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The magnetic properties of the two-dimensional "mixed" state (the Tm state) that appears in multiply 
connected type I superconductors carrying a strong current are studied on the basis of the linear, time- 
dependent Ginzburg-Landau equations. It is shown that the destruction of the TM state in a hollow 
cylindrical specimen occurs near a critical current which depends on the external magnetic field. The TM 
state at the inner surface of the sample exhibits a paramagnetic effect. When the TM state is moved to 
the outer surface the paramagnetic response changes to a diamagnetic one. 

PACS numbers: 74.55. + h, 74.30.Gn 

In 1943, Steiner and Schi6neck1 first observed the pa- 
ramagnetic effect in current-carrying superconductors. 
They established the fact that the mean magnetic perm- 
eability of a cylindrical sample exceeds unity if the 
superconductivity in the cylinder is partially destroyed 
because of current in the presence of a longitudinal 
magnetic field. In 1956, a similar phenomenon was ob- 
served in hollow cylinders by ~ e i s s n e r . ,  Special inter- 
est attaches to the investigation of a multiply connected 
sample in connection with the appearance in similar 
systems of the so-called two-dimensional "mixed" 
state. For an understanding of the significance of this 
new type of state, we consider various states that a r i se  
in a current-carrying hollow cylinder in the case of dif- 
ferent values of the flowing current and of the magnetic 
field intensity. 

The system is in the superconducting state if the cur- 
rent is  less than the first  critical current Jcl, which is 
determined from the condition that the sum of the in- 
herent magnetic field on the external surface and the 
external magnetic field Ha is equal to  the critical mag- 
netic field Hc , i.e., 

J, ,=(rzcaHc/2)  (1-H.'IH,Z) I", 

where c, is the speed of sound, Y ,  is the external radius 
of the cylinder. 

If the flowing current becomes greater than Jcl ,  the 
superconductivity is partially destroyed. In this case, 
a normal layer surrounds the central region, which is 
in the so-called intermediate state, comprising a sys- 
tem of alternating normal and superconducting domains, 
the thickness of which amounts to about lomu cm.' 
Meissner4 proposed a model of the intermediate state in 
the presence of a longitudinal field, and attributed the 
paramagnetic effect with the existence of helical cur- 
rents. An attempt to explain these currents within the 
framework of the theory of the intermediate state of 
L o n d o n - A n d r e ~ ~ * ~  encounters serious difficulties. 
Rothen6 has shown that a stationary paramagnetic solu- 
tion of the London-Andreev equations does not exist and 
that a generally periodic solution is unstable. 

If the flowing current exceeds the value J, = J,,(r: 
+ ri)/2rl r, , the radius of the region of the intermediate 
state becomes smaller than the inner radius of the sam- 
ple r , ,  s o  that there is actually no region of the inter- 
mediate state. On the other hand, the system cannot be 
in a purely normal state, since the magnetic field cre- 
ated by the current near the inner surface of the sample 
in smaller than the critical value Hc . And, finally, a 
purely superconducting external layer cannot be stable, 
since the electric field must exist right up to  the inner 
surface because of the finite conductivity of the sample 
and the continuity of the electric field at the boundary 
between the phases. Therefore, even back in 1938, 
L. D. Landzu (private communication to D. Shoenberg, 
see  Ref. 7) came t o  the conclusion that the inner sur-  
face of the hollow cylinder is covered by a layer which 
i s  in the "mixed" state, in which superconductivity and 
an electric field coexist. 

Finally, if the current increases s o  that the thickness 
of the layer a t  the inner surface of the hollow cylinder, 
in which the magnetic field of the current is less than 
critical, becomes smaller than the superconducting co- 
herence length, then the probability of the appearance 
of superconductivity becomes extremely small. The 
corresponding characteristic current J,,(H,) i s  con- 
nected with the transition of the sample to the normal 
state. 

