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Formulas are obtained in the WKB approximation for the Dirac equation in a strong external field 
(defined as a field in which the electron binding energy exceeds 2m,c2 and the discrete-spectrum level can 
drop to the lower continuum). The forms of the wave functions in the classically allowed and forbidden 
regions are obtained, and conditions for their joining at the turning point are obtained. The following 
applications of the WKB method are considered: 1) Generalization of the Bohr-Sommerfeld quantization 
condition with allowance for relativistic effects and spin. 2) Calculation of the pre-exponential factor in the 
probability of spontaneous positron production. 3) The level energy and width in the relativistic two-center 
problems. 4) The effect of screening on the critical distance R,, between colliding nuclei. 5) Tunneling 
through a nonspherical barrier and the angular distribution of positrons. 6) Allowance for the finite 
velocity of nuclei. Some problems outside the scope of the WKB method are also considered, viz., the 
electron spectrum at Ze2 = 1 and deep level in the lower continuum [Ze2,1,j 5(Ze2)"2]. 
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INTRODUCTION 

The WKB method is one of the most important approxi- 
mate methods of quantum mechanics. It is known'-3 
that in the case of a Coulomb field i t  i s  highly accurate 
even for small quantum numbers. Its application to a 
strong ( Z 8 >  1)  Coulomb field is a timely problem, 
expecially in connection with experimental observa- 
t i 0 n 4 ~  of the production of positrons in slow (v< O.lc, 
E/A = 3 - SMeV/nucleon) collisions of heavy nuclei. 
A calculation of the spontaneous6"' and induced9 emis- 
sion of the positrons, and of their energy and angular 
spectra, as well a s  a comparison of the theoretical 
calcuiations with experiment, provide a check on 
quantum electrodynamics in the region of strong ex- 
ternal fields (outside the framework of perturbation 
theory), a problem of fundamental i n t e r e ~ t . ' ~ - ' ~  

For such calculations we need the solution of the two- 
center problem for the Dirac equation. Since the 
variables do not separate in this case, this problem has 
no analytic solution, and the numerical calculations 
a re  quite cumbersome and were carried out14l5 only 
in the region below critical R > R ,, , c a -1 (i. e . , where 
spontaneous positron production is still impossible). 
The purpose of the present paper is to develop a con- 
sistent scheme for obtaining the WKB expansions for 
the Dirac equation in a strong field.') This makes i t  
possible to obtain an approximate analytic solution of 
the two-center problem, and also to consider a large 
group of problems in the theory of supercritical atoms. 
It must be emphasized that the WKB method usually 
yields the answer in a convenient analytic form, thus 
avoiding cumbersome numerical calculations. In those 
cases when the results of the WKB method can be com- 
pared with the exact calculation, the difference between 
them is small even for the ground level IslF, and de- 
creases rapidly with increasing Ze2. This indicates 
good accuracy of the WKB approximation for a strong 
Coulomb field . 

In Sec. 1 we obtain the quasiclassical formulas for 
the solutions of the Dirac equation and the conditions 
for their continuity in the transition through the 
turning point. These formulas a r e  valid for an a r -  
bitrary potential V(r) of spherical symmetry. The 
generalization to noncentral potentials i s  discussed 
in Sec. 2.  The succeeding sections consider the 
applications of these formulas to particular problems 
of the theory of supercritical atoms. A brief dis- 
cussion of the results and a comparison with other 
studies is  contained in the concluding Sec. 11. 

We use the system of units with ti = c = m, = 1 and the 
following notation: c is the level energy in units of 
m,c2, R i s  the distance between the nuclei, Z, and Z2 
a re  their charges, Z = Z, + 2, is the total charge 
(or the charge of a spherical superheavy nucleus), 1 
= Ze2 :. Z/137, g= (Z2 - x2)'", r, i s  the radius of the 
nucleus, and R,, is the critical distance a t  which the 
level of the discrete spectrum drops to the boundary 
of the lower continuum. 

1. THE WKB METHOD FOR THE DlRAC EQUATION 
IN A STRONG EXTERNAL FIELD 

The first  to consider the limiting transition from the 
Dirac equation in an external field to the Hamilton- 
Jacobi equation for a classical relativistic particle was 
Pauli,17 followed by a number of more detailed studies 
by others.'8." The case of deep levels (with binding 
energy >2mc2), however, was not considered, s o  that 
this question must be examined anew. 

We assume that the external potential V= -eAo(r) is 
electrostatic and has spherical symmetry (the general- 
ization to noncentral potentials will be considered in 
the next section). After separating the angle variables 
in the Dirac equation, we obtain a system of first- 
order equations for the radial functions G and F, which 
we express in matrix form: 
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Here x =fin, x = r ( j +  1/21 is the integral of motion for 
a Dirac particle in a central field; jfi is the total an- 
gular momentum; the definitions and normalizations 
of the functions G(r) and F(r)  a r e  the same as in Refs. 
6 and 10. Representing the solution by formal power 
series in A: 

we arrive a t  the chain of equations 

(D-y-,) C ~ ' ~ ' = O ,  (1.4) 

from which the quantities y, and cp'") a r e  determined 
consecutively. 

In order for the homogeneous system (1.4) to have a 
nontrivial solution, y_,(r) must be an eigenvalue , and 
cp(')= cp, must be one of the (two-component) eigen- 
vectors of the matrix ~ ( r ) :  

Here and below ti=m = c = 1; the subscript i takes on 
two values, plus and minus; A and A' a re  normaliza- 
tion constants which will be fixed later on. Since the 
matrix D(r) is not symmetrical, we must introduce 
besides the right-hand eigenvectors pi also the left- 
hand eigenvectors $,: 

We note that @, does not coincide with ((pi)=, and the 
left- and right-hand vectors a r e  mutally orthogonal: 

To determine yo we put c p ( O )  = cp, in (1.5) and multiply 
both sides from the left by GI. By virtue of (1.8) the 
term with vanishes, and we obtain for yo an 
equation from which i t  follows that 

(the prime denotes a derivative with respect to r ) .  We 
determine similarly also the next terms y,, cp(l), . . . 
in the expansion (1.3). We confine ourselves, how- 
ever, to the obtained terms y-, and yo (which cor- 
respond to the known expression ~ ~ , ~ p - ' l ~ e x p ( i ~ p d r )  
in the nonrelativisitic quasiclassical approach), since 
corrections of order fi, P, etc. usually does not im- 

prove the agreement between the WKB method and the 
exact solution. The reason, a s  is well is 
that formally the series in powers of A does not con- 
verge and i s  only asymptotic. 

The remaining calculations entail no difficulty. We 
present the final formulas for  the wave function of the 
quasistationary state with energy t<  -1 (details of the 
calculations can be found in Ref. 20). Expression (1.6) 
corresponds to an effective potential 

U(r ,  e )  = E V - ~ / , V ~ + ~ ~ / Z ~ ~ ,  (1.11) 

which represents attraction a t  short distances from 
the nucleus (where the term -(1/2)V2 predominates) 
and repulsion at r> r-. Thus, U(r, t )  a t  V(r) < 0 and 
& <O takes the form of a potential with a barr ier .  6* lo 

We denote by yo, r-, and r+ the turning points (see 
Fig. 1 in Ref. 16). The wave functions G and F have 
different forms in three regions: I) r 0 < r < r - ,  11) the 
subbarrier region r_ < r < r+ , 111) r> r+ . 

