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Spin resonance of the nonlinear optical susceptibility f ) ( -  o , o l , o l ,  - 02) responsible for a frequency 
shift of the form o, = 20,  - o, is investigated in n-InSb in a wide range of conductionelectron 
concentrations. The experiments were performed with a Q-switched CO, laser generating simultaneously 
at two frequencies, o l z944  cm-' and 0,-1044 cm-I. The dependence of the resonance position, of the 
line shape, and of the resonance amplitude on the conduction-electron concentration is well described by 
the quantum theory of the nonlinear optical susceptibility x@)( - 03,0,,ol, - 02) based on a solution of the 
equation for the density matrix with account taken of the motional narrowing of the resonance line. The 
spin and momentum relaxation times of the conduction electrons are determined. 

P A a  numbers: 42.65. - k, 76.50. + g, 42.50. + q 

INTRODUCTION 

The nonlinear optical susceptibility x','(- w3, w,, w,, 
- w,), responsible for frequency mixing of the type w, 
=2w1 - w2 is resonantly amplified if  the energies w, and 
w, of the pumping-radiation quanta or  the difference of 
these energies w2 - wl coincide with the energy of one of 
the three intermediate states through which this four- 
photon coherent process goes through. 

In a narrow-band semiconductor, this characteristic 
energy may be the energy of the orbital motion of the 
electron in a magnetic field (Landau quantization energy) 
or  the energy of the Zeeman splitting connected with the 
spin. Accordingly, the nonlinear optical susceptibility 
X(3 '  experiences resonance a t  the cyclotron frequency of 
the conduction electrons w, [henceforth called for brevity 
cyclotron resonance (CR); cyclotron resonance at double 
the cyclotron frequency 2w, i s  also possible] o r  a t  the 
spin frequency w, of the conduction electron [henceforth 
spin resonance (sR)]. 

The CR of the nonlinear optical susceptibility xt3'(- w,, 
w,, w,, - w2) in the narrow-band semiconductor n-InSb 
was investigated by us previously.' 

In the present paper we report the results of the in- 
vestigations of SR of the nonlinear optical susceptibility 
in n-InSb. 

The resonant susceptibility of the frequency mixing of 
the type w, = 2w, - w, i s  closely connected with the sus- 
ceptibility responsible for the coherent Raman scatter- 
ing,, in this case for Raman scattering with spin flip, 
which has been investigated in very great detail.," 

Spin resonance of nonlinear optical susceptibility was 
f i rs t  observed Aw = w, - w , , ~ *  in the process of genera- 
tion of the difference frequency, and also in a frequency- 
mixing process of the type w, = 20, - w,, both with the aid 
of a CO laserg-" and with the aid of a CO, laser.12 

The difference between the SR of the nonlinear sus- 
ceptibility and the CR considered in Ref. 1 is that the 
former i s  observed in substantially stronger magnetic 
fields than CR. First ,  the spin splitting of the electron 
levels is usually weaker than the orbital splitting (by 

approximately a factor of three in the n-InSb); second, 
i t  i s  more convenient to observe the CR at  the doubled 
frequency rather at the fundamental one, so  that the 
magnetic fields now differ by a factor of six. Therefore 
the quasiclassical description (gw, << t p ) ,  which is suit- 
able for CR and makes i t  possible, for example, to use 
the method of the equations of motion (see Ref. I ) ,  is of 
little use for  the description of SR. In the case of SR it  
is necessary to take into account the quantization of the 
electron spectrum and to solve an equation for the den- 
sity matrix. 

THEORY 

In a narrow-band semiconductor whose energy spec- 
trum is described by the Kane model, allowance for the 
spin-orbit interaction in the one-band Hamiltonian for 
the conduction band produces an energy term 

which is responsible for the combined re~onance . '~  

Here p = 1/2gPBu is the magnetic moment of the con- 
duction electron, g is the spectroscopic-splitting factor 
of the band electron, A is the energy of the spin-orbit 
splitting, E is the electric field, and A is a vector po- 
tential that can include not only the vector potential of 
the field E, but also the vector potential of the constant 
magnetic field H. Thus, expression (1) contains a non- 
linear term, and i t  is this term which causes the spin- 
dependent nonlinearity for the electron in the Kane band. 