A purely "mixed" state in the absence of an inter- 
mediate state, which is the subject of our research, 
was discovered experimentally and studied by I. Landau 
and Sharvin in 1969.8s9 They called the "mixed" state 
two-dimensional (TM state), since the radial dimensions 
of the samples were much greater than the thickness of 
the layer in the "mixed" state. Moreover, in their ex- 
periments, these authors found the conditions under 
which the TM state arises, not only on the inner sur- 
face of the hollow cylinder, but also inside the sample 
and on the external s ~ r f a c e . ~  In later studies, I. Lan- 
dauLO*" observed the paramagnetic effect in the system 
in the presence of an external longitudinal magnetic 
field (i.e., the magnetic field in the opening of the sam- 
ple becomes greater than the applied field). Upon dis- 
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placement of the TM state inside the sample, the para- 
magnetic effect decreases and finally disappears at 
some distance from the surface. Near the outer sur- 
face, the TM state becomes diamagnetic. This effect 
becomes very noticeable if the center of the TM state 
is located on the external surface of the cylinder. 

The purpose of the present work is the explanation of 
the magnetic properties of the TM state within the 
framework of linear nonstationary theory of Ginzburg- 
Landau. In contrast to  the situation described above 
with paramagnetism of the intermediate state, the prob- 
lem of the paramagnetic effect of the TM state can be 
solved exactly. The model of Andreev et al.12-14 serves 
as the basis of the present theory. In this model, the 
TMstate is considered a s  a dynamical system of super- 
conducting fluctuations localized near the inner surface, 
where the magnetic field is less than critical. The be- 
havior of the fluctuations in time is determined by the 
electric field. 

In Sec. 2, we formulate the considered model and ob- 
tain general expressions for the fluctuating currents. 
Section 3 is devoted to the calculation of the fluctuation 
spectrum and of the second critical current Jc2(Ha). In 
Sec. 4, the longitudinal and azimuthal fluctuation cur- 
rents which determine the conductivity and magnetic 
properties of the system a re  given a s  functions of the 
flowing current and of the external magnetic field for 
different locations of the TM state in the sample. It 
turns out that the TM state i s  paramagnetic on the inner 
surface and diamagnetic on the outer surface. It is 
shown that the linear theory is applicable only in a 
small vicinity of the critical current Jc2(Ha). The width 
of this vicinity is smaller the purer the sample. Sec- 
tion 5 is devoted to a discussion of the results, in par- 
ticular, to the possibility of the appearance of hyster- 
esis of the paramagnetic effect. 

2. THE GENERAL PREMISES 

We consider a hollow cylindrical type I superconduc- 
tor with an inner radius r, and outer radius r, , along 
which passes an electric current J and to which is ap- 
plied a longitudinal magnetic field Ha . In this case, the 
region in which the total magnetic field is less than the 
critical field i s  located close to the inner surface of the 
sample. In order to shift this region to the inside of the 
sample, I. Landau and Sharvin placed a wire in the 
opening of the cylinder, along which passed a current J, 
in the direction opposite that of the current of the sam- 
ple. Then the region in which the total magnetic field of 
the two currents J,, and J is less than Hc canbelocalized 
at any distance from the axis of the cylinder, depending 
on the current in the central wire. 

Since we shall use the linear Ginzburg-Landau theory, 
we must limit our consideration to the case in which the 
fluctuation superconductivity current I, of the layer, 
which is in the TM state, i s  much smaller than the nor- 
mal current I, in this layer: 

I . t I " .  (1) 
In this case, the magnetic field H(r) in the sample i s  
determined basically by the currents J and J, : 

H(r)  = (2Ica) [J(?-r,') 1(rZz-r?) -Jol. 

We denote by r, the radius of the cylindrical surface on 
which the magnetic field is equal to zero: ~ ( r , )  =O. 
Then r, is determined by the relation 

ro-[r12+Jo (r2-r,"/J]'h. (2) 

We further assume that the thickness of the TM state is 
much less than r,. In this case it is convenient to use a 
local Cartesian coordinate system. The z axis here co- 
incides with the axis of the sample, the y axis is par- 
allel to the layer and the x axis is perpendicular to the 
layer: 

x=r-TO. 

In the approximation linear in the small ratio %/yo, the 
magnetic field intensity i s  equal to 

H ( x )  =4Jx/co(rZ2-r,Z). 

