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A calculation is reported of the total cross section of "destruction" of a hydrogen atom by collision with a 
multiply charged ion (Z>l). The partial cross sections representing charge exchange between a hydrogen 
atom and a multiply charged ion are calculated using perturbation theory for collision velocities low 
compared with e2/fi (e is the electron charge and fi is the Planck constant). The total charge-exchange 
cross section is compared with the results of a model in which the number of final states of a multiply 
charged ion is regarded as infinite. The criterion of validity of this model is determined. The coordinate 
and time dependences of the argument of the exponential electron wave function are determined for 
collision velocities low compared with Z"2e2/fi (Z is the ion charge) using the quasiclassical Keldysh 
method. The ionization cross section of a hydrogen atom colliding with a multiply charged ion is 
calculated for collision velocities high compared with zU2e2/#i. Matching of these cross sections makes it 
possible to determine the total destruction cross section of a hydrogen atom colliding with a multiply 
charged ion, which is valid in a wide range of collision velocities. 

PACS numbers: 34.10. + x, 34.50.Hc, 34.70. + e 

The parameters of a thermonuclear (fusion) plasma 
and the rates of heating and decay of such a plasma a re  
affected considerably by impurities.'.' In a fusion plas- 
ma the impurities a re  present in the form of multiply 
charged ions s o  that their influence on the plasma prop- 
erties if manifested in various processes involving such 
ions. In particular, when a beam of fast  hydrogen atoms 
is injected into a plasma, the processes of "destruction" 
of hydrogen atoms by collisions with multiply charged 
ions a re  important. The present paper is concerned 
with a calculation of the cross  sections of such proces- 
ses.  

The cross sections of inelastic processes in collisions 
of multiply charged ions with atoms or  singly charged 
ions have been determined in many recent experi- 
mentss-a and found in many calculations.O-10 A charac- 
teristic of these processes is associated with a large 
number of possible reaction channels because there a re  
many electron states in the field of a multiply charged 
ion to which the electron can be transferred. The exist- 

ing theoretical approaches to the calculation of cross  
sections of such processes a r e  based on the two-level 
approximation or  on perturbation theory and a r e  de- 
signed to determine the partial cross  sections of the 
investigated processes. They require detailed informa- 
tion on the spectrum of multiply charged ions, which 
can be obtained only after laborious calculations, and 
the results apply to specific partners and parameters 
of collisions. Such calculations cannot always be ap- 
plied to other collision parameters and other partners. 

Our aim is to find the total cross  section for the pro- 
cess of an inelastic collision between a hydrogen atom 
and a multiply charged ion. The loss of information 
on the details of the process makes i t  possible to com- 
bine all  the channels that "destroy" the hydrogen atom. 

We shall use asymptotic and quasiclassical methods. 
We shall divide the range of collision velocities arbitra- 
rily into three regions. In the f i r s t  region the relative 
collision velocity is small  compared with the character- 
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istic velocity of an electron in a hydrogen atom, so  that 
the motion of the nuclei does not affect the nature of the 
transition. In this range the charge-exchange process 
is regarded a s  the transfer of an electron in the field 
of a multiply charged ion, which has many states. This 
approachz0 has been used earlier.18.19 We shall concen- 
trate our attention on this approach. It i s  important to 
note that an electron is transferred when the distance 
between the nuclei between the two collision partners 
is large compared with the size of the hydrogen atom. 
This makes it possible to consider high collision velo- 
cities using an elegant quasiclassical method developed 
by K e l d y ~ h ~ ~ - ~ ~  to deal with the ionization of a hydrogen 
atom in an alternating electric field. The essence of the 
method is to find the argument of the exponential function 
in the "tail" of an electron wave function. In the range 
of distances from an electron to the atomic core we can 
use classical approaches which make i t  possible to de- 
termine also the time dependence of the electron wave 
function. Since in our case the charge-exchange pro- 
cess involves the transfer of an electron from the wave- 
function tail, the quasiclassical Keldysh approach is 
very effective. 