I. The region ro<r<r_ is classically allowed; the 
wave function in i t  oscillates: 

Here 

is the quasiclassical momentum for the radial motion, 

with 
0,-8,=sgn x.nrcsin { p [  ( e - V ) 2 - 1 ] - " ~ )  

If the level width y is small (as confirmed by the result), 
then the wave function of the quasistationary state must 
be normalized to a single particle localized in region I ,  
neglecting i ts  penetration into the classically forbidden 
regions r> r_ and r<ro (see Furry's article2' a s  well 
as Ch. V of Ref. 3 on this subject). Hence 

FIG. 1. The parameter R,, /2r, which characterizes the non- 
sphericity of the potential (4.1) in the subbarrier region. The 
values of Rc,  were taken from Ref. 14, and the average radius 
? of the K shell was calculated from formula (5.3) with x=-1. 
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where T is the period of oscillations of a classical 
particle in an internal well: 

We note that a t  the turning point r=g we have - V(r_) 
= (1 + ~ ~ / r _ ~ ) ' / ~ ,  SO that the quantity & - V(r) is positive 
in the region I .  

11. The subbarrier region r_< r< r+ . Here p2(r) 
< 0,  p = iq, and the quantities q ,  y,, , and yo a re  real. 
Expressions (1.12) then go over into functions that 
attenuate exponentially with increasing r .  For  states 
with x < 0 we have2) 

where Q = q -x9-1 and q(r) is given by formula (1.6). 
At H> 0 we have 

(an example of a state with x >  0 is the f i rs t  excited 
level, for which x = l ) ;  here Q=q + x r l .  

III. In the region r>r+ the quasistationary state 
corresponds to a diverging wave (outgoing positron): 

Here x< 0,  P = p  - i d ,  SO that the radial momentum 
p(r) is again positive. The flux of particles that go off 
to infinity is then y = 2 lim I m ( P  G )  as y - CQ. 

The obtained formulas determine the quasiclassical 
asymptotic form of the solutions of the Dirac equation 
as ti- 0 and a r e  valid for all r with the exception of 
small vicinities (AY- r 2 l 3 )  of the turning points. To 
get around these points and to match the solutions 
together, the usual procedure is employed. Thus, 
near r=r_ the Dirac system (1.1) reduces to a 
SchrEdinger equation whose potential depends linearly 
on r - r_ and whose solution is expressed in terms of 
an Airy function; it i s  also possible to use Zwaan's 
more elegant method. '* As a result we get a pre- 
scription for matching together the quasiclassical 
solutions, viz. , the usual"3 formulas for joining the 
solutions on the left and on the right of the turning point 
a re  valid if we consider in solutions similar to (1.16) 
and (1.18) in the vicinity of the turning point only the 
behavior of the prinicpal factors of type 

p-'J> exp ( * i  1 p d r )  , 

which a re  singular a s  r- r_ (or r- r+). 

In particular, the connection between the normaliza- 
tion constants in formulas (1.12)-(1.18) is of the form 

where o=-sgnX=fl .  

Although formulas (1.12)-(1.18) differ substantially 

from the quasiclassical nonrelativistic formulass' and 
a r e  more complicated than the latter, their application 
to concrete problems encounters no difficulty, since 
all the quantities contained in G and F a r e  defined in 
terms of quadratures . 

In conclusion, we indicate the positions of the turning 
points in the case of a Coulomb field 

Here f(x) i s  a cutoff function that takes into account the 
finite dimensions of the nucleus (we consider hence- 
forth two cases: f(x)= 1 and f(x) = (3 - 2 ) / 2 ,  0 < x  
= r/rN < 1 ; this corresponds to cutoff models I and I1 
in the terminology of Refs. 6 and 10). At &- > -b/r, 
the points r, lie outside the nucleus and do not depend 
on the cutoff model: 

where k =  (2 - 1)'12 and p =  1x1 /b (for levels in the lower 
continuum 0 < p < 1).  As k- 0 we have 

and for levels that drop deeply into the lower continuum 

r*==[(i*p)/k, kBi. (1.23) 

As to ro,  this turning point is determined from the 
equation f(x) - p/x = kr,/b , whose root is x = ro/rN. At 
k<< S/r, we get xf(x)=p, where f(x) is the cutoff func- 
tion from (1.20). We thus have xo= p for the cutoff 
model I ,  and in the case of model 11 

Thus, the turning point ro always liesinside the nucleus, 
i . e . ,  r,<<r_. We shall hereafter se t  ro equal to zero 
wherever possible. 

For the potential (1.20) a t  r> r, we have 

Therefore the condition for the applicability of the 
quasiclassical approach takes the form 

and is satisfied a t  g>> 1. Here r,,, is the point a t  which 
the effective potential (1.11) reaches i ts  maximum: 

The WKB method is actually applicable all the way to 
g -  1, a s  can be verified by comparing the quasiclassical 
formulas with the exact calculations. Such a com- 
parison was made in Refs. 22 and 23 for  Zcr and N, 
where N = N(b) i s  the number of discrete-spectrum 
levels that have dropped to the lower continuum. 

2. WKB METHOD FOR NONCENTRAL POTENTIALS 
The results can be generalized to the case when the 

potential ~ ( r )  does not have spherical symmetry (a 
concrete example is the potential (4.1) of the two- 
center problem). We write down the Dirac equation in 
a form similar to (1.1): 
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where now D = E -  mS - V(r), J ,  = cpeia ( J ,  and cp a r e  four- 
component bispinors), and we expand o and cp in 
powers of ti: 

a-h-'a-,+ao+lio,+ ..., cp=cp("'+fiq'l)+... . (2.2) 

Substitution of these ser ies  in (2.1) gives r i se  to a 
system of coupled equations 

{D-(aV a-,))(~'O)=o, 

{D- (a~cr - , ) ]~( ' )=aV(p(~)+ (avo0)cp'O', . . . . (2.3) 

The condition for the existence of a nontrivial solution 
cp") is of the form det(D - CYVU-,) = O  and yields an 
equation for a_, : 

(Va-,)Z=[e-V(r)]z-mz, (2.4) 
which agrees with the Hamilton-Jacobi equation for a 
relativistic zero-spin particle. Thus, as expected, l7 
o-, coincides with the classical action S. In contrast 
to the preceding case, the matrix D - m u _ ,  = c - V(r) 
- mP - ~YVS i s  Hermitian, therefore its left-hand and 
right-hand eigenvectors a r e  Hermitian conjugates: 
@, = qi*, with 

(D-aVS)q,=qt-(D-aVS) =O (2.5) 

(here i=1 ,2 ,3 ,4 ) .  Using (2.51, we get from (2.3) a 
system of equations for the correction oo: 

v,' (aBo,) v,=-q,+avcp,. (2.6) 

The bispinors cp, = cp, (r) can be obtained in explicit form 
by diagonalizing the matrix D -cYVS, so  that the right- 
hand side of (2.6) contains known quantities. Deter- 
mining oo from this equation, we obtain the quasiclassi- 
cal approximation of the solutions of the Dirac equation 

J.=(c, exp (h-'a-,+ao). (2.7) 

In practice the calculation of the functions o-, and oo for 
noncentral potentials that do not admit of separation 
of the variables in (2.4) and (2.6) is  a complicated 
mathematical problem and calls for the solution of 
partial differential equations (of first  order). In con- 
t ras t  to the case when V(r) is spherically symmetrical, 
the answer i s  not expressed in quadratures. This, 
however, is a general difficulty when the WKB method 
is applied to multidimensional systems without separa- 
tion of the variables (see, e .  g . , Refs. 24-26). 

We proceed now to concrete applications of the WKB 
method in the theory of supercritical atoms. 

3. QUASISTATIONARY LEVELS IN THE LOWER 
CONTINUUM 

Let us find the energy of the quasistationary states 
that a r e  continuations of the levels of the discrete 
spectrum into the transcritical region Z >  Zc, , c < -1. 
Neglecting the penetrability of the barr ier  in the region 
r_< r< r,, we obtain from (1.12) and (1.14) the quan- 
tization condition: 

Here n = 0,1,2 ,  . . . is the radial quantum number; the 
constant y' is equal to 3/4 a t  2 = -1 (s levels) and 1/2 
a t  lr  * -1. The equation (3.1) determines the real part 
of the level energy c,,. It differs from the usual Bohr- 

Sommerfeld quantization rule1 in that the momentum 
p(r) is given by a relativistic expression and that a 
correction proportional to w must be introduced for 
the spin-orbit interaction. 

