan- 
sion in even powers of the moment leads to vanishing of 
d ( d )  and d ( 0 )  at T - Tcd; that i s ,  to a phase transition 
of the second kind.6' In fact, the equations for determin- 
ation of the values of d= d ( 0 )  and d ( d )  = gA, for an 
arbitrary relation f =fC/i3, have the form7' 

from which the assertion made above follows: for a 
phase transition of the second kind, i t  is necessary that 

lim f ( d x )  -f (4 + O, m. 

A-a A' 

In general, of course, equations (36) permit only num- 
erical solutions. Figure 1 represents the phase plane of 
a plate in the variables A and y. A magnetically ordered 
state exists to the left of the curve (38). In Fig. 1, those 
regions a r e  shaded in which i t  i s  possible to obtain com- 
paratively simple analytic expressions for the charac- 
teristics of plates. Here we shall consider only two 
cases. We begin with T =Tc (A =O). We shall determine 
the dependence of the spontaneous magnetic moment on 
Iqld. It i s  convenient to put equation (36) into the fol- 
lowing form: 

Hence 

From (41), (44), and (45) we find 

We note the increase of the mean magnetic moment on 
decrease of the plate thickness, caused by the action of 
a delta-function surface energy conducive to ferromag- 
netic ordering (here A d  of course tends to zero a s  d - 0). 

We shall now discuss the region bordering on the 
phase-transition curve, I Tcd - TI -- 0. As in the case q 
> 0, the transition is found to be  a transition of the Lan- 
dau type; that is 

AC= (dT,dS$'doIT,$'p) K ( q d ) ,  

d ( 0 )  =do($ /2$ ' ) '"N(qd)  (Tsd-T)', 

x=d, ($/2$') '"L ( q d )  (Ted-T) 'Iz, 

&.=do ($/2$')"'R (qd )  (Ted-T)", 

x+(T-T,d) = 2 ~ -  (Ted-T) = ( W o p / $ ) P ( q d )  ; 

X* and X- a r e  the magnetic susceptibilities to the right 
and to the left of the transition point. The quantities K, 
N, L, R, P-functions of A-have the form 

K=2/~(l+$(2A))2/[I+'/~@(2A)+1/~$(4A)], 

N=L/@(A)  =R/ch A 

-(2/l'3) [ l + @ ( 2 A )  I"'[ I +  ' l ,$(2A)+'l6$(4A) ]-'/a, 

P=$2(A) l (2+2$(A)  ), $ ( x )  =sh xlx. (48) 

In order to obtain the explicit dependence of the quanti- 
ties K, N, 4 R ,  and P on qd, i t  is necessary to substi- 
tute the value of A from (39). The limiting values of all 
the quantities (for qd >> 1 and for qd << 1) a re  given in 
Table 11. 

We note that the transition d- 03 corresponds to a 
transition to a state with a surface magnetic moment: 
AC ceases to depend on d [compare with formula (28)]; 
the mean magnetic moment and magnetic susceptibility 
tend to zero, the surface moment to a constant. 

5. FLUCTUATIONS OF THE MAGNETIC MOMENT 

To elucidate the role of surface energy in fluctuations 
of the magnetic moment, we shall consider them above 
the Curie point (at T > T,); we shall s tar t  from an ex- 
pansion of the fluctuation field d ( r )  in the complete 
system of functions determined by the equation 

~ ~ + k ~ c p = o ,  ~ = a ~ / a z ~ + a ~ / a ~ = + a ~ / a y ~  (49) 

and the boundary conditions 
drpldz I ,-,d*qcpl l = * d = O .  