As long a s  the velocity in a collision between a hydro- 
gen atom and a multiply charged ion is low compared 
with the characteristic electron velocity in the ion field, 
the "destruction" of the hydrogen atom i s  due to charge 
exchange. At higher collision velocities the ionization 
cross section is much larger than the charge-exchange 
cross section and, therefore, a t  high velocities our 
problem reduces to finding the ionization cross section 
of the hydrogen atom under the influence of the field of 
the multiply charged ion. 

The final result i s  obtained by matching the cross  sec- 
tions for different collision velocities, which gives the 
cross section for the "destruction" of a hydrogen atom 
colliding with a multiply charged ion in a wide velocity 
range 1 < u s  2 ,  where Z is  the charge of the incident 
ion. " 

CHARGEEXCHANGEBETWEENAHYDROGENATOM 
AND A MULTIPLY CHARGED ION AT LOW COLLISION 
VELOCITIES v << 1 

We shall consider the process of charge exchange in 
the limit of low collision velocities when the motion of 
the nuclei does not affect the nature of the electron tran- 
sition. We shall introduce w (R), which is the probability 
of electron transfer per unit time from the field of a 
proton to that of a multiply charged ion, and we shall 
regard the electron spectrum of the ion a s  quasicontin- 
uous for the final electron states. The charge-exchange 
cross section is then 

where the brackets contain the probability of charge-ex- 
change when the impact parameter is p,  the distance be- 
tween the nuclei is R ,  and time is t. In view of the 
strong dependence w (R) in the case of rectilinear tra- 
jectories, Eq. (1) can be conveniently rewritten in the 
for mZ0 

Here, v is the relative velocity in the collision and 
y = ( (d l n w / d ~ ) ~ , ~ l .  Thus, the main problem reduces to 
the calculation of the probabilities of subbarrier electron 
transfer per unit time w (R) for a distance R between the 
nuclei. 

The simplest method of finding this quantity is to cal- 
culate the electron wave function near the axis joining 
the nuclei of the atom and ion. This makes i t  possible to 
calculate the electron flux in the field of the ion. As- 
suming that the motion of an electron in the field of a 
multiply charged ion i s  quasiclassical, we can determine 
the value of w ( R )  a s  the result of a subbarrier transition. 
This approach is used in Refs. 18 and 19. Here, we 
shall employ a different approach, which makes is pos- 
sible to find the range of validity of the above model. 

Charge exchange represents a transition between the 
two systems in question during a collision. In the ground 
state of the hydrogen atom the electron energy is 

The final state has the energy 

where n is the principal quantum number of the state. 
Splitting of each group of states amounting tozz 
3n(nl - n,)/22R2 (n, nl, nz a r e  the parabolic quantum num- 
bers  of an electron of a multiply charged ion) is  small 
compared with the difference between the energies of the 
neighboring groups of levels Zz/nS when the distance be- 
tween the nuclei is  large. This is true for 

when the ranges of the proton and multiply charged ion 
fields can be separated. We shall confine our discus- 
sion to distances between the nuclei 

4 Z ' k R < 2 Z ,  (3) 

for which the action of a multiply charged ion on an elec- 
tron can be replaced by the action of an electric field of 
intensity E =2/Rz, which is created by the multiply 
charged ion, a t  the point of location of the proton. 