This correction does not exceed the e r r o r  in the 
WKB method. We shall demonstrate this with the 
Coulomb field as an example, where 

and p(r)  is given by formula (1.24). At r< r_ the 
momentum is p(r)  -g/r ,  and therefore the ratio of the 
two terms under the integral sign in (3.1) is -,g2rw 
- cl. Since the quasiclassical approximation for the 
wave function has a t  6>> 1 an accuracy of the order of 
b-2 (see Ref. 271, i t  follows that only terms of order 
6 - I  need be retained. On the edge of the lower con- 
tinuum the function w(r) vanishes identically, and (3.1) 
reduces to the usual Bohr-Sommerfeld condition. This 
justifies the calculations performed in Refs. 22 and 
23 (we note however that the vanishing of w is a 
specific feature of the Coulomb field: if V(r) 03 rn, then 
w = 6 ~ - 1 ) / 2 r a t ~ = - l .  

At V(r) = -b/r the integrals in (3.1) can be calculated 
exactly. The energy spectrum in the case of a spher- 
ical superheavy nucleus is described by the formula 

where p= ' , ! / b , g = ( b 2 - r , : 2 ) 1 1 2 = b ( 1  -P') ' /~.  The pre- 
exponential factor depends on the model of the cutoff: 

Here f(x) is the cutoff function from (1.201, and xo 
= xo(p) is the root of the equation xf(x) = p. We note 
the following concerning these results. 

1. Formula (3.3) describes the "Coulomb" part of 
the spectrum, in the energy region 1 << f cl << b/rN. The 
main contribution to the integral (3.1) i s  made here by 
the region of r outside the nucleus. The cause of the 
exponential dependence of &,,, on the level number n is 
that a t  rN< r << r_ the effective potential is  U - -9/2?. 
In this case "falling to the center" takes place, and the 
spectrum En for the squared Dirac equation takes the 
form En-exp(-2nn/g). From this we get a t  '&I >> 1 

2. The pre-exponential function (3.4) decreases 
monotonically with increasing parameter p. At p << 1 
we have 

where 
1 

co= 1 for model I and co =1.40 for  model 11; for the 
maximal angular momenta (p - 1)  we have c b )  = c, (1 
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- p( + . . . , c, =4eaZ = 0.541. This means that when the 
angular momentum of the level increases the energy 
En, increases (at one and the same value of n). 

3.  The spin-orbit interaction causes the energy of the 
level to depend on the sign of the quantum number x. 
At 3>> 1 the relative magnitude of the splitting is small: 
, E,.-E .,-. arccos p l r l = g q W  
4. Formula (3.3) i s  valid under the condition g/n 

< n < (g/n) ln(S/r,). Because of the large logarithm 
1n(5/rN) >> 1 ,  i t  describes the greater part of quasi- 
stationary levels that lie in the lower continuum. 

We proceed now to calculate the level width y = 2Im&,, 
(which coincides with the probability of spontaneous 
positron.production$ 7). To this end we find the flux 
of the particles that go off to infinity, normalized to 
one particle in the region r,< r<r_. With the aid of 
the formulas of Sec. 1 we get 

where 

and T i s  the period of the oscillations determined in 
(1.15) (the last integral is singular a t  the point r= rl 
where V(r) = 1 +E, and must be understood in the sense 
of the principal value). 

In the nonrelativistic case yo = 1/T and the meaning 
of formula (3.7) i s  obvious: 1/T is the number of 
impacts, per unit time, of the particle (localized inside 
region 1) against the wall of the potential barr ier  a t  
r= c, and the exponential corresponds to the probability 
of penetrating through the barr ier  in each impact. 
Allowance for  the relativistic effects and for the spin 
s = 1/2 changes the expression for the period of the 
oscillations and adds to (3.8) a factor that depends 
generally speaking on the sign of x . In the case of a 
Coulomb field all the integrals can be calculated 
exactly, and we get 

where k =  (tZ - 1)'fZ is the momentum of the positron. 
If k<< f1Iz, then the width y is exponentially small a t  
any value of the angular momentum. At Ix  1 >> (3/r)lf2 
the exponential smallness of y is preserved even for  
very deep levels: 

k '" 2E (1-pa) 'I' 
exp{-ZxC[i-(i-pa)"']) (3.11) 

(with the exclusion of the physically unreal values k 
2 exp(2nf)). Finally, a t  1.1 d (3/ )Iiz and k >> 1 the 
exponential factor becomes of the order of unity, and 
the quasiclassical approximation ceases to be valid. 
We shall return to this case in Sec. 10. 

The obtained formulas describe the spectrum of the 
quasistationary levels in the lower continuum (their 
position and width) for a spherical superheavy nucleus 
with charge Z >  Z,, . A realistic method of obtaining 
such states is by collision between two heavy nuclei. 
We now proceed to consider this problem. 

4. RELATIVISTIC TWO-CENTER PROBLEM 

Simple estimates show that the motion of the nuclei 
is nonrelativistic, * whereas the electron on the lower 
levels of the quasimolecule (2, , Z,, e) has a velocity 
v-c .  Therefore the level spectrum of an electron in 
the field of colliding nuclei can be calculated in the 
adiabatic approximation: E = E ( R ( ~ ) ) ,  where ~ ( r )  is the 
position of the level in the two-center problem (i .e. ,  
for immobile nuclei located a t  a distance R). This 
problem could be solved previously7 only in the limiting 
case 5 = (2, + 2,) X eZ - 1. The WKB method yields a 
formula for c(R) for  arbitrary values of the parameters 
S and R/R c r .  

For nuclei in the uranium region, the average radius 
t of the K shell exceeds by several times the critical 
distances R,, (see Fig. I ) ,  so  that to calculate c(R) we 
need not know the wave function in the region r s R / 2 ,  
where the specific features of the two-center problems 
a r e  important. At distances r - 7 ,  the potential is close 
to spherically -symmetrical: 

where rlfZ = Ir * ~ / 2 1  . We consider therefore a 
spherical nucleus with total charge Z = Z, + 2, and 
with a variable' radius equal to ~ / 2  (the monopole 
approximations. $1. 

In a Coulomb field V(r) = -3/r the quasiclassical 
momentum is 

p (r) =r-'F(r, E)  =r-' (a-2br+cP)'". (4.2) 

The parameters a, b, and c can be easily obtained from 
(3.1). In this case, however, it is possible to obtain 
for them also more accurate5) expressions, by starting 
from the squared Dirac equation (see the Appendix). 
The equation for  the level energy &=c(R) follows from 
the quantization condition: 

where r'_O) = (3' -x2)/2 f is the position of the turning 
point r_ at  c = -1, k = 0 .  Allowance is made here also 
for the fact that the dependence on c is  negligible, in 
the integral [ p d r  over the region r<  R/2 << 1 since 
I ~ { r ) l  >> I cl  . The integrals (4.3) diverge logarith- 
mically a t  the lower limit (as R - O), and once they 
a re  regularized the dependences on R and Rcr can be 
separated in explicit form: 

R 
ln- -@ (8, t. x ) ,  

R.7 

where 

The function @ i s  obtained from this numerically. It 
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is also possible to obtain for i t  approximate expres- This attests to the good accuracy of the WKB approxi- 
sions (see the Appendix) that allow us to rewrite Eq. mation for  the ground level l su .  For the f i r s t  excited 
(4.4) in simpler form: level, the difference between these approximations is 

-1m. 
Re. 