The vector potential in the presence of such a magnetic 
field and of a simultaneously applied electric field is 
given by the formulas 

A.=O, A,=H.x, A , = - U ~ ~ / c , ( r ~ - r , ~ )  -c,Et. (3) 

We introduce a thermal random force into the equation 
of motion for the superconducting order parameter15*16 

a ~ l a t - v  ($+b2(V-2ieA/co) '$1 =f ( r ,  t ) ,  (4) 

where 5 = ((T) is the coherence length, v = 8(Tc - T)/n, 
and f (r, t )  is a Gaussian random force which satisfies 
the condition 

<f (r ,  t )  f+ (r', t ' )  ) =4mTvf26(r-r') 6( t - t ' )  ; (5) 
here m is the mass of the electron. 

The superconducting current density is determined by 
the second equation of the Ginzburg-Landau theory: 

It is convenient to introduce the following dimension- 
less quantities: 

Then Eqs. (4) and (5) take on the form 

* / a t - + + ~ + = f @ ,  t ) ,  (7) 

where L = -a2/ag2 - (a  / ay  - iy5)2 - ( a / a z ' + i ~ t = i / E ~ ) ~ ,  

The dimensionless parameters E, 8, y a r e  equal to 

e=2eEb/v, ~ = 4 e J ~ 3 / ( r , l - r , Z ) ~ o Z ,  y=2evHs/c0. 

In what follows, we use dimensionless quantities only 
and omit the tilde everywhere. We shall seek a solution 
of Eq. (7) in the form 

9 = C a!$z (t)~1;!, (r, t ) ,  (1 1) 
",L.." 

where 

I$c2z ( t )  = ( l / l )  exp {ik,y+ik.z) c~:::(z), (12) 
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k = k, + E t  , and is the normalized length. 

The function $:;',=(t) is an eigenfunction of the oper- 
ator L: 

The functions @ch (t ) form an orthogonal set: 
+- I 0::: ( x )  (DL:: ( 2 )  dx=6,,. 

-- 
(14) 

The condition (13! is equivalent to the following equation 
for (x): 

We assume that the electrical energy 2eE & is small in 
comparison with the relaxation frequency v : 

e e l .  (1 6) 
After substitution of the formula (11) in Eq. (7) and a 
series of simple transformations, we obtain equations 
for the time dependent coefficients a&)Rs(t ), which we 
can easily solve.12 The solution has the form 

The expressions for the current (9) and (lo), with ac- 
count of (11) and (17), take the form 

- 
2 * 

X J  d r e ~ p { ~  1 (1-?,$,*)dkf1}, (18) 
0 k-r 

where T = ~ ( t  - t '). 
The complete fluctuation current of the TM state is 

obtained by integration of (18) and (19) with respect to 
5 dx: 

eT " ' i?~:":' - Z k  
1. --;- J J  d k v d k T J  d r  exp {- J ( I -  h ~ ? ~ ) d k f 1 ] .  (20) 

En "-0 -.. I & k-r 

3. SPECTRUM AND SECOND CRITICAL CURRENT 

In order to calculate the fluctuation currents (20) and 
(21), it is  f i rs t  necessary to determine the spectrum of 
eigenvalues A::', . This can be done by generalization of 
the method described in Ref. 12 for the particular case 
Ha = 0 and J=J,,. The quantity J,, is  the so-called sec- 
ond critical current, first introduced and calculated by 
Andreev.17 It is defined as  the maximum current at 
which the superconducting fluctuations that increase 

with time still exist, i.e., at J <  J, there exist such n, 
k and k, at which A;:', <1. At J > J,, the opposite in- 
equality k;''', > 1 is satisfied for arbitrary n, k and k, . 
Physically, J,, is the value of the current near which 
the sample,becomes normal. The calculations carried 
out in Ref. 12 show that account of the eigenvalues x:;; 
with nf 0 leads only to an insignificant contribution to 
the current. It is quite evident that the destruction of 
the superconductivity in the presence of an additional 
longitudinal magnetic field Ha will take place at smaller 
currents. Thus J,, should decrease with increase in Ha. 

