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The adiabatic approximation (strong-coupling limit) is used in a theoretical analysis of the coexistence of 
polarizing and nonpolarizing excitons in an ionic crystal. Calculations are made of their energies and of 
the height of a potential barrier which has to be overcome for conversion from the nonpolarizing to the 
polarizing exciton state. The difference between the energies of these excitons can change sign with the 
values of the crystal parameters. The barrier may ensure a long lifetime of the excitons with the higher 
energy. 

PACS numbers: 71.35. + z 

An activation energy is not required for  the formation r,,=10 m o ~ / p . c o ,  c o = ~ ~ - ' - e o - ' ,  (1) 
of a polaron f rom a band electron: this  process  i s  ac- 
companied by a monotonic reduction in the energy of a 
system (see P 8 in Ref. 1 )  and i s  completed in a time of 
the order  of 10'12 sec. A s imi la r  conversion of a f r ee  
into a polarizing exciton requi res  overcoming of a po- 
tential b a ~ - r i e r ~ ' ~  which may occur by activation o r  by 
the tunnel effect. An analysis and a short  review of this 
process can be  found in Ref. 5. In this  case  the lifetime 
of an exciton with the higher energy may be  longer. 
Thus, in accordance with this qualitative theory, f r ee  
and polarizing excitons may coexist and undergo transi-  
tions from one s ta te  to the other and vice versa.  

This  topic i s  now attracting considerable interest  be- 
cause the coexistence of two types of exciton and their 
mutual thermal conversion have been observed experi- 
mentally in a wide range of substances, including ionic 

r a r e  gases,g etc. We shall consider only the 
limiting case  of s trong coupling of c a r r i e r s  to optical 
vibrations of a c rys ta l  when the s ta tes  of an electron and 
a hole follow adiabatically relatively slow oscillations of 
inertial polarization. I t  i s  also assumed that the effec- 
tive radii of the J, clouds of an electron and a hole a r e  
considerably grea ter  than the lattice constant. In this  
case the states  of a system can be analyzed by methods 
developed ea r l i e r  for  polarons and local centers.' We 
shall use a model of a polarizing electron introduced 
initially by Dykman and Pekar.'OP " 

In general, the optimal physical model of a self-local- 
ized state  depends on the relationship between a number 
of competing parameters .  This  specific problem has 
been considered recentlyi3 fo r  the nonpolarization inter-  
action with the lattice when self-localization (self-trap- 
ping) always occurs within a distance equal to the lattice 
constant." The s ame  problem i s  encountered also in the 

where r, is the Bohr radius and F ,  (i = 1 o r  2)  a r e  the 
effective masse s  of the electron and hole. The radius 
of the hydrogen-like motion in the j-th quantum state i s  

r ,=mojzrr~o lM,  (2) 

where M i s  the reduced mass  of two polarons. The 
m a s s  of each of them i s  

M,i~O.O2z 'p , .  (3) 
Here, LY i s  the dimensionless polaron coupling constant. 
The clouds do not overlap if r, >>r,,, which i s  equivalent 
to 

5 e o c 0 j 2 / a l L ~ i ,  (4) 

where 0, r e f e r s  to the l ighter  of the two particles. 

In the strong-coupling case considered here  we have 
L Y , ~  10 and the inequality (4) may be  satisfied in prac- 
tice only for  very high values of j. Therefore,  in con- 
s idering the ground state  of an exciton ( j  = 1 )  we shall 
follow Refs. 10 and 11 and use a model in which an elec- 
t ron and a hole move adiabatically in a common polariz- 
ation potential well. 