[ l - ( l + % )  ( e + l ) ] $ ~ - ~ ,  (4.5) The probability of spontaneous positron production 
a t  R < R,, is determined by formulas (3.7) and (3. lo),  

where where the energy c must be taken from Eq. (4.5). 
The exponential factor in y was obtained previously ,6  

but the pre-exponential yo could not be calculated with- 
z - [ 1 - ( ~ ) 2 ] " [ e z - l + ( x - < ) % ] "  5' out using the formulas of Sec. 1. We note that yo 

depends substantially on the positron momentum k and 
on the total charge of the nuclei: 

kZ 1  " -1 

0 <  I K  !/5<1, and $(x) is defined by formula (A.lO). y . = z ( [ ( l - p z )  ( ~ + k ~ ) l " ~ - ~ ~ r t h ( k [ ~  1 ) }  
Figure 2 shows a plot of &(R) for the ground term lsu(n 

= ( :v, k-+O = -1) a s  calculated from these equations. It turned c k  k ~  ' (4.8) 
out that the results of calculation by (4.4) and (4.5) 
practically coincide: a t  all & -  1 the difference is here 
20.1%. c0=3[25(2+p2)  ( l - p Z ) " ] - ' ,  ~ , = [ 2 5 ( 1 - ~ ' ) ' " ] - ~  

As E - -1 we get from (4.5) (see Fig. 3) .  The pre-exponential factor yo increases 
3  - L with increasing p and grows sharply as p -  1. In this 

e -  ( - 1  + p= ( I +  412-:+3) (4.6) region, however, g= (5' -;:?)l l ' -  0 and the condition for 

The slope of the level P at  the boundary of the lower 
continuum determines the threshold behavior of the cross  
section for spontaneous positron production. In the 
other limiting case, when )&I >> 1 ,  we have 

(x, is  defined in (A. 12)). 

It is seen from Fig. 2 that a t  5 = 1 the results of the 
WKB method (curve 1)  and of the small subcriticality 
approximation7 (dashed curve 4) practically coincide. 

the validity of the quasiclassical approach is violated- 
[see (1.25)]. The value of yo a t  5 = p =  1 can be obtained 
from the small-supercriticality approximation,' and 
is shown by the dashed curve of Fig. 3. It is interes- 
ting to note the fact that although the analytic form of 
y,(k) i s  quite complicated, the dependence of yo on E 

is nearly linear. 

It follows from Figs. 2 and 3 that the level energy & 

and the width y depend not only on the ratio R/R,, , but 
also on the total charge Z of the nuclei. This points to 
the approximate character of the self-similarity (i. e.  , 
to a universal dependence of E and y on the ratio R/R,, 

FIG. 2 .  Energy of the ground level l s o  a s  a function of the FIG. 3. Pre-exponential factor yo(&, 6 )  in formula (3.9); 
distance R between the colliding nuclei. The values of the total Z = 2, + Z 2  i s  the total charge of the nuclei. The curves with 
charge Z =Z,  +Z, are the following: curve 1-2 =137, curve Z =I74 and 184 correspond to Pb+ U and U +U collisions. The 
2 - 2  =184, curve 3-2 = 2 0 0 ;  curve 4-result of calculation of dashed curve was constructed in accordance with the "small 
&(R/R ,,) inthe small-super criticality approximation7 at Z = 137. supercriticality" approximation.7 
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a t  arbitrary 5') obtained in the small-supercriticality 
approximation. In the calculation of the cross section 
and of the energy spectrum of the positrons for the 
U + U collision, they used in Ref. 7 curves corresponding 
to 2 = 137, whereas the curve with 2 = 184 should be 
taken. This correction i s  significant (especially the 
change in the position of the level on Fig. 2, since the 
probability w depends exponentially on the momentum 
k), and must be taken into account in the comparison 
of theory with experiment. 

5. THRESHOLD BEHAVIOR OF THE LEVEL WIDTH 
7 

As c -  -1, i. e . ,  a t  the threshold of the spontaneous 
positron production, the Dirac equation with Coulomb 
potential has a simple analytic solution.' Since r, 
-0,03 << 1 (in units of ii/m,c), we can expect the pro- 
bability of finding the electron inside the nucleus to be 
of the order of several percent. This i s  confirmed by 
numerical calculation (see Fig. 5 of Ref. 28). Using 
the smallness of r,, we can develop a calculation 
method that is valid in the energy region t a -1 and is 
more accurate than the WKB approximation. 

which characterize the dimensions of the electron cloud 
we obtain 

3n"'(v+2) r ( v +  I) r ( v + l + Z i g )  
<r'>= 

2$1v+115v I r ( i+zrg)  I 

where t = 6 m ( r N , ~ ) .  In particular, the average radius 
is 

For the f i rs t  three levels lsl l , ,  2plI2 and 2s1,, we 
therefore get (r) = 0.301, 0.227 and 0.532, while exact 
calculation (numerical solution of the Dirac equation) 
yields respectively 0.303, 0.229, and 0.534. This 
approximation is thus quite accurate. 

Unfortunately, the region of its applicability is  limited 
to energies near the boundary of the lower continuum: 
a t  k 2 1 the solutions of the Dirac equation a re  no longer 
expressed in terms of MacDonald functions (see Ref. 61, 
and furthermore the region where the solutions a re  
matched together vanishes. The WKB method is cruder, 
but its applicability is not limited to the case &a -1. 

Let us examine, following Ref. 7 ,  the determination It is important to note that where regions of applicability 
of the width y .  At r<<r+ =2b/k2 the wave function of the of these two methods overlap, their results coincide. 
quasistationary state is practically independent of the Thus, calculation of the moments (rY) with the. aid of 
energy &and coincides with the wave function of the 
level in the critical point, which is known in analytic 

(1.12) yields 

form [see formulas (2.22)-(2.28)inRef. 101. Onthe r V  3n'" ( v + Z ) r ( v + i )  r(v+s/2)  ( I +  v + l  ['/2S(1-pz) I" 
1+l/,p2 ' (5.4) 

other hand, a t  r> 6/2 the substitution X, = [I -tV(r)]"12 
F(r) no longer has any singularities. so that we can which agrees with (5.2) if I H.( >> 1. As already noted, - - 
write for ~ , ( r )  the usual quasiclassical formulas. ' If 
k << 1, then we can choose the matching point r such 
that r_ << r<< r+ . In this region of r, the quasiclassical 
asymptotic form of x,(r) goes into the "tail" of the 
wave function a t  the critical point, and this determines 
the normalization constant in x,. Calculating next 
with the aid of X, the flux of particles a s  r - m, we ob- 
tain for the probability of the spontaneous production 
of positrons formula (3.10) with the pre-exponential 
factor 

(see Fig. 4). This formula is exact a t  k - 0. Under 
the condition S >> ; X  1 >> 1 it goes over into the quasi- 
classical formula (4.8); the dependence of yo on the 
sign of u then drops out. 

We can similarly determine also other physical 
quantities at E =  -1. Thus for the moments 

the situation is similar for y.  

6. INFLUENCE OF SCREENING ON THE CRITICAL 
DISTANCE BETWEEN NUCLEI 

When two heavy nuclei come close together, a quasi- 
molecule is produced for a short time (r,,,, -10ii/mcc2 
= 10"' sec). The electric field exceeds in this case 
the critical value if R,,, < R,, . If the colliding nuclei 
a r e  not fully stripped (as under the experimental con- 
ditions% =), the quasimolecule i s  surrounded by an 
electron cloud whose screening action weakens the 
attraction of the K electron to the nuclei. As a result, 
the critical charge Zcr increases (in the case of a 
spherical superheavy nucleus) and R ,r decreases. A 
numerical calculation of the screening effect in the 
spherical-nucleus model was carried out in Ref. 29. 