The statement (49) and (49') of the problem permits so- 
lutions symmetric and antisymmetric in z .  The com- 
plete se t  of functions (for q > 0) is 

where p and x a r e  two-dimensional vectors: p = ( x , y ) ,  
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=(xz, x,); k: and k: a r e  determined, respectively, by 
the dispersion equations 

k,"d tg k,'d=qd, k."d ctg knad=-qd, n=1, 2, . . . .p..-.. 
On expanding d(r )  a s  a s e r i e s  in the functions (50) and 
substituting in the expression for  the fluctuational part  
of the f r ee  energy, we get  X: x,' 

A T l S U , ' - A S . l S U o I + A T d S U O t ,  (52) FIG. 3. Graphical solution of equations (56) and (59'). Curve 
1, (coth x)/x; Curve 2, (tanhx)/x; g=kpd,  ~ = k f d .  

where 

Here 4 and q: a r e  dimensionless coefficients in the ex- 
pansion of .&) in  the functions (50). According to the 
general theory of thermodynamic  fluctuation^,'^ 

a n  Z - T 
qd ) - I  (54) "'" ' '- U:,!?dC[ (k':)'+A/C+x.1 (' + ( k ' / ) ' b + q 2 b  

. 

The transition temperature T, i s  determined by the 
equation (k;)2 +A/C = 0 (see Ref. 9). The analogous fact- 
o r s  in A 8  and A x  vanish a t  temperatures much lower 
than T,,. For  example, i t  is evident from Fig. 2 that 
(kt)'> (kf)'. Hence i t  is c lear  that the only "dangerous" 
fluctuation is the symmetric one with n = 1 and u- 0. 
The surface energy lowers the fluctuation level insignif- 
icantly as compared with an infinite magnet: the frac- 
tion qd/[(k%)' +q2dZ] approaches unity for  qd- 0 and ap- 
proaches zero  for  qd- m. 

Before analyzing the magnetic-moment fluctuations for 
q < 0, we shall find the eigenfunctions of the problem 
(49)-(49') in this case. 

Symmetric solution. We have 

The value of kt is determined by the equation 

cth k,"d/k,"d=lll  q 1 d, (56) 

which, as is evident from Fig. 3, always has a solution, 
and the values of k: by the equation 

k,%tg knad=- lq ld ,  n=2, 3 , .  . . (57) 

It is seen from Figs. 3 and 4 that the root kf i s  "detach- 
ed" from the "ordinary" roots. 

Antisymmetric solution. The s e t  of functions is dif- 

FIG. 2. Graphical solution 
of equations (51). Solid 
curve, x tan% dashdot 
curve, x cob. 

The values of k: a r e  determined by the equation 

k,"d ctg k,"d= I q 1 d ,  (59) 

which f o r  the hyperbolic solution becomes 

th k,"dlk,"d=lll q 1 d, I q 1 d> I (59') 

and has a solution only when I q I d > 1; then kt < kf (see 
Fig. 3). On expanding.,d(r) a s  a s e r i e s  in the functions 
(55) and (58) and substituting in the expression for  the 
fluctuational par t  of the f r ee  energy, we get the follow- 
ing expressions for A 5  and A x :  

A lqld 
= C l t ~ , a 1 2  I F +  x 2 - ( k ? ) ' ]  ( q'd2 - (k ."d)2  -11 

(60) 
A 

n-2 

AF.2 -- lqld 

S d l 2  I .,=, 

The transition temperature Tcd is determined by the 
condition A(T,,)/c - (k;)' =O. At temperatures T >Ted, 
al l  the coefficients of (q:')' C, =2,3 ,  ... ) a r e  greater  than 
zero. I t  is evident that, a s  for  q > 0, the only "danger- 
ous" fluctuation is the symmetric fluctuation with n = 1 
and x - 0. The factor 

Q = l +  Iq ld l [  (k,")2-qZdZl,  

which determines the level of the "dangerous" fluctua- 
tion, increases  with q, from Q = 2 when I q  Id << 1 to Q 
= exp (2 I q 1 d)/4 I q Id when I q  Id >> 1. Negative surf ace 

FIG. 4. Graphical solution 
of equation (57). Curve 1, 
tam; Curve 2 ,  l q l d/x; q 
=k;d. 
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energy suppresses the "dangerous" fluctuation and con- 
sequently narrows the fluctuation region. 