We shall use perturbation theory to find the probability 
of charge exchange in collisions between atoms. The - 
amplitude of the probability of a transition to one of the 
levels deduced from perturbation theory is 

where A, is the potential of the exchange interaction be- 
tween the states in question, w, is the difference be- 
tween their energies which, to within the splitting in the 
same group of levels, is given by 

The process under consideration occurs when the dis- 
tance R between the nuclei, defined by Eq. (3), is large. 
In the region where the transition takes place the ex- 
change interaction potential A, (R) decreases steeply on 
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increase of R, and the width of the transition region is 
small compared with the distance between the nuclei. 
Therefore, in the region of the transition (R -p <<p) we 
can rewrite the law of f ree  relative motion (R2=p2+u2t2) 
in the form R =p + u2t '/2p, and express the difference 
between the energies of the initial and final states (4) in 
a time-independent form: 

and-finally-to write the exchange interaction energy a s  
A , ( R ) = A , ~ )  exp[-a(R -PI], where a = I (dlnA,/d~)~l. In 
this way we obtain 

where p is the impact parameter of the collision and u is 
the relative velocity. Consequently, the transition prob- 
ability is 

The above expression is derived using the fact that the 
exchange interaction potential is governed by the sym- 
metry of the terms and depends weakly on their energy. 
Therefore, the index i applies to states with the same 
values of n. 

We shall replace the summation over n with integra- 
tion. This is valid if 

where w is defined by Eq. (4a) for the distance of closest 
approach of the particles and the ser ies  of the nearest 
values of n. The condition (6) is the Massey criterion 
for the collisions in question. This operation gives the 
following expression for the transition probability 

where 

We shall now calculate the exchange interaction poten- 
tial, which is given by" 

AI(R)- 1 (YaVYc-Y,VIa)dS, (8) 
I 

where \k, and @, are  the wave functions centered on the 
proton and multiply charged ion, respectively; S is the 
surface intersecting the axis joining the two nuclei. 
Since the projection of the electron momentum along the 
axis is zero, the electron wave functions a r e  real  and 
independent of the azimuthal angle. It is also worth 
noting another point: the quantity xi A: of interest to us 
depends quadratically on the wave functions. We should 
s tar t  with parabolic quantum numbers. However, if we 
transform the expansion of the wave function from the 
parabolic to the spherical quantum numbers, the quantity zi A; retains the same form in the new representation. 
It will be convenient to use the spherical quantum num- 
bers because higher values of the orbital momentum I 
create a greater centripetal barrier,  s o  that xi hf is 
governed only by the small values I <<n. 

We shall calculate the integral (8) using the fact that 
this integral converges rapidly near the axis joining the 
nuclei. We shall select a s  the surface S the plane per- 
pendicular to the axis joining the nuclei and separated 
by the distance R, from the proton and by R, from the 
multiply charged ion (R, +R2=R). Then, using the fact 
that the integral (8) is determined by the stronger of 
the exponential dependences of the wave functions on the 
distance given by @, oc e-'HTi and @, a e-'i'2, we can r e -  
duce the integral (8) to the form 

2n (pa+bi) Ya (R,) Y I (Rz) . 
pH/RI+p~/R~ 

The plane S can be drawn conveniently near the top of 
the potential barr ier  a t  R,=R/( l  +Z112) where the range 
of divergence of the integral (8) in the transverse direc- 
tion is minimal. Moreover, the quasiclassical descrip- 
tion of both wave functions is valid here and this makes 
i t  possible to determine easily the arguments of the 
exponential functions : 

If we bear in mind that the energy difference (4) between 
the states of the transition involved is small, we obtain 
the following expression for  the exchange interaction 
potential (j3, = Pi = 1): 

The structure of the above formula is a generalization 
of the existing expressions for the potential of the ex- 
change interaction between an ion and an atomP when the 
projection of the electron momentum on the axis joining 
the nuclei is zero." In the Z = 1 case this formula re -  
duces to those already available. 

