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The kinetia of quantum transitions in a two-level system is considered in a radiation field with small and 
fast frequency fluctuations. A decoupling method is used to obtain an integral equation that describes the 
dynamics of the variation of the level populations in a wide range of parameters of the problem. The 
probability of populating the upper level, averaged over the realizations, is obtained as a function of time. 
The results are used to consider multiphoton transitions in two-level and multilevel systems in a 
monochromatic-radiation field, and to analyze the changeover from noncoherent multiphoton resonant 
transitions to coherent multiphoton transitions with decreasing width of the emission spectrum. 
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1. INTRODUCTION 

1.1 Theoretical investigations of atomic and mole- 
cular systems in high-power electromagnetic fields have 
recently attracted great interest because of the experi- 
mental observation of a large number of new interesting 
phenomena (it suffices to mention, for  example, multi- 
phonon ionization of atoms1 or  radiative dissociation d 
polyatomic  molecule^^^^). Even though quite complicated 
systems a re  used in the experimental studies, their 
theoretical interpretation can in many cases be success- 
fully made within the framework of simple models, 
which reduce in one sense or another to a two-level sys- 

In this paper, on the basis of a model of a two-level 
system, we f i rs t  consider the dynamics of population 
of the upper level by a one-photon transition in an ex- 
ternal resonant electromagnetic field; we take into ac- 
count the nonmonochromaticity of the radiation. Then, 
using the derived equations, we consider, outside the 
framework of perturbation theory, multiphonon transi- 
tions in a nonmonochromatic external field, which oc- 
cur in a two-level system a s  well a s  in some multilevel 
systems. It will be shown, in particular, that the in- 
fluence of nonmonochromaticity on the dynamics of an 
n-photon transition increases rapidly with increasing 
n and can become decisive already a t  n = 3-5. 

1.2. By way of example we indicate the region of ap- 
plicability of our results and of the results of Refs. 5-8 
for the case when the electric field intensity E ( t )  a t  a 
given point is equal to 

where E ,  is the constant amplitude of the field, G(t )  is 
the deviation of the radiation frequency, which is a nor- 
mal process, p, is a quantity randomly distributed in 
the interval (0,2, n), and w ,  is the carr ier  frequency of 
the (laser) radiation field. Let, for example, the fluc- 
tuations of the frequency be exponentially correlated: 

< Q ( ~ ) > = o ,  <Q(t)Q(t+z)  >=(Q2> exp ( - y I z l ) ,  (2) 

with a parameter 

The inequality (3) corresponds to small and fast  frequen- 
cy fluctuations. The expression for the emission line 
shape then takes the form 

where 6 0  = w ,  - w,, is the deviation of the laser frequency 
from the resonant frequency o,, of the system. The 
second-order correlator for  the electric field ~ ( t )  is 
equal to 

To our knowledge, the dynamics of multiphoton transi- E 
( E ( ~ ) E ( ~ + T ) > - L e x p ( - e y l r l - e  (e-T''l-l)}cos o, r. 

2 
(5) 

tions in a nonmonochromatic radiation field has not been 
previously considered outside the framework of pertur- We introduce the field broadening f = ~,,d,,/ii, where 
bation theory. do, is the dipole moment of the 0- 1 transition. We 

can now formulate a criterion for the applicability of 
As to allowance for the nonmonochromaticity for one- Refs. 5-8. The results obtained in Refs. 5-, are valid 

photon transitions in a two-level system o r  for the lin- for our model in the region 
ear  susceptibility of a three-level system, the following 
remarks a re  in order. This question has been the sub- f a y ,  l 6 0 1 < ~ .  (6) 

ject of a large number of stu&es5-l2 (other works a r e  This statement will be proved in I the 
cited, for example, in Ref. 13). The case of interest region (6), we can neglect the term ~ (e -7" ' -  1 ) ,  of 
to us, that of an external field with fast and small fluc- (5), and the problem of the population of the upper level 
tuations of the frequency, was considered, in particular, reduces to a solution of an ordinary differential equation 
in Refs. 5-8. In the present paper we consider the dy- of third order with constant coefficients.5 
namics of population of the upper level in such a field 
and obtainre&lts that a re  valid in a much larger region Outside the region (6), the condition &<<I is no longer 
of variation of the parameters of the problem than in sufficient for neglecting the indicated term in (5). Neg- 
Refs. 5-8. lect of this circumstance leads to errors.  In this paper 
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ditions 
ol=const; ip, f, Ida 1, l / T t ,  l /Tt<ol ,  