The correlation function (m (r)m (r')), because of the 
presence of the boundary, depends on p = I p - p'l and 
separately on z and on 2 ' .  Therefore one can speak of 
a correlation radius only in the plane of the plate. Since 
the fluctuational part of the free energy separates into a 
symmetric and an antisymmetric part [see (52), (53) and 
(6011, i t  is clear that (m,(r)m,(r))=O, if m,(r) and m,(r) 
denote the symmetric and antisymmetric parts of the 
magnetic-moment fluctuation. The fluctuations of m,(r) 
behave regularly. Therefore the quantity of greatest in- 
terest is 

~ & = < m & ( r )  m'(rl) ). (61) 

By expanding the moments in Fourier series and inte- 
grating over x ,  we can show that the function G,(p) i s  
defined by a series in Ko(gp), where ko&) is the zero- 
order Bessel function of imaginary argument," and 
where 

xna= ( ( ~ , , I ) ~ + A ( T )  I C ) ' ~  (62) 

in the case of "trigonometric" fluctuations and 

in the case of 'chyperbolic." Thus each fluctuation has 
its own correlation radius 

the only correlation radius that becomes infinite a t  T - T,, is, of course, the one corresponding to the "dan- 
gerous" fluctuation. 

The dependence on z and z' i s  not on their difference- 
a natural consequence of boundaries. Therefore we can- 
not introduce a correlation radius in the direction norm- 
a l  to the plate surface. 

6. CONCLUSION 

The phenomenological nature of this treatment requires 
an estimate of i t s  range of applicability. Since, even 
with allowance for the nonanalytic dependence of the co- 
efficients A and B on T, there a re  "dangerous" fluctua- 
tions characteristic of the Landau theory, the whole 
treatment is of course invalid in the immediate vicinity 
of the transition point. In the three-dimensional case, 
the existence of a temperature range in which the Lan- 
dau theory is valid is  determined by the Levanyuk-Ginz- 
bury criterion (see Ref. 13, 8146). In our case, because 
of the inhomogeneity of the order parameter produced by 
the surface energy, direct application of the Levanyuk- 
Ginzburg criterion is difficult. It would be necessary to 
calculate the corrections to the various characteristics 
(specific heat, magnetic moment, susceptibility) re- 
quired by the fluctuations8'and to select the temperature 
interval in which they were small. The occurrence of 
"dangerous" fluctuations mentioned above causes us  to 
believe that the range of applicability of the Landau the- 
ory to ferromagnetic plates is  somewhat broader than to 
bulk ferromagnets. 

True, there is still one fact that limits our treatment: 
because of the increase of the correlation radius as  T 
-- T,, the behavior of a plate of thickness d becomes 

similar to that of a two-dimensional magnet. This oc- 
curs  when r: 2 d; or i f  we  suppose that r:= ;/I 7 1 '/', 
when I T I  5 (;/d)'/' (the factor ?i i s  of the order of inter- 
atomic distances; Y: is the correlation radius in a bulk 
specimen). A rigorous criterion for the applicability of 
the formulas obtained here is difficult to formulate pri- 
marily because i t  depends on the exact value of the pa- 
rameters of the magnet. It is possible that the formulas 
will be valid for some magnetic materials and not for 
others. We note that for a ferromagnet a combination 
of parameters which, according to the Levanyuk-Cinz- 
burg criterion [see formula (146.16) of Ref. 131, should 
be much smaller than unity, becomes, on substitution 
of values, of order of magnitude unity. 

In conclusion, we take this opportunity to thank I. M. 
Lifshitz for useful and stimulating discussions, and 
also A. A. Sobyanin, whose comments were taken into 
consideration in the final version of this paper. 

')1n the study of the temperature dependence of the magnetiza- 
tion in a semiinfinite specimen whose interatomic interac- 
tions a r e  described by a Heisenberg Hamiltonian, there must 
occur under certain conditions, a t  a temperature exceeding 
T,, a phase transition analogous to the Kaplan-Stanley trans- 
ition. 

')The properties of ferromagnets with < > 0  a r e  investigated in 
detail in Ref. 14. 

shall consider some of these below. 
4)We emphasize: this result can not be remedied within the 

framework of a phenomenological theory. If Xs> A'', then 
ds-- w when I q I --. This is evident if we write equation 
(18) without specification of the function f = f u ) :  

141 ~ = C [ f d / $ )  - f ~ l / ~ & ' / ' ,  -/$>.C. 
If d, and A z )  for z close to the boundary are  large, then it 
is of course not possible to use an expansion off in powers of 
the magnetic moment. This also imposes a bound on q. 
'Such a region exists even when p = 0 and 1 = T, since the 
slopes of the curves a t  T- T, and at  T- T, differ by a finite 
quantity. This fact was mentioned in Ref. 9. 