We specify the vector potential of the electromagnetic 
wave in the form 

We shall not bother with a suitable normalization of 
the vector potential, since we shall be interested here- 
after only in the relative (to the nonresonant) magnitude 
of the resonant optical susceptibility. We shall use also 
the dipole approximation, i.e., q,-0. 

A more accurate expression for the nonlinear part of 
the spin-orbit contribution to the energy is 
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%,o=iao[A, x A,'], (3) 

where 

P i s  the matrix element of the Kane theory, mo is the 
mass  of the f r ee  electron , and 3 = 1/2(w1 + wz). 

The operator KO is obtained after summing the second- 
order  matrix element responsible for  the Raman scat- 
tering with spin flip over the interband transitions; i t  
was used to describe the generation of the difference 
frequencyT w2 - wl and the frequency mixing." In ex- 
pression (3), xo is already expressed in a form that 
accounts for  the frequency mixing of interest  to us ,  i.e., 
i t  depends on the frequency like wz - w,. Because of the 
introduction of this two-photon interaction, our four- 
photon process of frequency mixing proceeds only via 
one intermediate state,  which in fact  turns out to be r e s -  
onant a t  w2- w, =w,. 

We now calculate the nonlinear cur rent  a t  the mixing 
frequency w3 = 20, - wz. The nonlinear optical suscepti- 
bility X'3'(- w3, w,, wl, - w2) is defined by the relation 

ia(ms)= imsx$;a(- o ~ , ~ I , w ,  - oz )Ep(o i )E , (w l )Ea( -  o r ) .  (5) 
The equation f o r  the conduction-electron density ma- 

trix i s  

where the density matrix i s  considered in the Landau- 
function representation, %= &P, + qo, Zo is the kinetic- 
energy operator in a stat ic  magnetic field with allow- 
ance for  the nonparabolicity, and the solution is sought 
in the form p = po + p, where po i s  the equilibrium den- 
sity matrix (we consider hereafter only a Fermi-degen- 
e ra te  electron system). 

The solution for the off-diagonal component of the den- 
sity matrix is 

where 
bo-oro,  % x = o . ( k . )  - [ e , ( k , )  -e.(k.) ] /A,  

T, i s  the electron spin relaxation time. 

It i s  assumed that the density matrix has been summed 
over the continuous quantum number k,, while & and 6 
number states with different Landau quantum numbers 
and with different spin directions. We shall actually 
consider only the two-level situation close to the quan- 
tum limit, i.e., a Landau quantum number N =0, and cr 
and 0 states with spins t and t (the g-factor  of n-InSb is 
negative and the ground state is a). We have further- 
more 

We define the current  operator with the aid of the ex- 
pr ession14 

and 

From this we get  the nonlinear cur rent  connected with 
the spin-orbit interaction 

The summation i s  over the spin states t and t; in add- 
ition, integration with respect  to the continuous quantum 
numbers k, and k ,  i s  implied. 

Expression (11) contains explicitly only the term cor- 
responding to the resonance a t  the frequency Aw = w~,; 
the antiresonant t e rm has been left out, since i t  contrib- 
utes only to the background and i s  of no interest  to us 
[we shall  compare the resonant par t  of the susceptibility 
X ( 3 )  with the nonresonant part  in the absence of a mag- 
netic field [(see Ref. I)]. 

In the ca se  of weak nonparabolicity o r  slight occupa- 
tion of the band, we can put oh = us,, where w,, i s  the 
spin frequency for  the bottom of the conduction band, 
and the resonance line has a Lorentz shape with half- 
width 2/7,. In the case  of high occupation of the conduc- 
tion band, the w,(k,) dependence must be taken into ac- 
count and the resonance line will be  subjected toabroad- 
ening analogous to the inhomogeneous broadening known 
in the theory of magnetic resonance. 

The polarization of the radiation a t  the mixing f re-  
quency w, i s  determined by the vector products in ex- 
pression (11) fo r  the current, and can be shown to co- 
incide with the polarization of E,. To  observe SR i t  is 
thus necessary that the fields with frequencies w, and w, 
be noncollinear. It will be  assumed henceforth in the 
present paper that El 11 H and Ez 1 H, and then E31H. 