Assume that (J,,(H,), H,) corresponds to some point 
on an a s  yet unknown critical curve. Then the minimum 
of A$, which is reached at k = k, and k, = k,,, is equal 
to unity. Because of this, we can expand A?', for the 
case J =  J,, , Ha = H ,  , k = k, and k, - k,, in h e  following 
fashion: 

We shall determine the coefficients a,, a,, b, c,d by a 
variational method. As the test function we can choose 
a simple expression that depends on whether the TM 
state is located 

1) on the inner surface (rO=rl), 
2) on the outer surface (r, =r,), 
3) completely inside the sample ( )yo -rl 1 > D ,  )yo -Y, 1 

>D) (D is the thickness of the TM state). This expres- 
sion, which satisfies the boundary condition d@/dx - 0, 
has the form 

UJ:; ( 5 )  = N ( 8 a 1 n ) ~  exp (- ax'), (23) 

where N = 1 for the cases 1) and 2) and N = 2-"' for the 
case 3). In correspondence with this expression, the 
thickness of the TM state can be determined as  D = a-Y2, 
i.e., D = {a'*2 in ordinary units. 

Multiplying (15) by the quantity @g:(x), which is  spec- 
ified by Eq. (24), and integrating the resultant equation 
with respect to x in the limits 

I) from 0 to -, 11) from -- to 0,  111) from -- to -, 
we obtain 

where p =  1 in the case I, p= -1 in case I1 and p=O in 
case IlI. Minimizing A::: with respect to a ,  k and k,, 
we obtain 

where a(k,, k,) is given by 

as (km,  k,,) -Ayau(k,., k,,) -fI2/4=0, 
A=1/4-pz/2n. 

The value of the parameter P corresponding to the 
second critical current is determined by the condition 

whence we have 

The critical curve is given by the equation 
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Jc2(H.) = i L ( 7 )  C> (~2-TI') /4eE3, (27) 

where 
~=~~&'HJC,=H./~'~~H,=HJH~,. (28) 

The results of the numerical calculation of the critical 
curves (26) and (27) a r e  shown in Fig. 1. 

We now expand ~g: at some point on the critical curve 
in a series up to first order in (0 - Bc2)/Bc, = (J - Jc,)/Jc2 

and (y - =(Ha - H, )/H, and up to second order in 
k - k, and k, - k,, , taking it into account that a is a 
function of k and k, and is determined by minimizing 
X c ,  only with respect to a. Equating the result with 
expression (23), we get 

FIG. 2. Expansion coefficients 4 and a2 of the spectrum of 
the inner TM state. The corresponding coefficients for the 
surface TM states a r e  obtained by shifting the abscissa by 
an amount (1 - 2/n) " 2 ~ a c  /Ifc = Hac /HC 3 .  

by the simple relation 

bZ,=cZ,. (37) 

In correspondence with Eq. (31), the ratio I,/[, i s  equal 
to zero in the case of an internal (p=O) TM state. In 
this case the azimuthal current is absent. The ratio 
I, / I ,  has equal absolute values but opposite signs for 
the TM states on the outer (p= 1) and inner (p= -1) sur- 
faces. Figure 3 shows the dependence of [,/I, on the 
external field for the case p =  1: where 

By virtue of (37) it suffices to obtain the explicit ex- 
pression only for I,. The value of the integral in (35) 
depends to a significant degree on the relative values of 
A and E and on the sign of A. At A >> E ~ ~ ~ ;  the integral 
can be calculated by the saddle-point method; we get 

4. RESULTS AND LIMITS OF APPLICABILITY 

By determining the spectrum of the eigenvalues XY:, 
we can proceed to the calculation of the fluctuation cur- 
rents. Substituting (22) in (20) and (21), we obtain, af- 
ter  simple integration with respect to k", k and k,: The numerical calculation of the coefficient of the ex- 

ponential shows that it is approximately constant along 
the entire critical curve: 

b/n'/*(bd-c2)"'(8b)'"=0.30~0.03. 
I ,  = 

c eT " 2 bs3 
- J d r e w { T - K } .  2n ( d b  - c2)"' 5 

The function 7, =(8/3)(2/b)"' in the exponential i s  shown 
in Fig. 4. 

At I A  I <<&'I3, we can neglect the first term in the a r -  
gument of the exponential in (35). We obtain where 

A=at (J.z-J)IJ,z+a,(H..-H.) /He.. (36) 
The expansion coefficients a, and a, a r e  shown in Fig. 