We present a sample calculation of this effect, which 
is valid not only for a spherical nucleus but also for a 
system of two nuclei. We use the fact that nuclei in 
the uranium region satisfy the conditions 

R..aPaa, (6.1) 

FIG. 4. Pre-exponential factor yo at the positron-production 
threshold (k - 0). 

where a- (.Ze6)-'I2= 305'-'13 is the average radius of the 
atom in accordance with the Thomas-Fermi model. 
This makes it possible to use the nonrelativistic 
Thomas-Fermi model for  the description of the outer 
electron shells. The level shift A& is determined by 
the perturbation 6V= V(r) - V,(r), where Vo is the 
potential (4.1) for bare nuclei, and V is the potential 
corrected for the electron shell. The characteristic 
radius for 6V is r - a ,  so  that accurate to -(R,r/a)2 
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-lo-' the perturbation 6V should be regarded as 
spherically symmetrical: 

128 '18 

a -  [ - ( + z ~ ) ]  =0.0425rb, 
9nz 

x =  r /a ,  q = (2, + 2, - N)/(Z, + 2,) is the degree of 
ionization, N i s  the total number of electrons in the 
quasimolecule shell, q(x) is  the solution of the Thomas- 
Fermi equation with suitable boundary conditions, ' 
yo= ux,, is  the radius of the positive ion, and x, =x,(q). 
Using the expansion of cpb) at  small x, we find the 
correction for the screening in the two-center problem: 

Here /3 is  the slope of the level on the boundary of the 
lower continuum [see formula (4.6)], 

<rv)= J q02 (r) rvdar, (6.4) 

where $,(r) is the wave function in the critical point 
(E= -1, R = R,, ) and is normalized by the condition 

$;(r)ffr= 1; the coefficients cn depend on the degree 
of ionization q: 

where 

Since U, = U,(r), i t  follows that 0 is  a cyclic variable. 
Therefore the f i rs t  equation is directly integrated: 

S,(r, 8 )  = Jpdr+x@, 

where p(r)  is the radial momentum (1.13). The 
imaginary part  of the action is acquired when the particle 
moves in the subbarrier region, where p = iq. The equa- 
tion for  S, in the region r_ < r < r+ is  of the form 

a s ,  a s ,  iq ( r ) -+- -=-  
dr r z d e  u1 (r, e )  

and is solved by the method of separation of the vari- 
ables. Putting ?U,(r, 0) = u(r)(3/4 cos2 6 + 1/4) and 
taking into account the boundary condition ImS,(r_) = 0 
we obtain at r = r + ,  i . e . ,  a t  the emergence from under 
the barrier:  

Im &(r+, 0 )  -crP,(cos 0 )  +af, 

where 

(6.5) a'=-- dr- 
" dr' J ::L; s h 2 ( % J m )  

y = y(q)= -ql(0) is  the slope of the q(x) curve at zero. (the constant a' is immaterial for the angular asym- 
For a neutral atom we have q = 0 ,  xo = m , c, = y = 1.588 metry of positron emission). 
(see Ref. 1). The quasimolecule produced when a bare 
nucleus collides with a neutral atom corresponds (at 
2, = 2,) to the parameters q = 1/2, xo = 2.952, y = 1.607. 

The ser ies  (6.3) converges rapidly. The quantities 
f l  and (+I2) can be obtained by numerically solving 
the two-center problem for the Dirac equation. A 
rough estimate (with the moments (+I2) replaced by 
their values for a spherical nucleus) shows that the 
correction for  the screening is appreciable: AR,,/R,, 
= 12% at q=O and AR,,/R,=~O% at q=0 .5 .  

A most remarkable fact i s  that the expression for a 
acquires a hyperbolic cosine that enhances of the angu- 
l a r  anisotropy of the emitted particles compared with 
the anisotropy of the potential. The cause of this 
effect is  that the subbarrier trajectory of a tunneling 
particle with nonzero angular momentum is not a 
straight line. One-dimensional motion corresponds 
to K = 0; in this case 

7. ANGULAR DISTRIBUTION OF THE POSITRONS and there is no enhancement. Formula (7.6) can also 
be obtained by varying the expression 

In the quasiclassical approximation the probability of 
I* 

passage of the particle through the ba r r i e r ,  accurate ~m S= J [ 2 ( U - ~ ) ] ~ d r  
to the pre-exponential factor, is equal to ,-_ 

wmexp (-21m S ) ,  (7-1) with respect to the potential U (it i s  assumed here that 
where S = J  Ldt; the integral is taken along the ex- 0 is  constant, i .  e . , the "twisting" of the subbarrier 
tremal trajectory that minimizes ImS. trajectory i s  not taken into account). Since Ix 1 = j 

As seen from (4. I ) ,  the potential of the system of 
two nuclei contains a t  r >>R a quadrupole correction. 
For uranium nuclei this correction in the subbarrier 
region r_ < r < r+ does not exceed (R,, /2r_)' - lo-'. 
Therefore the problem reduces to a calculation of the 
penetrability of a three-dimensional barr ier  that differs 
little from a spherically symmetrical one, and can be 
solved with the aid of an expansion in powers of R2. 
Substituting 

V-Vo+R2Vr+.  . . , S=So+ R2SI+ . . . (7.2) 

in the Hamilton-Jacobi equation (2.4), we get 

+ 1/2 2 1 for a Dirac particle, the anisotropy of the 
potential i s  always enhanced. This constitutes the 
substantial difference between the three-dimensional 
and one-dimensional problems. 

We note that in the case of a Coulomb field we have 

k 
t (g+er )  , q ( r )  = -[ (r+-r) (r-r-) Sh u ( r )  =- - 

4r3 
(7.7) 

and the integral (7.5) can be calculated exactly. This 
calculation, however, is hardly meaningful, since 
applicability of the WKB method now calls not only for 
quasiclassical radial motion (which is well satisfied in 
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a Coulomb field a t  g 2  1) ,  but also quasiclassical values 
of the angle 8. The latter a re  obtained only a t  1% 1 >> 1, 
a condition which does not hold for the f i rs t  levels 
l su  and 2@(x = A ) .  Formula (7.5) cannot claim to be 
quantitatively accurate for these states. 

Taking (7.7) into account, we get 

An estimate of the integral (7.5) shows that the param- 
e ter  cr in the angular distribution of the positrons 

w (0) zexp (-21m S) =const .exp (aPZ(cos 0) 1 (7.8) 

is of the order of cr - (R2 sinhq)/q >> R', where q =2nx(C2 
- ~ " ) - l ~ .  For  uranium nuclei, (Y -1/3, and we can ex- 
pect therefore a noticeable angular anisotropy (the 
positrons a re  emitted predominantly along the axis 
that joins the nuclei a t  the instant of their closest 
approach). This question i s  worthy of experimental 
study. 

8. ADIABATIC CORRECTION TO THE LEVEL WIDTH 
7 

In the derivation of formula (3.10) it i s  assumed that 
the positron tunneling time 7, i s  too short for either 
the barrier itself o r  for the level energy & to change 
noticeably. This, however, is certainly not the case in 
the region of R close to R,, , since 7, increases without 
limit a s  k - 0. 

Using the imaginary-time method,') we now estimate 
the correction due to the change of the penetrability of 
the Coulomb barrier as the result of the finite velocity 
of the nuclei. The probability of particle tunneling from 
a bound state (with energy c,) into states of the contin- 
uous spectrum is determined by the imaginary part of 
the action function7) 

1 I 

S= j ( ~ + e ~ )  dt= j (-m(l-iz) "-V(r, t) +ee}dt. (8.1) 
b S 

Varying this expression, we get 

=pbl:+j (8e,-bV)dt, (8.2) 
b 

where p = m 3(1: 3i2)-'I2 and account is taken of the equa- 
tion of motion p = -aV/ax. We note that pbxl:, makes 
no contribution to 1m65, and the term &&dt is fully 
accounted for by the fact that in the calculation of y 
the level energy is taken in the form &, = ~ @ ( t ) )  cor- 
responding to the adiabatic approximation in the velocity 
of the nuclei. The term that remains in 

a=- j a v ( . ( t ) ) u  (8.3) 
b 

yields the correction to the penetrability of the static 
barr ier  necessitated by the effect of interest to us- 
the change of R(t) during the tunneling time. The in- 
tegral (8.3) is then calculated along a subbarrier t ra-  
jectory that satisfies formally the classical equations of 
motion, but with "imaginary time" t = i r ,  where 

We have introduced here the variable cp= 2 arcsin[(y+ 
- r_)/(r+ - r_)l1I2, which i s  convenient in the case of the 
Coulomb field. In this case 0 c cp c n, r= r+cos2(cp/2) 
+ r -  ~ i n ' ( ~ / 2 ) ,  while 7 = 0 and p = 0 correspond to the 
instant of emergence from under the barr ier .  The 
total tunneling time is therefore r, = n6/ks, i. e .  , 7, - m as &- -1, and for deep levels r, becomes rapidly 
shorter. 