Starting from expression ( l l ) ,  i t  i s  convenient to re -  
gard a s  a characterist ic  of the resonant part  of the non- 
linear optical susceptibility the function 

~ ( A O - O . ( ~ ~ ) - ~ T . - ' ) - %  (12) 
where the angle brackets denote the averaging 

which reduces, in the case  when both levels cr and a r e  
occupied, to the usual averaging 

in the quantum limit. 

We have s o  f a r  disregarded, however, the electron 
momentum relaxation. While this relaxation does not 
lead to loss of the total spin of the electron system, i t  
does influence strongly the shape of the SR line. As 
shown by Brueck and B l ~ m ' ~  and by Brueck, Mooradian 
and ~ l u m , ~  in the case  when the electron momentum re-  
laxation is much faster  than the spin relaxation, the mo- 
mentum relaxation processes intermix the particles in 
states with different k,, s o  that the precession frequen- 
c ies  of the electrons that participate in the resonance 
a r e  effectively averaged. As a result ,  the line that i s  
inhomogeneously broadened (because of the w,(k,) depen- 
dence) becomes narrower and again assumes a Lorentz 
shape when the condition T@Aws < 1 (Aw, is  the smearing, 
over the spin frequencies, for all the electrons that par- 
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ticipate in the resonance, and 7 ,  i s  the momentum relax- 
ation time) i s  satisfied. the width of this Lorentz line i s  
much less than Aw, and is directly proportional to 7,- 

this i s  called motional narrowing. 

To take into account in our case the electron momen- 
tum relaxation, we use for  the collision integral the ex- 
pression of Brueck and ~ l u m , "  which we modify to allow 
for the case when both levels a and ,4 a r e  occupied: 

where 

The solution of Eq. (6) with (13) and (14) taken into ac- 
count leads to a resonant function of the type 

As rp - -m this expression reduces to (12) above. For a 
parabolic band w, = w,, and does not depend on k,; the 
corrections that depend on rp in the numerator and de- 
nominator of (25) then cancel each other, and the reso- 
nant function yields, a s  expected, a Lorentz line with a 
half-width determined only by 7 ,  and independent of 7,. 

In the general case the analysis of (15) calls  for numeri- 
cal integration. Expression (15) was used in Refs. 15 
and 5 to analyze the shape of the Raman-scatterine line 
in n-InSb with spin flip. 

The function (15), apart from acoefficient, i s  the reso- 
nant part of the nonlinear optical susceptibil<ty X'3'- 

(-us, wl, wl, -wz) and contains both the r ea l  and imag- 
inary parts. 

In experiment one measures the radiation power a t  the 
mixing frequency w, = 2wl - w2: 

where X, i s  the nonresonant (background) part of the 
nonlinear optical susceptibility, and is pure rea l  (the 
characteristic frequencies X, greatly exceed the spin- 
resonance frequency); x,' and x," a r e  the rea l  and imag- 
inary parts of the resonant contribution to the suscepti- 
bility. The second term of the expression for P(w,) de- 
scribes the interference between the resonant contribu- 
tion with the nonresonant background (it depends on the 
real  part of x,), and at  x,<< X, it  describes completely 
the resonant behavior of the nonlinear susceptibility (see 
Ref. 1). Since the rea l  part of the resonant contribution 
x,' has a dispersion properties, we shall refer to a dis- 
persion part of the resonant function. In the case of spin 
resonance at  relatively small  concentrations of the con- 
duction electrons we have X, >> x,, and the main contribu- 
tion to the resonance is made by the quantities x," and 
x , ' ~ ~ .  

The pump power, the mode structure of the beam, and 
a number of other factors a r e  not constant in different 
experiments, s o  that when theory is compared with ex- 
periment i t  is convenient to use the rat io of the power P 
(w,, H) a t  the frequency w3 in a magnetic field to the pow- 
e r  P(w,, 0) without a magnetic field: 

We estimate now the rat io of the resonant part of the 
nonlinear susceptibility to the nonresonant part. For  
this purpose i t  is convenient to use the quasiclassical ex- 
pression for the nonresonant and resonant contributions 
to the nonlinear current. The expression for the nonlin- 
ear current in the quasiclassical approximation can be 
obtained by solving the equations for translational and 
spin motion of a con8uction electron in InSb, which a r e  
coupled by a spin-orbit interaction of the type (1): 

P ~ o ) '  80.00~ en ieSEl.%, 
.- + .  

