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The turbulence spectrum decreases rapidly for scales smaller than the dissipation scale q. It is shown 
that the nature of this decrease is determined by the strong interaction between pulsations of different 
scales and by the cascade process that arises. The Green-function and diagram techniques are used in the 
calculations. It is shown that the response and vertex functions coincide with the bare functions in the 
region q k s l .  An equation for the spectral tensor is obtained, and the form of the solution is found up 
to a universal constant. The truncation of the series allows the determination for the constant of an 
approximate value that changes little when the next term in the series is taken into account. 

PACS numbers: 47.25. - c 

1. INTRODUCTION ber of the equation. The contribution of the region 
where q -  lk-ql-k/2 is  

A turbulent fluid is an example of a system with many 
degrees of freedom for which the inflow of energy with- P ( k )  uZ(k /2 )  k3-exp [- (qk)T2'-T] 

out and the dissipation of that energy occur a t  the op- and is large  compared to the contribution of the region 
posite ends of the spectrum. For the stationary case, if qn - 1. 
the dissipation scale q is smal l  compared to the excita- 
tion scale,  then the equilibrium in the small-scale r e -  
gion is essentially determined by the energy flux. In 
Kolmogorov's theory1 the spectral  density, F(k), of the 
energy has the form 

- .  

Thus, the nonlinear interactions between pulsations 
whose sca les  a r e  of the same order  magnitude play an  
important role in the f q  >> 1 range. In order  to take 
these interactions into account more  accurately, we use 
in the present paper quantum-field-theory tools of the 

F ( k ) = (  lu(k)  12>-k-"13tp(kq), type developed by Wyld.' This method has been used 

where u(k) is the Fourier harmonic of the velocity u(x) by Kuz'min and ~ a t a s h i n s k i y ~ . ~  to compute the exponen- 

and the Lim$(y - 0) = const. Attempts to obtain the be- tial factor in the spectrum for qk- m. They show that, 

havior of the system in the qk<< 1 region on the basis although for  h>> 1 the amplitudes of the pulsations a r e  

of the equations of fluid mechanics has thus far  not met exponentially small ,  a strong-coupling regime is rea l -  

with complete success because of the mathematical ized in this range, i.e., there exists an  infinite subse- 

complexity of the s i t u a t i ~ n . ~  The properties of the sys-  quence of diagrams whose orders  of magnitude coincide 
in the exponential approximation. tem in the qk>> 1 dissipation region have been investi- 

gated by N o ~ i k o v , ~  using an idea f i r s t  used by Townsend4 
and Batchelor5, and based on the assumption that the 2. THE DIAGRAM EQUATIONS 

deformation of the smallest  vortices by the scale q 
plays the major role in this region. The answer for the 
spectrum, obtained under the assumption that the inter- 
action between the small-scale pulsations i s  insignifi- 
cant, has the form 

F ( k )  -exp [ - ( q k ) ' ] .  (1) 

To verify the lat ter  assumption, let  us est imate the 
contribution made by the interactions between pulsations 

The diagram technique for  the theory of turbulence has 
been expounded in a number of papers.'-" In our case  
the form of the equations for the theory's quantities that 
i s  s imilar  to that of the unitarity conditions for the S 
matrix of quantum theory is  convenient.* For  the deriv- 
ation of these equations, we use the method of partial 
summation of the diagrams,  it being the simplest and 
most graphic. The expansion of the spectral  tensor 
F,,(k, t - t') has the following formav2; 

whose scales a r e  of the same order of magnitude if the 
pulsation spectrum has the form (1). The Navier-Stokes -= -qj- +2+ + B - - p + . . .  (2) 

equation for an incompressible fluid with viscosity v has Here and below the spectral  tensor is represented by a 
in the Fourier representation in t e rms  of the space co- heavy wavy line, while the Green tensor Gij(k, t - t') i s  
ordinates the form represented by a heavy arrow. The corresponding bare  

a i quantities F $ ) ,  GI;) a r e  represented by thin lines. The 
(dl + Y Y )  u l (k ,  t ) = -  - P I ,  ( k )  d3qu, (q9~)ui  ( k - q .  0. 

2 bare  vertex -Qi~,,,(k) is associated with a point. The 
spectral  tensor of the external exciting force is denoted where 
by Qiij. 