The kinematics of the motion of the nuclei was con- 
sidered in detail in Refs. 7 and 8 .  Near the closest- 
approach point we have R(t) = R, + gf /4R0; Taking 
(4.1) into account, we obtain the time-varying part  of 
the potential: 

Substitution in (8.3) yields 

where c, = -c. up = (1 - c - ~ ) ~ / '  i s  the positron velocity, 

1 " sincpf (I-cpZ)q ' cos qf(1-u,Z)q 
I( . , .  n ) = - B j  I [  cos cp+q 

0 -1 cosq+q 
, (8.6) 

q = [I -(1 - p2)vi]1/2, and p2 =;c2,'C2. The integral (8.6) 
was calculated numerically (see the table for 5 = 1.343, 
which corresponds to collision of two uranium nuclei). 
The ratio 

6=ImS,/Im 3,). Im 3, 
= J I ~ [ C ~ - ~ - ( ~ - ~ ~ ) " ]  (8.7) 

for 5=  1.343 is shown in Fig. 5,  from which it i s  seen 
that 6 < 1 6  a t  c ]  > 1.65. Thus, the adiabatic ap- 
proximation in the problem of spontaneous production 
of positrons is not valid only in a relatively narrow 
energy region near &= -1, where the positron produc- 
tion cross section itself is  quite small. 

Numerical calculations have shown1% l5 that R,, in- 
creases rapidly with increasing total charge 2, + Z2 
for nuclei in the uranium region. The cross section 
for spontaneous production of positrons increases in 
this case in proportion to R;' (see Ref. 71, while the 
correction for  the nonadiabaticity of the tunneling 
process decreases in proportion to 1/R,, [at a fixed 
energy of the emitted positron-see formula (8.5)]. 
To check on the theory developed in the adiabatic 
approximation, i t  is convenient therefore to perform 
the experiments on heavier nuclei. 

When heavy nuclei collide, induced positron pro- 

TABLE I. 
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FIG. 5. Relative value of the adiabatic correction d as a func- 
tion of the positron energy Ep = ( 1  +k2)"2. The calculation was 
made for uranium nuclei ( 6  = 1.343). 

duction i s  possible in addition to the spontaneous 
production. A calculation of the probability of this 
process is given in Ref. 9 .  

9. ELECTRON SPECTRUM AT Z = 137 

The exact equation fo r  the level energies in a poten- 
tial ( 1 . 2 0 )  i s  quite unwieldy. It can be simplified in 
two cases: 1 )  a t c  = - 1 ,  a fact  already used6 in the cal- 
culation of the cri t ical  charge of the nucleus; 2) a t  
t;= Ix! = j + 1 / 2 ,  corresponding to the s t a r t  of the "fal- 
ling to the center" in the field of the point charge Ze 
fo r  s tates with angular momentum j .  

We consider the second case .  Since we have here 
g= (3, - x 2 ) 1 / 2  = 0 ,  the condition ( 1 . 2 5 )  i s  violated and 
the WKB method cannot be  used. To calculate the level 
spectrum it is necessary to turn to the exact solutions 
of the Dirac equation. 

We confine ourselves t o  the case  t; = l x  = 1  (the levels 
n s l l ,  and np , , , ) .  Introducing the function 

we can transform Eq. ( 1 6 )  of Ref. 6 into 

Here v = c ( l - c 2 ) - l / 2 ,  ~ = ( y ~ + l ) ' ~ / ~ y , , , :  =f 1 ,  5 i s  the 
logarithmic derivative of the internal solution on the 
edge of the nucleus; the values of 5, a t  5 = 1  a r e  the 
following: 

x=-1 x = l  
Cutoff model I: 0.642 l.794 
Cutoff model 11: 0.550 1.220 . 

After determining the roots  v =  v, ,  of (9 .  I ) ,  we can 
calculate the energy spectrum f rom the formula &,, 
= v (1  + g)'lI2. The results  of the calculation a r e  shown 
in Figs. 6 and 7. Allowance fo r  the finite dimensions 
of the nucleus a t  t ;=1  lifts the known "accidental" de- 
generacy of the levels with respect  t o  the sign of n, 
which i s  characteristic of the Dirac equation in a Cou- 
lomb field .') It follows f rom ( 9 . 1 )  that as Y ,  - 0  the 
expansion parameter  for  c  is not the nuclear radius Y ,  

of itself, but A = -lnr, 

FIG. 6. The correction &(yN) - &(O) for  the finite dimensions of 
the nucleus at  2e2  = l ;  r ,  is the radius of the nucleus in units 
of 6 / m ,  c =386 F, E(0) is the level energy in the field of a point 
charge (r, -- 0 ) .  

with the f i r s t  t e rm of the s e r i e s  c, corresponding to the 
Sommerfeld formula fo r  a pointlike nucleus. The 
values of the coefficients c ,  and &, a r e  given in Ref. 3 5 .  
The splitting of the levels n s l l ,  and n p l l ,  begins with 
A m 2 .  

The non-analytic charac ter  of the dependence of cnx 
on the radius of the nucleus a t  the point Y ,  = 0  i s  con- 
nected with the behavior of the effective potential a t  
sho r t  distances: U = - 1 / 8 r 2  + O ( r l ) .  This behavior 
is on the borderline between the ca ses  of regular  and 
singular potentials .' Therefore the influence of the 
finite dimensions of the nucleus a t  t ; = l  f o r  s ta tes  with 
j =  1 / 2  and i r  = i 1  cannot be taken into account by per -  
turbation theory, and the correction &(Y,) -o(O) itself 
turns  out to be  quite appreciable (see Fig. 6), although 
t;= 1  these s ta tes  a r e  st i l l  f a r  f rom the boundary of the 
lower continuum. 

10. DEEP LEVELS IN THE LOWER CONTINUUM 

Special consideration should be given to the case  

c, k B 1 ;  1 x]<(cla)",  ( 1 0 . 1 )  
i. e .  , levels  with relatively smal l  (x, x,,, - 51/2 << 1) 
angular momenta, which have dropped deeply into the 

FIG. 7. Lifting of the "accidental" Coulomb degeneracy at 
z e 2  = l .  We designate by A& the difference between the ener- 
gies of the levels 2sll2 and 2pilz, with opposite signs of the 
quantum number. 
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lower continuum. Most appropriate for such states is 
the term "superbound electrons," proposed in Ref. 11. 
At the present time the properties of such states a r e  of 
purely theoretical interest, since their existence calls 
for nuclei with charge 5 = Ze2 >> 1 . This question, how- 
ever, would become timely should supercharged nuclei, 
the existence of which is suggested by Migdal's 
theory, '8, be observed. 

When the conditions (10.1) a r e  satisfied, the turning 
points r+ and r_ come closer together 

and the penetrability of the barr ier  tends to unity. 
Therefore the quasiclassical approximation ceases to be 
valid, and it becomes necessary to resort  to the 
exact solutions of the Dirac equation. 