2 for all points of the critical curve. 

b"' v/*)'h 5 4 * ,  

- c k  3n E 
where 

[bZ'./ (bd-c2)"']  [T ( l / , ) - ( S / z )  "1.311 1 =0.28*0.03 
We note that the relation between the densities of the 

azimuthal and longitudinal fluctuation currents is given on the critical curve. 

FIG. 1. Second critical current of the TM state on the inner 
surface (p =I), on the outer surface (/.I =-I) and inside the 
sample (p = 0 ) .  

FIG. 3. Ratio of the density of the azimuthal current to the 
density of the longitudinal current for  the TM state on the 
inner surface a s  a function of the external magnetic field. 
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curve can be determined in the following way. On the 
boundary of the region of applicability of the theory, the 
quantities I, and I, a r e  of the same order: 

FIG. 4. Fluctuation current (with exponential accuracy) below 
the critical curve for surface TM states @ =*I) and the in- 
terior TM state (p =0) .  

At we can neglect the second term in the 
exponential of the expression (35). In this case, the 
fluctuation current i s  given by the formula 

b eT e 
I ,  = -- 

4..r(bd - cz )  b A ' (40) 

where on the critical curve we have 

The physical characteristics measured experimentally 
a r e  the effective resistance of the sample R and the 
magnetic field intensity H, =Ha +Hs in the opening of the 
hollow cylinder. The quantities R and H, a r e  connected 
with the fluctuation currents in the following way: 

Ha-(4n/c,) I,= (4xc/bc,) I,, (42) 

where R = V/J ,  is  the normal resistance of the sample. 

The limits of applicability of the results a r e  limited 
by the condition (I), i.e., the linear theory is applicable 
only in the case in which the normal current I, in the 
TM layer is greater than the longitudinal fluctuation 
current I , .  Near the second critical current, the nor- 
mal current is equal, in order of magnitude, to 

The fluctuation current in the immediate vicinity of the 
critical curve is given by Eqs. (39) and (41). Substitut- 
ing (391, (41), (43) in (I), we obtain the limits of appli- 
cability of our theory: 

J,Zll.z (0)  B ( ~ I ~ ~ ) ' ~ ( a ~ / h ~ )  ' X  ( E O / l )  "I, (44) 
where A,, )b a r e  the energy gap and the London pene- 
tration depth for T =O; 5, = Ev, /TA, ; a, - A/pf i s  the 
interatomic distance; 1 is the mean free path of the 
electrons (in our units, A = 1). 

In the derivation of Eq. (44), we have used the rela- 
tions 

c0le~'=2"' %He, eTIE=i.2coH.x (Elf,)  (aolho)" 

and the fact that & can be expressed in terms of P and of 
the normal conductivity of the metal o in the following 
way: 

e=pe2/160(T.-T) EZ. (45) 

We note that the condition (44) i s  satisfied along the 
entire critical curve, with the exception of a small re- 
gion near the Ha axis, which is smaller the purer the 
sample. The region of applicability inside the critical 

I.-I,. (46) 

Substituting (43) and the expressions (38) and (41) for 
the current near the critical curve (A>>&213) in (46), we 
obtain 

'I.  

i.e., the width of the transition A is smaller the purer 
the sample and the larger the external field Ha. 

5. CONCLUSION 

The calculations that have been carried out show that 
the presence of an external magnetic field changes the 
properties of the TM state in several respects. The 
first  rather obvious consequence is the existence of a 
critical curve that reflects the decrease in the second 
critical current a s  a function of the applied magnetic 
field (Fig. 1). It was noted that the second critical cur- 
rent of the internal TM state (p=O) is less  than the cur- 
rent of the TM state on the surface ( k = i l ) .  In the lim- 
it, a s  the current approaches zero, the critical rnag- 
netic fields a r e  determined by the relations H, = 21%.ElC 
=Hc2 for the inner TM state and H, =[2/(1- 2n)] "%I, 
=Hc3 for the surface TM states; here H, and H,, a r e  
the so-called second and third critical magnetic fields 
known from the theory of type-11 superconductors. It 
must be noted, however, that the inner TM state cannot 
be achieved under this condition for type-I supercon- 
ductors, for the reasons discussed in Sec. 4. 