Let us introduce complete vert ices,  defined a s  the 
sums  of al l  wss ib l e  diarrrams each with one exit and a - 

Let us assume that u(k)-exp[-(qk)Y], where y >  1. The certain number of entrances. We shall  represent  them 
contribution of the region q -q-'<< k is by hatched polygons. They have a simple physical mean- 

ing. Let  us make a sma l l  nonrandom correction, 
P(k)u(q- ' )  q - > u ( k )  -exp[-(rlk)'I h,(k, t), to the external exciting force fi(k, t ) ,  expand the 

and coincides in order  of magnitude with the left mem- velocity response in a s e r i e s  in powers of h, and aver-  
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age the result: 

6u (k  t )  
( k t )  = ( - hj(kr,  t f )dkldt '  

6hj(k , t )  lh=) 
6'4(k,  t )  

+j ( 6hj (kt, t f )8hm (b", t") 1 h-o ) h, (kf ,  t') hm(kf', tW)dk'Wdt'dt"+. . . 

Let us  stubstitute into the variational derivatives 
u,(k, t )  in the form of a functional expansion in t e rms  of 
f.' Term-by-term averaging leads t o  the relations 

(kt t )  = * 6 ( k  4 k'), < 6 r n l t t 4  > 

The Green tensor describes the averaged velocity r e s -  
ponse in the linear approximation in h(k, t); the tiangle, 
in the second-order approximation, etc. Let  us intro- 
duce nodal vertices-sums of diagrams each of which 
cannot be cut by a single line. We shall  represent  them 
by unhatched polygons. It is  easy to s e e  that the relat ions 

etc., a r e  valid. 

The partial summation of the diagrams in (2) leads to 
the equation 

The t e rm with 9,, has been dropped in this equation, 
since it is assumed below that the spectrum of the ex- 
ternal force is bounded from above, and the system of 
equations is studied in the region of wave numbers much 
higher than the reciprocal of the principal turbulence 
scale,  which, in the present  paper, will be assumed to 
coincide with the Kolmogorov scale q. Similar equa- 
tions can be written down for the nodal vertices: 

A 4 4 

3. ANALYSIS OF THE EQUATIONS 

Let  us consider Eqs. (5) and (6) in the region where 
the wave numbers of the external lines a r e  high in com- 
parison with the quantity q-l. These equations contain 
the spectral  tensor and the nodal vert ices,  which des- 
cribe the damping of the external perturbation intro- 
duced into the turbulent flux. We shall,  to begin with, 
study the behavior of the nodal vert ices in the region in 
question. The viscosity-induced-damping t ime of the 
introduced perturbation is equal to while the 
time needed for i ts  t ransport  by the motions of the 
la rge  sca les  over the distance k-' i s  of the order  of 
(k. u,)-'. If the wave number is sufficiently high, 
then over a period of time equal to the viscous-damping 
t ime of the perturbations a region of dimension k-' can 
be  considered to  be a t  r e s t  relative t o  the principal 
turbulence scale.  Therefore,  the translational interac- 
tions, which significantly complicates the analysis of 
the problem in the inertial range ,12 'I4 a r e  unimportant 
in the energy-dissipation range. At the s ame  t ime,  for  
qk>> 1, the amplitudes of the turbulent pulsations a r e  
exponentially small ,  and cannot have any effect on the 
r a t e  of damping of the introduced perturbation. In other 
words, in the energy-dissipation range the nonlinearity 
should be taken into account only s o  f a r  a s  i t  i s  the only 
energy source. When qk>> 1, the external perturbation 
attenuates regardless of the motion of the fluid. In the 
l inear approximation the resonance is described by the 
ba re  Green tensor. 