2m.8, (do - i~,-')' - o," m.'e, 0 l ' ~  
ha, o.(o1+ ox) .- 

ep ' (do - ir.-')" oo."' 

where n is the concentration of the conduction electrons, 

The f i rs t  te rm in (17) describes the nonresonant part of 
the nonlinear optical susceptibility, which differs some- 
what f rom that obtained in Ref. 1 ,  since the square root 
of the Kane dispersion law was expanded in (17) in a se- 
r ies  (case of weak nonparabolicity). The second term 
describes CR a t  the fundamental cyclotron frequency (in 
contrast to that considered in Ref. I ) ,  and will be of no 
interest hereafter, while the third term describes SR. 
All the quantities that depend on the electron-momentum 
components p,"' and pL'O' must be averaged with the 
Fermi  distribution function, just a s  in Ref. 1. 

An estimate of the ratio 5 of the resonant contribution 
to the nonresonant background from expression (17) 
yields 

EXPERIMENTAL RESULTS AND DISCUSSION 

The experimental s e t  up and the sample preparation 
a r e  described in Ref. 1. The optical system in the SR 
experiments differ from the CR case in that the laser  
beam was into two beams, in one of which the polariza- 
tion of the pump radiation was rotated through 90" with 
the aid of a CdS half-wave plate. The beams were then 
superimposed and focused on the n-InSb sample. This 
resulted in the experimental geometry (EllE,, E,IIH, 
E,J-H) needed for the observation of SR. In the control 
experiments we separated in each of the beams the radi- 
ation of only one frequency, wl o r  w2, with the aid of 
narrow-band dispersion filters. However, since the fil- 
te r  transmission was smal l  and an appreciable fraction 
of the pump power was lost a s  a result ,  no filters were 
used in most measurements, and each beam contained 
radiation a t  both frequencies. 

The polarization of the outgoing radiation with frequen- 
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cy w ,  was verified in control experiments with the aid of 
a grating polarizer and agreed with the expected polari- 
zation (E,IH). In experiments in which the pump radia- 
tion was not filtered, the polarizer was likewise orient- 
ed in such a way that only the E,lH component was reg- 
istered. 

The measurements of the SR of the nonlinear optical 
susceptibility X'3 '  were made on n-InSb samples with 
concentrations from 8 x 1014 to 6.5 X lo i6  cm-, and with 
mobilities from 4 . 0 ~  lo5 to 6.5x l o4  cm2/v-sec. Most 
samples were s o  oriented that the magnetic field H was 
directed along the [loo] o r  [ I l l ]  axis; some of the sam- 
ples were not oriented. In contrast  to CR, in the SR ex- 
periments we observed a weak anisotropy of the g-factor 
a t  magnetic-field orientations H[1[100] and ~II[111]. 

Typical plots of the SR signal [of the power P(w,) a t  
the mixing frequency] against the magnetic fieldfor sam- 
ples with different electron concentrations a r e  shown in 
Fig. l a  (curves 1,  2, 3). In weakly doped samples one 
can clearly s e e  a s e r i e s  of narrow incompletely resolved 
SR lines, due to C02- laser  emission a t  different fre-  
quencies of the rotational spectrum of the CO, molecule. 
A similar  spectrum of the SR of the nonlinear optical 
susceptibility was observed by us  in Ref. 12, where the 
experimental data were  compared with a calculation 
based on the band spec t r a  of InSb and on the data on ro- 
tational spec t ra  of CO, molecule, and where al l  the lines 
of the observed spectrum were  identified. In particular, 
the central line of the spectrum corresponds to a fre-  
quency difference w, - w, = 102.7 cm-', and the remain- 
ing lines a r e  separated 1.8 cm-' in frequency. 

With increasing electron concentration, the resonant 
ser ies  of the lines shifts towards stronger magnetic 
fields and the resolution of the individual lines becomes 
progressively worse; finally, in samples with concentra- 
tion higher than 3.5 x lo i6  ~ m - ~ ,  the rotational s tructure 
i s  completely smeared out, and the purely resonant line 

FIG. 1 .  Typical plots of the radiation power P(w,) at the mix- 
ing frequency a s  a function of the magnetic field, for n -1nSb 
samples with different electron concentration: a) experiment: 
1 - n = 7 . 9  x1015 cm-'; 2 -n=2.9x1016 cm"; 3 - n = 4 . 6 ~  loi6 
cm"; b) calculation: 1 -n  = 8.3 ~ 1 0 ' ~  cmm3 (E - 10 mev); 2 - n 