Owing to the analytic difficulties, we confine our- 
selves to cutoff model I, assuming in this case that 
k2 >> 5 >> 1. Changing over in the region r > r, from the 
functions G and F to their linear combinations X+ and 
x,, which a re  equal to 

we have 
x/+pa2(r)  x+=O, 

We separate from X, the factor corresponding to the 
quasiclassical asymptotic value exp(iPp,dr) a s  r -  a: 

where a,=-it* 1/2, P+=-x2, P _ = Z i b + l - ~ ~ .  As- 
suming r=  (? + t)/k and confining ourselves in the re- 
gion I tl << 5 to the principal terms of the expansion in 
e, we arrive a t  the equation 

b y ,  21 dy, k' 
dt +TP*~*=O, ~ + - - t - -  

which can be reduced by the substitution 

to the standard form of the equation for the parabolic- 
cylinder functions. The quasistationary level cor- 
responds to the solution 

X* (r) =const. exp{* (i/8g) ":r }DDD(z) ,  (10.6) 

where x= (i5/2)'lI2(kr- 5), v+ =1 + u _ =  -ix2/25. Inside 
the nucleus, the Dirac equation for  the cutoff model I 
can be solved analytically in terms of Bessel functions. 
The matching of the external and internal solutions on 
the edge of the nucleus yields the equation 

which determines the spectrum of the quasistationary 
states. Here 

z=E-kr,,  UP^^*^/‘ (5/2) -"2, ()a~'//zF,, Aj(l) =Jj+;(2) / I ,  ( 2 ) .  

The appearance of the functions D, in (10.6) and (10.7) 
is due to the fact that a t  1x1 << g1I2<< k the effective 
potential becomes parabolic. 

Although (10.7) is much simpler than the exact equa- 
tion for the energy levels, its solution still calls for 
numerical calculations. We consider limiting cases,  
in which the answer can be obtained in analytic form: 

a) z <c 5lI2. This includes the deepest levels with 
energy close to the bottom of the well. Since 1 u 1 << 1, 
we can neglect the right-hand side of (10.7). As a 
result 

~ n j = ( - f  +znj)/r,,  (10.8) 

where znj are the roots of the equation A,(e)=i, n 
= 1,2,3 ,  . . . . Near the bottom of the well the level 
spectrum is approximately equidistant, as can be seen 
from the asymptotic (n >> 1, j<< n << 51f2) formula 

The decrease of ynj with increasing j i s  due to the 
centrifugal barr ier .  At fixed j, the width yn, increases 
with increasing n, but more slowly than the distance of 
the level from the bottom of the well (for details see  
Ref. 35). 

b) z >> t;'I2,j. Substituting in (10.7) the quasiclassical 
asymptotic forms for the Bessel and Weber functions 
we obtain 

1 r*=- --ln(1-e-'""). 
2r, (10.10) 

The region of applicability of this formula is c1l2 

<< n << b, n >> j. The width y i s  determined here by the 
value of the angular momentum. At j >> .>'I2 we have 
q >> 1 and a transition takes place to the quasiclassical 
exponential function (3.11): 

This establishes the connection between the WKB ap- 
proximation and the exact solutions of the Dirac equa- 
tion. 

c) ~t j<<n-bl/ '  formulas (10.9) and (10.10) a r e  
joined together and yield 

In this energy region (still close to the bottom of the 
well, since the exponential factor in (3.3) is close to 
unity), y reaches a maximum, with 

Thus, in this case, too, the quasistationary levels in the 
lower continuum overlap weakly. On the other hand, 
if the angular momentum is large enough, 1x1 1 (g/r)'l2, 
then the exponential (3.10) comes into play and de- 
creases y sharply. 

Thus, levels with energy c < -1 (even deep ones) a r e  
not "smeared out" over the lower continuum, but re- 
main practically isolated. In addition, because of the 
Pauli principle, no considerable growth of the vacuum 
polarization takes place as Z - Zcr ,lo in contrast to 
the boson case. This explains why the single-part- 
icle approximation has such good accuracy in the 
case of fermions in the region Z > Zcr . The two in- 
dicated facis (the small width of y and the allowance 
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for the Pauli principle) were used in the derivationz7 
of the relativistic Thomas-Fermi equation that describes 
the electron shell of a supercritical atom. 

11. CONCLUDING REMARKS 

1. The application of the WKB method to a Coulomb 
field with charge 2 > 137 was previously based6. ,qZ3* 38 

on squaring the Dirac equation. This method is good 
at E z ,  -1, but a difficulty ar ises  for states with energy 
E < -1 : the substitutions (8.1) have singularities a t  
the points r, and r,, such that V(r) = &f 1 (we a r e  con- 
sidering an attraction potential: V(r) < 0, 0 < r < 0 0 ) .  

Consequently a s  r- Y, the effective potential Ui(r) 
= 3/8(r - r, + . . . - and the ordinary quasiclassical 
formulas1 become meaningless near the points r=r, 
because of the divergence of the integral f '[2(E 
- Ui)]'l2dr. The points r, and r2 a r e  always in the 
region below the barr ier .  For  example, a t  V(r) = - f / r  
we have 

and a comparison with (1 .21) shows that < r, < r, 
< r+ . 

2. At Z=Z,  this difficulty still does not manifest 
itself. In fact, as c - -1 we have r_ = b{l - p2)/2, rz 
= b/2, and the points rl and r+ go off to infinity. As a 
result, the potential U1(r,& = -1) remains regular for 
all 0 < Y < a, SO that the usual variant of the WKB 
method can be used. This i s  how the quasiclassical 
formulas were obtainedZ% 23 for the critical charge Z,, 
of the nucleus, for the level energy near E = -1, and fo r  
the total number of levels that go off to the lower con- 
tinuum. Comparison with the numerical calculations 
shows that these formulas have good accuracy0) even 
for the ground state Isllz. 

3. It was shown in the present paper that the difficulty 
indicated above i s  formal in character. Direct applica- 
tion of the WKB method to the Dirac system (1.1) yields 
for the functions G and F quasiclassical formulas that 
a re  free of singularities a t  the points r=rl and r=rz. 
These formulas have numerous applications in the 
theory of supercritical atoms. For  nuclei in the uran- 
ium region, the parameter g= (b2 - 1 )1/2-1, s o  that 
one can count on good accuracy of the quasiclassical 
approach. 

4. From the form of formulas (1.12)-(1.18) it i s  
not quite obvious how the limiting transition is made 
to the nonrelativistic approximation. Referring the 
reader to Ref. 35 for details, we consider here the 
case when < 0 and r_ < r < r+ . Introducing the non- 
relativistic energy E = c- m =p2/2m + ~ ( r )  and assuming 
G = (q2 + ~ v ~ ) ~ / ~  = q  + ~ / 2 q 9 ,  we transform the argument 
of the exponential in (1.16): 

where Q=q -x/y. The last  term in the integral can- 

cels out exactly with the pre-exponential factor Q-I/,. 
We now recognize that 2 4- x = 1(1+ 11, and add to 4(r) 
the Langer correction, lo' which improves the accuracy 
of the WKB approximation at small r. We obtain ul- 
timately 

g(r) ={2m[-s+V(r) - (l+'/,)Z/2rnr']}'h, 

which coincides with the quasiclassical approximation 
for  the SchrGdinger equation. We note that q(r)  con- 
tains not x =r(j + 1/2) but the orbital angular momentum 
I ,  as should be the case in the nonrelativistic theory 
i f  the potential V(r) does not contain the spin-orbit in- 
teraction. 

5. Application of the WKB method to the quantum- 
mechanical many-body problem leads to the Thomas- 
Fermi  equation (see Ref. 21, which is the basis of the 
theory of complex atoms. In Refs. 39 and 27 the WKB 
method was used to derive and solve a relativistic 
Thomas-Fermi equation for the vacuum shell of a 
supercritical atom. We note that the electrons of the 
vacuum shell a r e  in the main localized in the region 
r < c. In this region, formulas (1.12) for  G(r) and 
F(r) differ from those obtained in Ref. 27 only in that 
the phases B,(r) a r e  of different form. The electron 
density averaged over the rapid oscillations mi 
= 1/2) retains i ts  previous form. Therefore the use 
of the more exact expressions of Sec. 1 does not change 
the relativistic Thomas-Fermi equation. 