We can find the wave functions @, and 9, using the 
quasiclassical approach".24 and representing these func- 
tions in the form 

where cp, and cp, a r e  the wave functions of an electron in 
an isolated hydrogen atom and in an isolated multiply 
charged ion. In calculation of the wave functions X, and 
xi we must bear in mind that the main exponential depen- 
dence is contained in the atomic wave functions. This 
gives" *24 

In determining the wave functions cp, and x i  we shall con- 
sider only the limiting case R <<Z . The condition of 
smallness of the energy difference (4) for the states in- 
volved in the transition under consideration is then 
n = (zR/~)'/' and the quasiclassical expressions for the 
wave functions become 

Substituting the expression for the wave functions in Eq. 
(8), we obtain the exchange interaction potential 
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The expression for the potential (10) for the interaction 
between a hydrogen atom and a multiply charged ion is 
valid for an s state of an electron in a multiply charged 
ion. We shall extend this result to the case when the 
electron momentum I of the multiply charged ion differs 
from zero s o  that the electron wave function is 

where r2 and 0, a r e  the spherical coordinates of the elec- 
tron of the multiply charged ion. We shall assume that 
the main contribution to the integral (8) is made by the 
angular range 1202<<1, where the angular dependence of 
the wave function can be neglected, i.e., where we can 
replace the Legendre polynomial with unity. Since O2 
a p2/R2 and or R ,  cc R /Z 'I lo is the characteristic dis- 
tance of the electron to the axis, which governs the value 
of the integral (8)], this is justified if 

In this case the main dependence of the exchange inter- 
action potential on the momentum is due to the depen- 
dence of the radial wave function on the orbital momen- 
tum. In the case of small values of the latter the quasi- 
classical expression for the radial wave function can be 
represented in the form 

where cp, corresponds to zero orbital momentum. If 
12<<Z, we obtain the exchange interaction potential (9) 
in the form 

A,,(R) =(21+1)'- exp ( - l ( l+ i ) /ZZ)  A, ,(R),  4Z'"<R<2Z, (12) 

where A,&) is  the exchange interaction potential (10) 
for zero orbital momentum. 

We shall employ Eq. (7) for the charge-exchange 
probability, which has the following form for p <<Z 
(a = 2p/3Z,ni=Zp/2): 

Replacing the summation over I by integration, and 
using Eqs. (12) and (lo), we find that the charge-ex- 
change probability is 

We shall now compare the result obtained for the total 
cross section of charge exchange between a hydrogen 
atom and a multiply charged ion with the result of the 
model approachl8.l0 in which i t  is assumed that the elec- 
tron spectrum in the field. of a multiply charged ion is 
continuous. In the limiting case when the electron tran- 
sition occurs mainly a t  distances between the nuclei 
R <<Z, such a transition can be regarded a s  occurring 
under the action of the electric field E =Z/R2 of the mul- 
tiply charged ion. The probability of this transition per 
unit time isa 

s o  that the total probability of charge exchange during a 
transit along a rectilinear trajectory (R* = p2 + v2t2) for a 
given impact parameter is 

We have made use of the assumption W <<I, used to de- 
rive Eq. (24) within the perturbation theory framework. 

We can see  that the results of both approaches a re  
identical and were obtained under the same assumptions. 
The model based on the hypothesis of a continuous elec- 
tron spectrum in the field of a multiply charged ion 
yields Eq. (1) for the charge-exchange probability 
[W = 1 - exp(-Jwdt)]. We can use i t  to determine the 
partial cross  sections for  charge exchange to a given 
state nl of a multiply charged ion if we go beyond the 
perturbation theory framework. For this cross  section 
i t  follows from Eq. (5) that 

2xp 
Z ~ ~ ~ ~ A . I ~ ( ~ ) - ~ ~ ( - ~ )  u-a 

Hence, we find that in the case of partial charge-ex- 
change cross  sections in the limit of high values of Z 

where 
1 ( 1 + 1 )  ZV1 

onOl=2 (21-1- I )  exp ( - - ) - vn,(&)"och.ex . (15d 

3n 'I* R,' 2 R,' 
och,mR,' ,  W )  4 ( )  e x p  ( - T7) -0.56. (1 5b) 

It follows f rom Eqs. (14) and (15) for the partial cross 
sections that in the velocity range v < z''' the charge- 
exchange process terminates mainly a t  the ion levels 
characterized by the quantum numbers no and I, which 
a r e  given by no =21'a~3/4 and 1 s  z'/ '. 