F- 
iF - =2.7 x10" cm', (& -21  meV); 3 - n = 4 . 3  x10  cmJ (sF=28 

meV). 

acquires a partial dispersion character. The resonance 
amplitude refer red  to the nonresonant background de- 
c reases  sharply with concentration, from values of the 
order  of several  dozen to values of order of unity. Fig- 
u r e  l b  (curves l ' ,  2', 3') shows the resonance lines cal- 
culated with a computer by the method described a t  the 
end of this section. I t  i s  seen that the calculation is in 
satisfactory agreement with the observed shape of the 
resonance line. 

The dependence of the position of the SR on the Fermi  
energy of the electrons i s  shown in Fig. 2. The Fe rmi  
energy was calculated from the electron concentration 
by a formula that takes into account the nonparabolicity: 

E F = ( E ~ / ~ )  ([If ( 2 f i Z / m r E p )  (3~~n) ' ' ' ] ' ' ' - l } .  

The position of the SR in pure samples was assumed to 
be  the position of the maximum of the central  line with 
maximum intensity out of the s e r i e s  of lines correspond- 
ing to the rotational s tructure.  In samples with maxi- 
mum electron concentration, where the rotational struc- 
ture was not resolved, the position of the resonance was 
assumed to be the position of the maximum of the broad 
resonance line. In the case  of intermediate concentra- 
tions, where the line did not have a single maximum but 
the rotational-structure lines were  also unresolved (for 
example Fig. l a ,  curve 2), the position of the resonances 
taken to be the midpoint of the segment drawn a t  half the 
height of the resonant peak. 

In pure samples,  the experimentally observed position 
of the resonance changes little with the Fe rmi  energy; 
s tart ing a t  approximately EF= 10 meV, the resonance 
line begins to shift rapidly towards stronger magnetic 
fields. The light and dark  c i rc les  in Fig. 2 represent  
data for  samples with orientations [100]11~ and [111]IIH, 
respectively. These resul t s  point to anisotropy -1.7% of 
theg-factor  a t  60 kOe, in accord with the published 
data.16 It i s  known that the anisotropy of theg-factor of 
the conduction electrons in InSb is due to the interaction 
of the conduction band with more  remote bands. 

The singularities of the SR in samples with different 
electron concentrations can be qualitatively explained 
with the aid of the energy-level scheme shown in Fig. 3.  
In the purest  samples, the SR takes place in a magnetic 
field H,  = W A W / ~ , , ~ ~  = 55 kOe, where go= 47 i s  the spec- 
troscopic splitting factor for the bottom of the conduc- 
tion band. Fo r  practically al l  the samples investigated 
in the present study, in such strong magnetic fields only 

FIG. 2. Position of spin resonance of nonlinear optical sus- 
ceptibility x ( ~ )  (- w,, wl , wi, -w,) as a function of the Fermi 
energy of the condition electrons inn -1nSb. Points-experi- 
ment: 0 - [loo] 11 H, - [ I l l ]  I I H .  Dashed and solid curves- 
calculation. 
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FIG. 3. Transition scheme in spin resonance of the nonlinear 
optical susceptibility X ( 3 )  (- u3, uI, WI, - u2) for different occupa- 
tion levels of the conduction band of InSb. 

the lower Landau subband a! (spin +)-the quantum lim- 
it-was filled, o r  else both subbands ff and p (spins 4 
and +) with quantum number N = O  were filled. In the 
presence of spin resonance, transitions from the a! band 
to the /3 band take place, and because of the nonparabolicity 
of the energy spectrum the spin frequency w, depends on the 
wave number kc, i.e., it is different for electrons at dif- 
ferent points of the subband. In the quantum limit, when 
only the band a! is filled, the main contribution to the 
resonance is made by states near the point k,=O (the 
transition indicated by the arrow 1 in Fig. 3), since the 
point k,=O corresponds to the maximum state density 
(the square-root divergence in the state density is k,=O 
is eliminated on account of the relaxation time 7,). At 
low concentrations, only states very close to k, = 0 a re  
filled, and for all of them we can put w,(k,) = w,(O) = wSo. 
In this case resonance takes place a t  the frequency wSo, 
the line has a Lorentz shape with half-width 2/7,, and 
the amplitude i s  proportional to 7,. 