The results of Secs. 3-5 make it possible to cal- 
culate quantities that a r e  directly measured in ex- 
periment: the cross  sections (total and differential, 
i. e .  , at  a definite scattering angle of the nuclei) for 
spontaneous production of positrons, the energy spec- 
trum of el, etc.  For example, in the adiabatic (with 
respect to the velocity v of the nuclei) approximation 
the total cross section u+ is7 

.+= 2 j:I(R, ~ ) R ' ~ ( R - R ~ ) ~ J * ~ R .  (11.3) 
'b 

Such calculations a r e  presently underway, and will 
result in substantial refinement of the small-super- 
criticality approximation. 

The authors a r e  grateful to M . S. Marinov, A. I. 
Chernoutsan, and E. V. Shuryak for  useful discussions 
during the work, and also to K . A .  Ter-Martirosyan f o r  
a discussion of the results. 

APPENDIX 

We derive here formulas (4.5)-(4.7) of Sec. 4, and 
determine the functions that enter in the equation for  
the level energy c =c(R; b, x ) .  

In the effective-potential method6.10 the Dirac system 
(1.1) reduces with the aid of the substitutions 

~,=(e+l-V)-"G, x2=(e-1-V)-"F (A.1) 
to the second-order equation 

x:'+2(E-U,)~.=0. (A. 2) 

Here i = 1 ,2 ;  E= (E2 - 1)/2, SO that the states of the lower 
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continuum correspond to an "energy" E > 0. The ef- 
fective potential U,(r,c) is of the form 

where W, = 1 * (E- V); the upper and lower signs cor- 
respond to i = 1 and i = 2, respectively. Near the 
boundary of the lower continuum Dl = - W(r) and the 
expression for  Ul simplifies considerably: 

We shall therefore work with the function x1(r). The 
quasiclassical momentum is equal to p(r) = [ 2 ( ~  - U(r, 

where a t  V = -b/r we have 

y = -(&+ l)r/&-. We have added here to the potential 
Ul the Langer c ~ r r e c t i o n , ~  which improves the accuracy 
of the WKB approximation in the region of small r. 
Hence p(r) = vlF(r ,&),  where 

F= 6'-x2+2etr+ (ex-Z)rZ+ [ 
= [a-2brtcrz+O(y" ]'", (A. 6) 

We have expanded here the radicand in powers of the 
parameter y and discarded terms of order y2 and 
higher; this makes it possible to calculate the integrals 
in (4.3) in analytic form. To justify this approximation, 
we note that the quantization condition (4.3) contains only 
r < r-. Therefore the e r ro r  6 which ar ises  when the 
terms my2 a r e  discarded has an upper bound 

(1-p')'kV64c2, k+O 

(l-p)2/(1+p)t', k - m  

This leads to smallness of 6 (at k >> 1 we have also b 
<< 1). 

Using the formula 

where a>O, b > 0 ,  2=ac /b2 ,  and ro=a[b+(b2-ac)"2]-1 
is the zero of the radicand, we obtain for  the function 
in (4.4) the expression 

t 1 cD=ln-+ i --[(i+z)ln(i+z)-(1-z)ln(i-z) 1. 
b 22 (A. 9) 

This leads to formula (4.5), in which x = e / b ,  

exp{[ (i+z)ln(l+z)-(1-z)ln(1-z) ]/2z-11, z>O, 
(1-~')"exp((-.')-'~ arc@(-zX)"'-i), z2<0 . (A.10) 

Although the analytic expressions for  JIO are  different 
a t  2 > 0 and 2 < 0,  the point x=O is not singular for 
this function: 

*(z) =l-'/sz'-L~/a.oz'+. . . , 2-0. 

We note now that the parameter x in (4.5) varies in a 

restricted region: 
z- (1-pa) "k+. . . , k-0, 

(A. 12) 

For the ground level we have d, < 0 if b < 3/2, i.e., x2(c) 
reverses sign. On the other hand if %# -1, then x 2  
remains positive a t  all E <  -1. Recognizing that +(x) 
is a weakly varying function of x, and putting in (4.5) 
+(x) = JI(0) = 1, we get 

R., i-2% 1-2% 
E ( R ) = - ( ~ + ~ ) / ( ~  +T). (A. 13) 

The difference between this simple formula and (4.5) 
is of the order of 1% ; this accuracy is sufficient for 
many purposes. 

Note added in proof (20 December 1978). 1. The 
quasiclassical formulas of Sec. 1 a r e  not valid when 
1 r - r_ 1 2 g2I3r_ ;  the same holds for r close to the 
turning point r+. We have presently obtained approxi- 
mate expressions fo r  G and F, f r e e  of singularities 
a t  the turning points in terms of Airy functions. 
Comparison with the numerical solutions of the Dirac 
equation shows that the e r r o r  of these formulas does 
not exceed 1 m  (for the 7slI2 level). 

2. In a number of problems of solid-state theory 
one encounters a Dirac system (1.1) with x = 0. This 
case is special because rl =r+ and r2=r_. WKB- 
approximation formulas were obtained for  x=O. 

')A brief exposition of the results is  published in Ref. 16. 
2)0ne such state is  the ground level Isl/*, for which x=-1. 
')F'or example, in the subbarrier region the expressions for 

G(r) and F(r )  contain, besides the usual1 pre-exponential 
factor q-lI2 = Ip (r) I -1/2, also Q-1 h. 

*) Thus, for uranium nuclei at  R=R, the relative velocity of 
the nuclei is v,- 0.07 c. 

S ) ~ h i c h  takes into account not only the spin-orbit but also 
the spin-spin interaction. We note that to take such terms 
into account in (3.1) it would be necessary to calculate cor- 
rections -a in the expansion (1.3). 

 his method is quite convenient in the calculation of the pro- 
bability of tunneling of the particles through an oscillating 
potential barrier. It was taken into account previously in a 
calculation of the probability of multiphoton ionization of 
atoms and b n s  by the field of a strong light wave, in a cal- 
culation of the probability of production of electron-positron 
pairs out of vacuum in an alternating electric field, a s  well 
a s  in a number of similar problems (see Refs. 30). 

')we confine ourselves again to calculation of the adiabatic 
correction to the principal (exponential) factor in y, discard- 
ing the pre-exponential factor and the spin-orbit terms. In 
addition, we assume frontal collision of the nuclei, and that 
the positrons are  emitted along the line joining the nuclei a t  
the instant of closest approach. These assumptions, without 
changing the qualitative picture of the phenomenon, greatly 
simplify the calculation, since the problem then becomes 
one-dimensional. 

'11t is  caused by the existence of an additional integral of mo- 
tion31 and by the fact that the Dirac Hamiltonian H =a. p +pm 
-g/r, has a hidden symmetry group broader than the O(3) 
group of the geometrical symmetry of the Coulomb potential. 

230 Sov. Phys. JETP 49(2), Feb. 1979 Popov et a/. 230 



In particular, the Sommerfeldformula for the &, spectrumob- 
tained by purely algebraic means-from consideration of the 
Lie algebra made up of the generators of the group of hidden 

A detailed discussion of the questions con- 
nected with hidden symmetry of the Coulomb field is con- 
tained in a review.34 

 his pertains in particular to the formula for Z,, obtained 
in Ref. 22. ~ r a b o v ' s  results38 a r e  not quite correct be- 
cause of the number of additional approximations that do not 
hold very well in the region 521.25 (this question is dis- 
cussed in Ref. 22). 

'O)~ee Refs. 1-3. A consistent derivation of this correction 
within the framework of our approach should call for the cal- 
culation of the functions y l and cp( l )  in (1.3), i.e., of terms 
of order Fi in the quasiclassical expansion. 
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