CHARGEEXCHANGEBETWEENAHYDROGENATOM 
AND A MULTIPLY CHARGED ION AT MODERATE 
COLLISION VELOCITIES 

In considering charge exchange between a hydrogen 
atom and a multiply charged ion we can ignore the in- 
fluence of the ion motion on the nature of the transition 
a s  long a s  v << (d lnw/dR)-', where w is  the probability 
of a transition per unit time. In the limiting cases this 
condition has the following form: 

When the conditions a r e  no longer obeyed, the time-de- 
pendent change in the height of a barr ier  penetrated by 
an electron affects the electron transition to the same 
extent a s  the shape of the barrier. Nevertheless, we can 
find the solution of the problem also in the range of high- 
e r  velocities if we bear in mind that the electron transi- 
tion takes place from the wave-function tail where we 
can apply the quasiclassical description of an electron. 
Then, using quasiclassical methods, we can determine 
the electron wave function f a r  from its nucleus allowing 
for its time dependence and this can be done with expon- 
ential precision. For moderate collision velocities, 
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when an electron transition occurs mainly from the wave- we obtain 
function tail, this can be used to determine the charge- a 1mS a 1mS 
exchange cross section. In this respect, our problem ( T ) ~ = ( T ) ~  =o, 
is fully equivalent to that of the "destruction" of an atom 
in a harmonic electric field solved by Keldy~h.~' The 
only difference is in the nature of the variations of the 
electric field in space and time. Therefore, we shall 
follow exactly the quasiclassical Keldysh method apply- 
ing it to the conditions of our problem. 

We shall discuss the limiting case p <<Z. In this case 
a hydrogen atom is in an electric field of intensity 
~ = ~ n / ( p ~ +  v?'), where n is a unit vector along the axis 
joining the proton to the nucleus of the multiply charged 
ion. The electron Hamiltonian in the coordinate system 
linked to the proton is  

where the components of the vector potential are  

The x axis coincides with the direction of the ion velo- 
city and the y axis with the direction of the vector of the 
impact parameter p; the scalar potential is assumed to 
be zero. 

We shall introduce new variables: 

Substitution of the variables from Eq. (16), reduces the 
Schriidinger equation to 

- - 

(1 7) With exponential precision we now have @ = exp(iS), . 
where S is  the classical action. The boundary condition 
for S is S-T for y- 0 and x- 0. In the quasiclassical 
approximation, S obeys the Hamilton-Jacobi equation, 
which is obtained by substituting @ in Eq. (17) and ignor- 
ing the terms with the second derivatives of S with re- 
spect to the coordinates: 

as. as F t i ) ) . .  
xu- (z- Q ( i + Q z t 2 ) a h ) i - ( b f ~ (  (I+*)% 

This equation can be separated a s  follows: 
U 

~ = p r + p ~ y + A +  JH(P., P,; t') dt', 

where T = r0 corresponds to x = y = 0. Hence, using the 
boundary condition for S, we obtain A = T,. The equa- 
tions of motion aS/ap, = aS/ap, = 0, aS/ar,= 0 are then 

The electron flux from the proton field can be ex- 
pressed in terms of the electron wave function in the 
classically accessible range of its motion. Inthis range, 

Hence, Imp, = Imp, = 0. We shall determine the momen- 
tum p =  (p,,p,) which, under initial conditions x(7J 
= y(rJ = 0 brings us a t  a moment T to a point (x, y) lying 
in the classically accessible range. For that, we shall 
take the imaginary parts of the system (18). We shall 
introduce new notation: 

In this way we obtain the following system of equations: 
P Im q+Im (I+qz)"=O, 
p Im q-Im Arsh q=0, (19) 

(t2+P2+pZ+l) (l+qZ)"--Zp+ZPq=O. 