At higher concentration (Fermi energy in Fig. 3), 
one can no longer neglect the w,(k,) dependence. If we 
disregard for the time being the motional narrowing of 
the resonance line, then the qualitative picture of the 
resonance is the following. The main contribution is 
made as before by states close to k,=O, so  that the 
maximum of the resonance line remains at the previous 
value Ho and the position of the resonance does not 
change with electron concentration, s o  long as the Fermi 
energy remains below the bottom of the upper Landau 
subband 0. States with k, close to the limiting value kZF, 
however, produce resonance even a t  magnetic fields 
close to Ho, so  that theg-factor decreases with k, be- 
cause of the nonparabolicity and therefore the resonance 
line broadens. The @,(kc) dependence plays in the case 
of a nonparobolic band the same role as inhomogeneous 
broadening in the theory of magnetic resonance. The 
resonance line will have a sharp boundary on the strong- 
field side at the magnetic field corresponding to w,(kEF) 
(transition 2 in Fig. 3). 

Finally, when the electron concentration becomes so 
large that the upper Landau subband f l  begins to be filled, 
states near the point k,=O, i.e., regions with maximum 
state density become excluded from the region of allow- 
ed transition by the Pauli principle. The transitions for 
a concentration characterized by the Fermi energy Epz 

indicated in Fig. 3 can occur only for points of the lower 
subband, located between the arrows 3 and 4, which 
mark the limits of the resonance line on the weak and 
strong fields, respectively. Owing to the square-root 

energy dependence of the state density, however, the 
contribution from states near the transition 3 will be 
larger and the resonance line should have an asymmet- 
ric shape with a maximum corresponding to the transi- 
tion 3. With increasing Fermi energy, the position of 
the initial point on the Fermi  level, for which the tran- 
sition 3 is allowed, shifts strongly towards higher ener- 
gies, so  that starting with the instant when the Fermi 
level reaches the upper subband of the point k,=O, the 
position of the SR a s  a function of the Fermi energy is 
strongly shifted towards stronger fields. This agrees 
qualitatively with the experimentally observed depen- 
dence of the SR position on the Fermi energy, but the 
quantitative description of the experimental data on the 
basis of such a simple scheme turns out to be unsatis- 
factory. 

The dashed curve in Fig. 2 shows the theoretical de- 
pendence of the position of the SR on the Fermi energy. 
The calculation w a s  performed at the following values of 
the energy-spectrum parameters: mass at the bottomof 
the conduction band m* =0.014406m0, cE=0.2355 eV, go 
=47.4 (these quantities correspond to the band param- 
eters taken from the paper of Pidgeon and ~ r o w n , "  with 
the effective mass and the g-factor containing a correc- 
tion for the mass and g factor of the free electron, while 
the spin-orbit splitting energy i s  assumed to be A =0.92 
eV). The energy EAw of the resonant transition was as- 
sumed to be 12.785 meV (for a central line with frequen- 
cy 102.7 cm"). 

The calculations were performed with a computer, us- 
ing f i rs t  the given value of the electron Fermi energy 
(in the absence of a magnetic field) to determine the con- 
centration and the Fermi energy in a magnetic field (the 
initial magnetic field was specified to be Ho = E ~ w / ~ ~ p ~  
= 54.3 kOe). 

The Fermi energy in a magnetic field was obtained 
from the equation for a system of electrons inwhichonly 
the two Landau subbands a! and 0 a r e  filled, and the de- 
generacy is assumed to be complete (i.e., T =O):  

n=eH(k,,f kzFa) /2n2hc, (18) 
and 

kiF.. 6 = [ 2 m ' e F ( l + ~ l / e p )  /A2* m'gOpBHlhl-eHlhclC. (19) 

An iteration procedure was used next to solve the equa- 
tion 

, e p ( k . ~ )  -&(kzp,) =fiAo, (20) 

That solution of (20) which corresponds to resonance 
for the transition 3 was assumed (in the f i rs t  variant of 
the calculation) to be the SR position. At low concentra- 
tions, i.e., a t  cF <cB(O)-&,(O), the position of the reso- 
nance was assumed to be Ho = E A W / ~ ~ ~ ~ ,  a s  already 
mentioned above. 