Applying the methods developed ear l ie r1  we have to 
find the state  of an electron and a hole #( r l ,  r,) corre-  
sponding adiabatically to an a rb i t ra ry  inert ial  polariza- 
tion of a crystal  P ( r )  by extremizing the functional 

with respect  to z) keeping P(r) fixed. Here, D[+, r] i s  
the electrostat ic  induction of a 1z) 1 '  cloud of the electron 
and hole charges: 

case of the polarization interaction. F o r  example, we After this extremization, F[J,,, P] depends only on 
can begin from electron and hole polarons which become P ( r )  and represents  the potential energy of the polariza- 
bound to form a Wannier-Mott exciton (see,  for  exam- 

tion vibrations of the ions. The equilibrium self-consis- 
ple, Ref. 14). If the J, clouds of the electron and hole do 

tent polarizations of a c rys ta l  and the saddle point of a 
not overlap, the polarons interact  with one another in 

potential b a r r i e r  can be  found by varying F[J,,, P] with 
accordance with the Coulomb law e2/&, I rl - r, I. respect  to P( r ) .  Thus, in these configurations F i s  

The polaron radii are1 stationary with respect  to J, and P. These quantities can 

129 Sov. Phys. JETP 49(1), January 1979 0038-5646/79/010129-03$02.40 O 1979 American Institute of Physics 129 



be  found conveniently by varying F [ $ ,  P] f i r s t  with re-  
spect to P for  a fixed $, and then with respect  to J, it- 
self. 

Extremization of the functional (5) with respect  to P 
gives 

As a result, Eq. (5) becomes 

(8) 
This functional has to be varied now with respect  to $. 

The absolute minimum of J[$]  was found by direct  
variational methods in 1952 (Refs. 10 and 11). It was 
found that, depending on the parameters p , / p ,  and &,c,, 
i t  corresponds to f r ee  o r  self-localized excitons. How- 
ever,  the saddle points were not found because a t  that 
time i t  was not yet known that various types of exciton 
could coexist when separated by a potential bar r ie r .  
We shall use a more flexible approximation +(r,, r,) in 
the direct  variational method and we shall analyze all 
the stationary points J[$]  . 

A test  wave function will be selected in the form 

r2) -Clr exp {-h2(rll+pr21+26rlq)}, (9 

where A, p, and 6 a r e  the variational parameters,  and 
C, i s  the normalization constant. We shall find i t  con- 
venient to use not the functional J itself but i t s  rat io to 
the energy of a nonpolarizing exciton calculated for  a 
function similar  to Eq. (9). Variation with respect  to h 
gives the value of this ratio 

where 

We carried out more accurate calculations when a test  
function with a large number of variational parameters 
was a sum of t e rms  of the type given by Eq. (9). It was 
found that although J,,, for  the lowest minimum and E, 
decreased considerably (and E, reached practically the 
exact value), their ratio hardly differed from that found 
from Eq. (10). Hence, we may expect to obtain a rea- 
sonable estimate on this basis  for  J ,  at  the saddle point. 

Introducing 

we find that the condition for  an extremum of J  with re-  
spect to 6 gives the following equation for  x :  

~x'+~z'-  ( 1 + p ) ~ ~ - ' / ' y ( ~ - ~ ) ~ = o ,  (1 1) 
which has just one real root for  a given value of P. The 
condition for  an extremum of J  with respect to /3 gives 
an equation which makes i t  possible to determine k a s  a 
function of @: 

FIG. 1. Dependences of the absolute energies at  a saddle point 
(curve a) and of the energy of a polarizing exciton (curve b ) ,  
measured in units of the free-exciton energy, on the ratio of 
the effective masses of an electron and a hole. The number of 
the curve is  identical with the value of 4&,co. 

Thus, variation of /.3 makes i t  possible to plot the de- 
pendence of the stationary values of J ,  on the mass  ratio 
k. The results  a r e  given in Fig. 1. Curve a describes 
the position of a saddle point of a potential b a r r i e r  and 
corresponds to the same value of &,c, a s  curve b which 
touches it. Curve b represents  the energy of a polariz- 
ing exciton. Moreover, there i s  an extremum of J ,  
equal to E,, at  @ = 1 and 6 = -1, which corresponds to a 
nonpolarizing exciton. On increase in the mass  ratio 
and approach to the point of contact between curves a 
and b the excess of the potential ba r r i e r  above state b 
i s  canceled out and the minimum of J ,  represented by 
curve b disappears, i.e., beyond the point of contact 
there i s  polarizing exciton (within the framework of the 
adopted adiabatic approximation). F o r  J, -1 our nu- 
merical  results  (curves denoted by b )  agree  with those 
deduced from the analytic formula (25) in Ref. 11, which 
(rewritten in our notation) is 