Taking the imaginary part of the third equation and com- 
paring it with the first  equation. we find that Im(1 + T J ~ ) " ~  

= 0 and P = 0. This makes it possible to represent q in 
the form q = i sincp so that the system (19) becomes 

p sin p=q, (y+pz+i)cos q=Zp. (20) 

The probability of loss of an electron from the proton 
field (i.e., the total probability of charge exchange and 
ionization of the hydrogen atom) is given, with exponen- 
tial precision, by the following expression 

where g ( f )  = $[-'(I -pZ+ 5') sincp; p and cp are expressed 
in terms of 5 on the basis of the system (20). The limit- 
ing expressions for the functiong(5) a re  

and its intermediate values are given in the table below: 

Thus, Eq. (21) allows us to reconstruct the exponen- 
tial variation of the probability of "destruction" of the 
hydrogen atom by collision with a multiply charged ion 
in the case of large impact parameters. In the limit 
of low collision velocities this formula describes charge 
exchange, whereas at high velocities it describes ion- 
ization of the hydrogen atom. We shall now use it to 
find the cross section of "destruction" of the hydrogen 
atom by a multiply charged ion. 

IONIZATION OF A HYDROGEN ATOM BY COLLISION 
WITH A MULTIPLY CHARGED ION 

At high collision velocities the "destruction" of a hy- 
drogen atom by a multiply charged ion is due to the ion- 
ization of the former. We shall consider this process 
on the basis of perturbation theory since the "destruc- 
tion" occurs mainly a t  large distances between the nu- 
clei, compared with the size of the hydrogen atom, i.e., 
the cross section of the ionization process exceeds the 
cross-sectional area of the hydrogen atom. Then, the 
perturbation operator is V=Zr-n/R2, where r is the 
electron coordinate and R is the distance between the 
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nuclei. The amplitude of the transition probability isz5 

Here, k is one of the states in the continuous spectrum; 
w, is the excitation energy of this state; p is the impact 
parameter (it is assumed that the nuclei move along 
rectilinear classical trajectories); x and y a r e  the pro- 
jections of the electron radius vector onto the directions 
of p and v, respectively; KO and K, a r e  the Macdonald 
functions. 

Having averaged the ionization probability over the 
proiections of the momentum of the final state (x 
-%2 - ,, -1 - ,rO,), 2 we obtain the following expression for the 
probability of ionization of an atom for a given value of 
the impact parameter 

where the summation is carried out over the states in 
the continuous spectrum. 

We shall calculate the ionization cross  section in the 
usual way." We shall introduce the impact parameter 
p,, for which the total probability of excitation and 
ionization is unity Go,,,,= 22/14. We shall represent the 
ionization cross  section in the form 

i o n  j wiOn (p) l np  dp. 
Pmln 

Here, 

is the probability that the transition terminates in a 
state in the continuous spectrum; the summation in the 
above expression is carried out only over the states in 
the continuous spectrum and the expression (23) for  the 
ionization probability found from perturbation theory is 
used in the second term. Calculating the required in- 
tegral in the limit '/v << 1, we finally obtain 

where-in agreement with the properties of the hydrogen 
atom ( 5  =0.283)-the numerical factor in the logarithm 
is a =1.51. 

This method cannot be used in the range p zp,,,, be- 
cause perturbation theory no longer applies > p,.) o r  
because we cannot replace the ionization probability with 
unity < pmin), Since this range of impact parameters 
is narrow, the factor in question has little effect on the 
results of calculations. For example, the use of the 
second order of perturbation theory within this frame- 
work gives the parameter a = 1.43, which has little ef- 
fect on the cross section in this range of velocities. 