Another interesting manifestation of the external field 
is the formation of helical fluctuation currents. The 
sign of the rotation of the total helical current depends 
on the location of the TM state in the sample is such 
that the TM state on the inner surface gives a para- 
magnetic effect (sign H, = signc = signp = 1) and the di- 
amagnetic effect (signH, = -1) on the outer surface. [In 
a previous paper14 the author calculated the paramag- 
netic effect of the TM state on the inner surface for 
type-I superconducting alloys ( x -  1 , l -  5,) for the limit- 
ing case H,/H, << J/Jc,<l.] The inner TM state does 
not give a magnetic effect. In this respect the present 
theory confirms the following conclusion, made by I. 
Landau on the basis of his experiments: The TM state 
consists of two parts separated by a central bounding 
surface (Y =yo)  on which the circular magnetic field 
H(Y) of the currents I and I, vanishes- H(Y) has op- 
posite directions in these two parts. The sign of the 
magnetic effect relative to the external field i s  de- 
termined by the sign of H(Y), s o  that effects of the two 
halves of the TM state have opposite directions. Since 
we neglect the effect of curvature and consider the TM 
layer as plane, the effect is identical in magnitude for 
both parts of the layer. If the TM state i s  entirely con- 
centrated inside the sample, then the effects of the two 
halves compensate one another, s o  that the magnetic 
effect is lacking. If one of the halves is partially or  
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completely intersected by the surface, then the con- 
tributions to the magnetic effect from both halves no 
longer compensate each other, and the total magnetic 
effect is different from zero. 

The features of the transition of the TM state from 
the superconducting to the normal state, such as ,  for 
example, the appearance of hysteresis in the volt- 
ampere characteristic, were discussed in Ref. 12 for 
the case Ha = 0. These considerations can easily be ex- 
tended to the case of a non-zero magnetic field, and 
therefore there is no necessity of repeating it here. A 
new type of instability in the presence of a magnetic 
field is the hysteresis in the paramagnetic effect. In 
the experiment, the field Hi +Ha +H, inside the hollow 
was measured as  a function of the applied field Ha. It 
was observed1' that the hysteresis sets in at Hi -H,. 
The hysteresis-induced decreasing portion of the curve 
H,(H,) can be explained on the basis of our results. 

We now show that the derivative aH, /alla becomes 
negative under certain conditions. In correspondence 
with (38) and (42), the quantity aHi /aHa i s  given by 

If we substitute formula (37) and the microscopic ex- 
pression for E in (48), we get 

where 

f (y) =0.732(a2n,la'"y) (I,lIz) (J,zIJ.z(O) ), 
I.=2nr,I.. 

The coefficient ( l / ~ ~ [ , ) ~ / ~  in the curly brackets is much 
greater than the corresponding coefficient for pure sam- 
ples, and (A/c~/~)''* is also large. Numerical calcula- 
tions off (y) show that this function i s  equal to zero for 
y = 0 and y =He, /H,, and is of the order of lo-' for the 
middle portion of the critical curve (f (y)>O.l at 0.8< y 
<1.4). In this region, the expression in the curly 
brackets can be appreciably greater than unity. If we 
decrease the applied magnetic field, beginning with 
values greater than H,, the derivative aH, / a ~ ,  be- 
comes negative, when the ratio I, /I, exceeds the reci- 
procal of the expression in curly brackets. This pheno- 
menon manifests itself more rapidly and in more expli- 
cit form the purer the sample. 

Quantitative comparison of our results with experi- 
mental data requires a more detailed experimental 
study of the magnetic effect in the immediate vicinity 
of the second critical current. In his experiments, 
I. Landau" spanned the entire range of values of the 
external magnetic field Ha at a fixed current 4 how- 
ever, these experiments did not give sufficiently de- 
tailed information for a quantitative comparison in the 
small transition region where the linear theory is ap- 
plicable. The paramagnetic response of the TM state on 
the inner surface and the diamagnetic response on the 
outer surface agree qualitatively with the results of 
I. Landau. Typical phenomena such as, for example, 
the decreasing portion, due to hysteresis, of the curve 
H,(H,) have received excellent theoretical confirmation. 

I express my gratitude to S. Tomaya for the numeri- 
cal calculations of the curves shown in the drawings. 
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