A remarkable future in the comparison of the results 
of such a calculation (the dashed curve in Fig. 2) with 
experiment is not only the poor quantitative agreement 
at high Fermi energies, but also the sharp kink of the 
calculated curve a t  EF = 24 meV, which marks the transi- 
tion from the quantum limit to the concentration region 
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in which the upper Landau subband begins to be  filled. 

Calculations, by Brueck, Mooradian, and ~ l u m , ~  of 
the line width of the Raman scattering with spin flip show 
that i t  i s  essential to take into account f rom the very be- 
ginning the electron momentum relaxation, i.e., the mo- 
tional narrowing of the line. In this case  we have not 
simply replacement of the asymmetric line by a Lorentz 
line, but a shift of the maximum of the line away from 
the position corresponding to the minimum k, towards 
progressively stronger fields. In the final variant of the 
computer calculation we therefore used directly thefunc- 
tion (15) in place of the resonant function (12). 

To describe the observed line shape i t  was also neces- 
sary  to take into account the multifrequency operating 
regime of the COz laser .  To this end a l l  the calculations 
were  performed for the five frequencies Aw of highest 
intensity, namely 99.1, 100.9, 102.7, 104.5, and 163 
cm-', and the intensities of these lines were  normalized 
in a rat io 0.58:0.95:1:0.95:0.58, obtained by averaging a 
number of measurements of the SR. 

Using expressions (16) and (17), i t  is possible in the 
case  of weak nonparabolicity to separate in the formula 
for the power P(w3) the rat io of the resonant and nonres- 
onant parts  of the susceptibility: 

where x,, = bn , n a r e  the electron concentrations, X, 
= c ( r ' + r n ) ,  b and c a r e  constant coefficients, 

r'=n, Re [Q/(l+~r,- 'Q) 1, (23) 

The quantities r' and r" differ from the r ea l  and imag- 
inary parts of the resonant formula (15) because of the 
normalization of the off-diagonal element of the density 
matrix p;, not to the total number of electrons but to the 
number of electrons capable of executing the transition 
from band ol to band fl [see formula (14)]. The f i r s t  te rm 
in the curly brackets of (22) describes the nonresonant 
background (in relative units), the second describes the 
interference of the resonant contribution with the non- 
resonant background (the dispersion contribution) and 
the third describes the pure resonant part.  

The coefficients b and c can b e  determined from quan- 
tum o r  quasiclassical calculations of x'~'.  Under the ex- 
perimental conditions, however, the nonresonant back- 
ground did not agree  with i t s  theoretical value, and was 
much higher, since in most  experiments (except thecon- 
trol  experiments) the beam with polarization perpendic- 
ular  to the magnetic field contained radiation of bothfre- 
quencies, w, as well a s  w2. We therefore determine in 
the final computer calculations the function 

where the parameter  f ,  which replaces the theoretical 
quantity b / c ,  was used to f i t  the calculation to the ex- 
perimen t. 

The parameters r,, rp, and f were  chosen to describe 
in the best  manner the dependence of the SR position on 

the Fe rmi  energy of the electrons, the shape of the res-  
onance line, and the dependence of the SR amplitude on 
the Fe rmi  energy. The presence of three adjustment 
parameters ,  however, does not offer great  leeway in 
their choice, since they turn out to be signigicant indif- 
ferent  regions of the electron concentrations. In the 
purest  samples,  the dispersion contribution to the reso- 
nance line is practically nonexistent, nor i s  the momen- 
tum relaxation time significant, while the width of the 
individual lines of the rotational s tructure makes i t  pos- 
s ib le  to est imate the spin relaxation t ime 7,. m e  pa- 
rameter  f is estimated from the dispersion contribution 
to the resonant part  of the susceptibility X'3' for  the 
most strongly doped samples; in addition, the quantity f 
determines the absolute value of the calculated arnpli- 
tude of the resonance (in the entire concentration inter- 
val). The momentum relaxation time 7, influences the 
sharpness of the individual peaks of the rotational struc- 
ture in the Fermi-energy region where the inhomogen- 
eous broadening takes place (i.e., outside the region of 
the quantum limit), and influence also the deviation of 
theoretical plot of the SR position from the straight line 
corresponding to the transition a t  k,=O, in the region of 
the quantum limit  (the bending of the plot of the SR posi- 
tion near cF = a t  24 meV). 