6%e have not investigated the possibility of a radical change of 
character of the transition a s  a result of surface energy. 

')The deduction of concrete expressions of the type (42), valid 
for an arbitrary relation f = f (A), offers in principle a pos- 
sibility of using, in the calculation of the properties of plates 
and a half-space, empirically found expansions off (A) (see, 
for example, Ref. 20). 
*)B~ analogy with the calculaton of the fluctuational correction 

to the specific heag2 (see also the problem in 0147 of Ref. 
13). 
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Orientational phase transitions in the vicinity of the Curie 
point in terbium-gadolinium alloys 

S. A. Nikitin, A. S. Andreenko, A. K. Zvezdin, and A. F. Popkov 
Moscow State University 
(Submitted 19 December 1978) 
Zh. Eksp. Teor. Fi. 76, 2158-2165 (June 1979) 

By measurements of the magnetization and of the magnetocaloric effect in monocrystals of the rare-earth 
alloys Tb,Gd,-, (x <0.94) along various crystallographic directions, it is shown that in the region of the 
Curie temperature, in a magnetic field directed along an axis of diffcult magnetization, a magnetic phase 
transition of the spin-reorientation type occurs in an anisotropic ferromagnet. The experimental results 
are discussed on the basis of Landau's thermodynamic theory of phase transitions. By means of the 
Ginzburg-Levanyuk criterion, the theory is shown to be applicable over a quite broad temperature 
interval near the Curie point. 

PACS numbers: 75.30.Kz, 75.30.Cr, 75.30.Sg. 75.50.C~ 

In the study of magnetic phase transitions a t  the Curie 
point (of the order-disorder type), use  i s  often made of 
Landau's theory of phase transitions of second order.' 
On the basis  of it ,  there exists for an isotropic magnet- 
ic material a well developed thermodynamic-coefficient 
procedure2 that enables one to determine the spontaneous 
magnetization o,(T) and also the Curie point 8. 

But in a strongly anisotropic ferromagnet in the pre- 
sence of a magnetic field, there is a possibility, in the 

of phenomena of the reorientation type on phase transi- 
tions in the Curie-point region of a uniaxial magnetic 
material. The experimental investigations were  made 
on Tb,Gd,, alloys with various contents of gadolinium 
(x < 0.94). These compounds are solid solutions and 
provide a typical example of a strongly anisotropic uni- 
axial ferromagnetic crystal. They have a hexagonal 
s tructure,  with the axis  of hard magnetization along the 
hexagonal axis c. 

temperature range T < f3 below the Curie point, of re-  
The technology of growing monocrystalline terbium- 

orientation phenomena, which may produce changes in 
gadolinium alloys and the monitoring of their quality 

the phase-transition picure near W and, accordingly, 
have been described earlier.5 

may lead to a change of the physical properties of the 
magnet. Here the order parameter  in the theory of a 
phase transition i s ,  in contrast to the isotropic case,  
multicomponent. The effect of the anisotropy of the fer-  
romagnet manifests itself in the fact that the vanishing 
of the thermodynamic coefficients of the second-order 
t e rms  in the expansion of the thermodynamic potential 
will occur a t  different temperatures for  different com- 
ponents. This, in particular, may lead to anisotropy of 
the paramagnetic Curie 

The literature6 contains information about the investi- 
gation of the magnetic properties of gadolinium in a 
magnetic field directed along the axes of easy and of 
hard magnetization. Gadolinium, however, has a mag- 
netic anisotropy two orders  of magnitude smal ler  than 
the anisotropy of heavy rare-ear th  metals. Therefore 
Tb,Gd,, alloys a r e  of considerable interest, s ince no 
investigation has hitherto been made of high-anisotropy 
ferromagnets, near the Curie point, in a magnetic field 

The present paper is devoted to study of the influence directed along the axis of hard magnetization. 
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