We shall now analyze the general pattern of "destruc- 
tion" of the hydrogen atom by a multiply charged ion. 
At low collision velocities this process involves charge 
exchange between the atom and ion and the cross sec- 
tion of this process is obtain'ed in our paper1' on the as- 
sumption that the electron spectrum is continuous in the 

field of a multiply charged ion. At high collision velo- 
cities the process of "destruction" of the hydrogen atom 
is due to its ionization s o  that the cross  section, apart 
from the factor in the logarithm, is given by Eq. (24). 
Moreover, we have the probability of the loss of an elec- 
tron from the wave-function tail found using the quasi- 
classical Keldysh method. This result includes both 
charge exchange and ionization but i t  makes i t  possible 
to obtain only the exponential variation of the probability 
of "destruction" of the atom per unit time. The prob- 
ability of ionization in the case of large impact param- 
e ters  is, according to Eq. (23), 

Matching Eqs. (13) and (25) for the probability of "de- 
struction" by means of Eq. (21), which has the correct 
exponential dependence, we link these two limiting 
cases and obtain a general expression for the probability 
of "destruction" of a hydrogen atom in the case of large 
impact parameters within the perturbation theory frame- 
work (W<<l): 

where 
8,7p2lvZ'", p v l z b l ,  
1.14ZZ/pZu', pulZ>I.  

This makes i t  possible to obtain a general expression 
for the cross  section of "destruction" of a hydrogen 
atom by collision with a multiply charged ion: 

The transition probability used above i s  based on correct 
expressions of this quantity in those cases when per- 
turbation theory i s  invalid. The values of the universal 
function f (x )  a r e  given below: 

We shall now analyze the result obtained. It i s  based 
on the assumption that the action of a multiply charged 
ion can be represented by an equivalent electric field. 
This is justified a s  high velocities when "destruction" 
of a hydrogen atom is due to ionization in the electric 
field of a multiply charged ion. This assumption allows 
us to use the quasiclassical Keldysh method for mod- 
erate velocities. At low collision velocities, when the 
"destruction" of a hydrogen atom is due to charge ex- 
change, the process is solved in a more general form 
in Ref. 19. We shall now compare the charge-exchange 
cross  sections u,,,, a t  low collision velocitieslg with 
the cross  section uO,,_,, found from Eqs. (1) and (2) and 
corresponding to the replacement of the action of the 
field of a multiply charged ion by an effective electric 
field. The ratio u ,,,, /uL_,, is a s  follows: 

This ratio allows us to judge the precision of the re-  
sults obtained f or  various values of 2. At high values of 
Z the approach employed is asymptotically correct. 
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The above approach can b e  extended, by renormaliza-  
tion d the formulas,  to the case of "destruction" of 
o r d e r  atoms or small-charge ions colliding with multiply 
charged ions. 

 ere, v is the relative velocity of colliding particles; we 
shall use the atomic system of units: E = m  =e =l. 
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Characteristics of electron and photon spectra associated 
with interaction between quasistationary terms 

A. 2. Devdariani, V. N. Ostrovski, and Yu. N. Sebyakin 
A. A. Zhdanov State University, Leningrad 
(Submitted 30 July 1978) 
Zh. Eksp. Teor. Fiz. 76, 529-542 (February 1979) 

An analysis is made of the energy spectra of electrons or photons emitted as a result of decay of two 
quasistationary terms which interact with one another in accordance with the Demkov or Nikitin models. 
General expressions are obtained for describing the lines of isolated atoms and of the background 
corresponding to decay of a quasimolecular state. The profiles of atomic lines, their satellites, far wings, 
etc., are investigated. The general problem of the interaction of discrete states with degenerate continua, 
corresponding to different directions of electron or photon emission and different decay channels, is 
considered. The interaction of discrete levels via a continuum is related to interference in the final states. 
It is shown that each model of the interaction of quasidiscrete levels predicts a variety of spectra which 
differ in respect of the nature of interference. 

PACS numbers: 3 1.90. + s 

8 1. INTRODUCTION conveniently be descr ibed  in t e r m s  of formation and de- 

cay of the  corresponding autoionizing states of a quasi- 

Ionization in A + B -  A +B++e atomic collisions at ve- molecule. In con t ras t  to the  usual  d i s c r e t e  levels ,  such 

locities lower than the charac te r i s t i c  e lec t ron  value can  states are charac te r ized  not only by the  dependences, 
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