To compare the calculated dependence of the SR arnpli- 
tude on the electron Fe rmi  energy with experiment, the 
function (26) must, f i r s t ,  be  divided by f2 and, second, 
i t  is necessary in addition to take into account the con- 
tribution made to the nonresonant background by the 
bound (valence) electrons in n-InSb, a s  was done in the 
ca se  of the CR of the nonlinear optical susceptibility in 
Ref. 1. Using the correction determined in Ref. 1: 

Q ~ / [ Q ~ + ~ ( Q ~ ( D ~ ) ' ~ ~  Q b l ,  

where c P F -  I X f  l 2  is the nonresonant background due to 
the f r ee  electrons and G b -  I X b  1'  is the nonresonant back- 
ground of the bound electrons, we can obtain the final 
value of the resonance amplitude (at  a given Fe rmi  en- 
ergy &F), which can then be  compared with the experi- 
mentally measured quantity. 

The results  of the calculations a r e  compared with ex- 
periment in Figs. 1 ,  2, and 4. In Fig. l b  (curves l ' ,  2', 
3') the calculated form of the SR lines is compared with 
experiment (Fig. l a ,  curves  1, 2, 3). The calculation 
accounts satisfactorily for  the SR line shape in all three 
cases: at  good resolution of the rotational spectra of 
the spectrum, strong smearing of the rotational lines, 
and total broadening of the line with an appreciable con- 
tribution of the dispersion part  of the resonant compo- 
nent of the susceptibility. The somewhat smaller  width 
of the resonance lines in the case  of the calculated curves 
is due to the fact that only five of the strongest rotation- 
a l  lines were  taken into account, whereas a la rger  num- 
b e r  was observed in experiment. 

The solid lines in Fig. 2 show the results  of the final 
calculation of the dependence of the SR position on the 
electron Fe rmi  energy. I t  is seen that the agreement 
between calculation of experiment is essentially im- 
proved compared with the f i r s t  variant of the calcula- 
tion, although a t  high electron energies some discrep- 
ancy between the calculations and experiment still  re -  
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FIG. 4. Dependence of the amplitude of the spin resonance of 
the nonlinear optical susceptibility X ( 3 )  (- us, mi, wi, - 9) on the 
Fermi energy of the conduction electrons in n -1nSb. Points- 
experiment: A - [loo] 11H, A - [111] llH, 0-not oriented. Solid 
curve--calculation. 

mains. In this concentration region, however, anoma- 
lies are  observed in the behavior of the SR, and these 
a re  not considered in the present paper. 

The dependence of the amplitude of the resonance on 
the Fermi energy a s  compared with the data in Fig. 4. 
It is seen that the agreement is also satisfactory in the 
Fermi energy region from -16 to -35 meV. In samples 
of higher purity (&* < 15 meV) the ratio of the amplitude 
of the resonance to the nonresonant background was de- 
termined with more accuracy (because of the smaller 
background) and was less accurately obtained in differ- 
ent experiments, possibly because of saturation of the 
spin resonance." 

The best agreement between the calculations and ex- 
periments was obtained a t  the parameter values 7, = 1 
x lo-" sec, ~ ~ ~ 0 . 8 5  x lo-'' sec, and f =0.7. The momen- 
tum relaxation time agrees with the value taken from the 
average mobility for the given interval of the electron 
concentrations; the spin relaxation time is noticeably 
lower than the values obtained from the measurements 
of the combined resonancei8 and of the SR of the nonlin- 
ear  susceptibility6 X'2'(-w3, cot, -w2), which were mea- 
sured however, in samples with lower electron concen- 
trations and in weaker magnetic fields. As to the pa- 
rameter f ,  i t  corresponds to a nonresonant susceptibil- 
ity exceeding the theoretically expected value by a factor 
of several dozen, owing to the contribution made to the 
background by radiation of pure transverse polarization, 
and also to inexact superposition of the beams with cros- 
sed polarization. 

We have thus shown in the present paper the theory of 
nonlinear optical susceptibility constructed with allow- 

ance for the band structure of n-InSb and for both the 
spin and momentum relaxation of the conduction elec- 
trons makes i t  possible to describe satisfactorily the 
picture the SR of nonlinear optical susceptibility in the 
wide range of free-electron concentrations. 
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