Let  us show that, in the l imit  a s  h - w ,  the bare  ver -  
tex does not become renormalized. We shall  seek  the 
solution to the equation for  the spectral  tensor for  kq 
>> 1 in the form 

where y 7  1 and $(k) i s  a function that var ies ,  when kq 
>> 1,  not more  rapidly than a power function. On ac- 
count of the rapid decrease of the spectrum when qk> 1, 
the dominant contributian to the integrals of Eqs. (6) is 
made by the region where the wave numbers of the F 
lines a r e  of the order  of q-I. The parameter  of the 
s e r i e s  expansion for the nodal vert ices is thus the 
quantity 

In the qk- limit the expansion parameter  is small ,  
and the bare  vertex is not renormalized. The remain- 
ing nodal vert ices a r e  smal l  in the s ame  parameter. 
Equation (5) for  the spec t ra l  tensor assumes the form 

The arguments that led to the truncation of the s e r i e s  
for the nodal vert ices a r e  inapplicable here,  s ince the 
wave numbers of the F lines in each diagram a r e  con- 
nected by the relation 

etc. 
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and cannot a l l  be smal l  a t  the s ame  time. 

Let us, to begin with, s e t  t = t' in the spectral  tensor 
F on the left-hand side of the equation. The exponential 
factor 

enters  into the integrand of the diagram containing n 
wavy lines. Furthermore,  there is a power factor that 
a r i s e s  from the vert ices of the bare Green functions 
and the integrations over the time differences. The 
dominant contribution to the integral is  made by the 
region where the index of the exponential function has 
i ts  maximum value. For y > 1, the maximum of the 
index of the exponential function l ies  in the region where 
q1 = ~z = . . = d = k/n, and the diagram is proportional to 
exp[-(qk)yttl-Y]. Thus, all the diagrams on the right- 
hand side of the equation a r e  exponentially la rge  a s  
compared to the spectral  tensor (7), and Eq. (8) for  y 
> 1 cannot be satisfied. For y <  1, the index of the ex- 
ponential function i s  a maximum when the wave numbers 
of all the F lines, except one, a r e  small. This cor res-  
ponds to the case in which the dominant role is  played 
by the interactions of the short-wave pulsations directly 
with the pulsations of the principal scale. It has,  how- 
ever,  been s h ~ w n ~ - ~  with the aid of other methods that 
such interactions lead to a solution with y = 2 ,  and not 
with y <  1. Therefore, the only y value that is not a t  
variance with the equations is y = 1. 

Let us now study the ra te  of damping of the time cor-  
relations in the energy-dissipation range. Let  us a s -  
sume that the attenuation of the correlations in time is 
also exponential: 

Substituting (9) into Eq. (8), we again find that both sides 
of the equation have the same asymptotic form for k- m 

only when p = 1. 

Thus, although the interactions in the energy-dissipa- 
tion range occur in cascade fashion, a significant ran- 
domization does not occur here,  and the lifetime of the 
correlations on the k-' scale is long compared to the 
lifetime of the introduced nonrandom perturbation. 

Let us compute approximately the preexponential fac- 
tor  $(k) with the aid of Eq. (8), on the right-hand side 
of which we retain only the f i r s t  diagram. Substituting 
F , , ( ~ , T )  =hij(k)E(k,r)/(4nr;") and Gl,(k,7) =61j exp(-vk2r) 
into Eq. (8), and computing the trace,  we obtain the 
equation 

1 
L t. 

E(k ,  t-t')  = - Jd3q a (k ,  p, q )  j dt,  5 dt2 cup[-vk2(t+t'-t,-tl) ] 
4n 

where 

Since the damping time of the correlations is long com- 
pared to  (vk2)-', we can se t  the time differences in the 
E functions in (10) equal to zero  and perform the inte- 
gration over t ,  and t,. Equation (10) assumes the form 

Substituting into this equation E(k) =$(k) exp(-qk), we 
have 

1 d'q P+Q rp(p)*(n) 
~ ( k ) = ~ ~ ~ a ( k , ~ . q l e x ~ [ - n k ( ~ -  1)]- (pq/k')' ( 1 2 )  

The exponent of the exponential function contains the 
large factor qk, and the dominant contribution to the 
integral is made by the region where p, q, and k a r e  
almost  collinear. The effective width of the integration 
domain a t  right angles to the vector k is of the order of 
(k/q)lI2. In this region a(k, p, q) -(qk)-l. Assuming that 
the dominant contribution i s  made by the region where 
q - k/2, we obtain that 

This indicates that (12) has the power solution 

where C is some constant. The possibility of such a 
solution was f i r s t  pointed out by Kraichnan.15 Let us 
show that such a solution does indeed exist ,  and let us 
compute the quantity C. 