FIG. 1. The hatched part, the cross-hatched part, and the 
thick line show respectively the regions of applicability of the 
results of the present paper, the results of Refs. 5-7, and 
the results of Ref. 8. The inequality signs in Eqs. (6)-(8) are 
replaced in the figure by an equal sign. 

we construct a theoretical scheme that takes into ac- 
count the parameter & and is valid in the region 

(see Fig. 1). In the region (7) the problem reduces to a 
determination of the zeros of a polynomial that, general- 
ly speaking, is of infinite order (see Sec. 3). When the 
field broadening f and the frequency detuning 6w a r e  
small enough and satisfy the conditions (6), our formulas 
lead to the results obtained in Refs. 5-7. The results 
of Ref. 8 a re  obtained a s  a limiting case from our re-  
sults only a t  exact resonance 6o = 0 provided the follow- 
ing condition is satisfied: 

f/e2ya*1. (8) 

In regions satisfying conditions (7) but not included in 
(6) and (a), our present result differs substantially 
from those obtained in Refs. 5-8. 

Section 4 deals with multiphoton transitions in a field 
with fluctuating frequency in various quantum systems. 
It contains also a comparison of the results of the cal- 
culation of a three-photon transition in the Xe atom with 
the experimental data. 

1.3. To conclude this section, we note that a non- 
monochromatic field is taken in the present paper to 
mean a field with randomly fluctuating parameters, 
namely with fluctuating frequency. Problems in which 
the field parameters vary but remain determined func- 
tions of the time a re  considered, for  example, in Ref. 
14 (see also Refs. 15 and 16 and the detailed biblio- 
graphy in Ref. 17). The results of the cited papers may 
not agree with ours, since they deal with differently 
formulated problems. 

We note in addition that the same line shape (4) can be 
obtained for various types of nonmonochromaticity 
(statistics) of the field. The results can in this case 
likewise differ substantially. The particular field statis- 
tics in concrete experiments depends on the experimen- 
tal conditions, on the type of laser, and on other fac- 
tors. We assume that the model of a field with constant 
amplitude and with fast and small fluctuations of the f re-  
quency describes adequately the radiation a t  least for 
some types of lasers. 

2. TWO-LEVEL SYSTEM IN AN EXTERNAL FIELD 
WITH A FLUCTUATING FREQUENCY 

2.1. We consider a two-level system in an external 
field of laser radiation of intensity (1). Under the con- 

where TI and T, a r e  respectively the longitudinal and 
transverse relaxation times, the resonance approxima- 
tion can be used. For  the level population difference 
p =p,, - p ,  under the condition that a t  the instant t =  0 
when the field is turned on the system is in an equili- 
brium s ta tep= p,, p,,=p:,= 0, we obtain from the equa- 
tion for the density matrix a well known integral equa- 
tion for  p (see, e.g., Ref. 13) 

xcos[cp(t,) -cp(t2)-60 ( t , - t , )  ]p ( t , )d t ,  dt,. (9) 

In the general case i t  is impossible to write down a 
solution of (9) in a final analytic form. 

In this paper we confine ourselves to the case when the 
frequency deviation n(t)  = $(t) is satisfactory normal pro- 
cess:  

< Q ( t ) ) - 0 ,  <Q(t)Q(t+z))=(Qz)Y(lzl), (10) 

where @(0) = 1 3 $!(hi) and @(IT() satisfy all  the proper- 
ties of the correlation function of a random stationary 
quantity (see Ref. 18); Eq. (2) is a particular case of 
(10). 