J,=-'I. (I+k) {[2"*+e,co(I-2"') la+ (~ ,c , )~ /k) .  (13) 

This formula i s  obtained from Eq. (10) in the limit of 
high values of P.  It corresponds to the sum of the ener- 
gies of a polaron formed f rom a heavy particle [second 
te rm in Eq. (13)] and of an F center formed from a light 
particle and the same polaron. 

It i s  remarkable that the b a r r i e r  height W i s  small  
compared with the exciton binding energy 1 E ,  I. More- 
over, since curve b in Fig. l drops very  steeply, i t  fol- 
lows that throughout most  of the range of k the b a r r i e r  
height i s  considerably l e s s  than the self-localization 
energy, i.e., i t  i s  considerably l e s s  than the difference 
between the energies of f r ee  and polarizing excitons. 
This i s  in qualitative agreement with the experimental 
 result^.^" 

It must be s t ressed  that the adiabatic approximation i s  
valid only if for  fixed positions of the ions the energy 
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spectrum of the electon subsystem i s  discrete and the 
distances between i t s  levels a r e  much greater  than EW. 
In the case of a f r ee  exciton this i s  not true, i.e., a 
different approximation method should be used (for ex- 
ample, the method of weak o r  intermediate electron- 
phonon coupling). In this case we can regard the hydro- 
gen-like motion of an electron and a hole a s  the zeroth 
approximation and introduce the electron-phonon inter- 
action a s  a perturbation so  that in the second approxi- 
mation we obtain a smal l  reduction in the exciton ener-  
gy and the resultant polarization of the crystal. Approx- 
imately the same results  a r e  obtained also in the inter- 
mediate coupling a p p r ~ x i m a t i o n . ' ~ ~ ' ~  The small  effects 
a r e  not shown in Fig. 1 and a nonpolarizing exciton i s  
more correctly called a weakly polarizing one. 

The effective mass  method and macrocalculations of 
the crystal  polarization used above a r e  valid if the radi- 
us  of a ca r r i e r  with a la rge  effective mass  exceeds the 
lattice constant. If the polarization of a crystal  changes 
little the effective radius of an exciton compared with 
the case of a f ree  exciton, for  which 

r, ef f+rz  , f f = ~ z ~ ~ l p , e 2  ( C L ~ G C L Z ) ~  (14) 

then r ,,,, /r ,,,, = pl /pz  1 and the radius r ,,,, may be 
smal ler  than the lattice constant even if r,,,, exceeds it. 
In this case an analysis of the internal motion in an ex- 
citon shows that particle 2 forms a low-mobility small- 
radius polaron whose energy has  to be found by micro- 
calculations, instead of the macrocalculations which 
give the las t  te rm in Eq. (13). 

If a polarizing exciton has a very deep polarization 
well exceeding the Coulomb interaction between an elec- 
tron and a hole, the effective radii a r e  much smal ler  
than those given by Eq. (14). We cannot exclude the 
possibility that the polarization potential well a t  a sad- 
dle point i s  shallower and the effective radii s t i l l  sat is-  
fy the relationship (14). We may then find that, because 
of the small  effective radii, a polarizing exciton cannot 
be analyzed by continuum methods, whereas the height 

of the potential b a r r i e r  can still  be  determined by these 
methods (curve a in Fig. 1 still  remains meaningful, 
whereas curve b i s  now meaningless). 

The height of the potential ba r r i e r  has been deter- 
mined so  f a r  only for  some alkali halide 
Unfortunately, these crystals  do not obey the large-ra-  
dius criterion and the theoretical results  cannot be re- 
garded a s  quantitatively correct .  
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