It is  convenient to perform the integration in a coor- 
dinate system in which one of the axes i s  parallel to the 
vector k: 

Let  us introduce the dimensionless integration varia-  
ables q 11 = sk and q, =w k. Then d3q = 2nk3wdwds. Let 
us  perform the integration with the aid of the Laplace 
method.16 For this purpose, let  us expand the factor 
a(k, p, q) and the index of the exponential function in 
powers of the rat ios of the t ransverse  components of the 
vectors p and q to the longitudinal components, and limit 
ourselves to the lowest-order te rms:  

w2 1  1 
a ( k , p , q ) = -  -+----;-- 

2 I s z  (I- , )  , (I-s)  ' I 

Substituting (14) and (15) into ( l2) ,  and integrating over 
10, we obtain an  equation for  C: 

whence 

The contribution of the ends of the integration range to 
the integral (16) i s  small ;  therefore, the expansion of 
a(k, p, q) and the index of the exponential function in 
powers of w/s  and w/(1 - s )  is admissible. 

Thus, the equation of the lowest approximation for the 
spectrum has the analytical asymptotic solution (17). 
Let  us discuss the situation that a r i s e s  in the higher- 
order diagrams. We have already noted above that each 
diagram contains the s ame  exponential factor  which 
cancels out on both sides of the equation. As in the 
case of the diagrams of the lowest approximation, the 
dimension of the domain of integration over the wave 
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numbers along k i s  of the order of k. The width of the 
integration range in the transverse direction i s  of the 
order of (k/?1)1'2. The angular factor a(k,q,, q,, . . . , q,) 
-l/(&)" -'. The quantity $ ( k ) / [ ~ ~ k ( q k ) ~ ]  - const thus 
serves  a s  the expansion parameter. Consequently, the 
smallness in the higher-order diagrams can, if i t  exists  
a t  all,  only be numerical. 

In order to estimate how far  the solution (17) is  ac-  
curate, it is  necessary to compute the higher-order 
diagrams in the expansion (8). Let  us compute the 
spectral  function with allowance for  the diagram of the 
next order in Eq. (8). There appears on the right-hand 
side of Eq. (12) the additional t e rm 

The dominant contribution to the integral in (18) i s  made 
by the region where k, p, q ,  and z a r e  almost collinear. 
Let us substitute (13) into (18) and evaluate the integral 
over the t ransverse  components of the vectors p and q 
with the aid of the Laplace method (see the Appendix). 
As a result ,  we obtain in place of (16) the equation 

where 

The region where s, w, o r  1 - s - w is small  makes a 
small  contribution to the integral I ;  therefore, the ex- 
pansion in powers of the rat ios of the transverse com- 
ponents of the vectors p, q ,  and z to the longitudinal 
components, which i s  performed in the Appendix, is 
justified. The value of the constant C obtained with the 
aid of Eq. (19) i s  equal to C=23,  which is not too differ- 
ent from the value C = 30 obtained above. 

Thus, the relative e r r o r  that results  from the neglect 
of the second te rm in Eq. (8) is small ,  it being -0.2. 
One may hope that the s e r i e s  of the theory a r e  asymp- 
totic s e r i e s  and that the found value of C i s  close to the 
true value. 

APPENDIX 

The substitution of (13) into (18) yields 

The index of the exponential function contains the large 
factor qk>> 1,  and, outside the region where p'+q + z  
= k (i.e., where k, p, q, and z a r e  almost collinear), 
the integrand is exponentially small. Therefore, the 
integration over the transverse components of the vec- 
t o r s  p and q can be performed, using the Laplace meth- 
od. 

FIG. 1. 
t*m, 

ks k l l - s -  w] kw 

Let us f i r s t  perform the integration over p in the 
plane perpendicular to the vector &P=p+z (see Fig. 1) 
and then integrate the expression over q in the plane 
perpendicular to k. Let  us introduce the dimensionless 
integration variables 

v=p,/x, w,=p;,ix, t=q,/k,  s = q , / k .  

Then 

We can, with satisfactory accuracy, also s e t  Z= (1 - s)k 
and w , =w /(1 - s). The index of the exponential function 
and the angular factor assume the forms 

Substituting all these expressions into the expression 
for  D ,  and performing the dv  and d t  integrations within 
the limits (0, .o), we obtain 

where I is given by the expression (20). 
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