The solution of (9), obtained by iterations, can be 
represented in the form of a ser ies  

where 

The phase shift x(t+At, t) = cp(t+ht) - q(t) is a normal 
random process. Under the condition I , - ,  3 t, 3 t,-, 2 ti 
i ts  variance and covariance a r e  given by 

I , . = ( ~ ~ ( t i - , , t , ) ) = n g . ( O )  (t,-,--t ,)-2s 

+ n i z  exp[-@,( t i - , - t , )  lRes [g2( iok)  I ,  
k 

where 

g ~ ( ~ ~ = g ~ ( ~ ) + ~ ~ g , ( ~ ) - ~ j ~ ( ~ ) ~ ~ . ~ ~ d ~  O 

is the spectral density of the process Sl(t) over the posi- 
tive frequencies and is an even function of w ;  

where {iw,} are  the poles of the function g,(w) in the up- 
per half-plane. We confine ourselves to the case when 
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for all t, -, - ti 3 0. 

The validity of the inequality (14) is ensured by satis- 
faction of the condition 

<i2')g!?'c7, 

where g;;"" is the maximum of the function go (w), and y 

is  the characteristic width of g,(w). This case is  called 
the case of small and fast fluctuations and the line near 
the center has a Lorenk shape with width n(8a)gmax. 

To find the solution of (9) averaged over the realiza- 
tions we must average (12) and then sum the series (11). 
To solve this problem we note that when the conditions 
(14) are satisfied it follows from (13) that X,, (i + j) <<l 
for all instants of time t, -, z, t, 3 ti-, a tj, and the central 
second-order moments of the functions of interest to u s  
take the form (i # j) 

Hence 
b I*+* 

(cos[cp(t,)-cp(t~)]C~(tl))=(cos[cp(t,)-cp(tt) 1) I.. . j d t ~ .  . . dt.~+z 
0 0 

where I F ]  < E', and the terms (sin[cp(t,) - cp(tJlC,(tJ) are  
small in the parameter &. 

It is clear therefore than when averaging (12) we can 
confine ourselves for (c,), in a wide range of the pa- 
rameters of the problem, to the expression 

I 'u-1 
1 1  

<c,)- J . . . j e x -  (. - z) (I,-C+ .. .) 
0 0 

~ m [ 6 a ( t l - t 2 )  I . .  . c o s [ 6 ~ ( t ~ ~ - t ~ ~ - , ) ] d t , .  . . dtrk. (15) 

The operation (15) is usually called unc~upling.'~ It was 
for discontinuous Markov processes or for the solution 
of problems within the framework of the transition mod- 
el. This operation can be used, however, also for 
radiation with small and fast frequency fluctuations in a 
wide range of the problem parameters. 

We conclude from (15) that the process of the search 
for an averaged solution of (9) can be greatly simplified. 
Instead of finding the solution by summing the iteration 
series (11) with the coefficients (15), we can solve di- 
rectly the equation 

1 L, 
t 1 1 t All 

(p)=po-P J J e x P ( - T ; - t ,  (x-T) +?-+I 
0 0 

since the iterations of (16) yield exactly the solution of 
(11) with the coefficients (15). 

3. EXPONENTIALLY DAMPED CORRELATIONS 
OF THE FREQUENCY DEVIATION 

We consider the concrete case (10) in the form (2) 

The equation (16) takes the form 

To obtain the information of interest to us we introduce 
the Laplace transform of (p(t)) : 

I 

( L ( p ) ) = j  ( p ( t ) ) e -P 'd t .  
0 

Expanding e~p(-t;e-('1-~z'~} in a series and taking the La- 
place transform of (18), we get 

where 

The function (p(t)) is obtained in standard fashion by 
taking the inverse Laplace transform. 

The poles of the function (L(p)) can be determined with 
the necessary degree of accuracy because of the pre- 
sence of the small parameter E .  The set  of poles of 
( ~ ( p ) )  can be arbitrarily divided into three groups. 

(1) The pole p = 0. Since all the poles of the functions 
(L(p)) with the exception of the indicated pole have nega- 
tive real parts, this pole gives the population difference 
(p(t)) as  t -a:  

where 

The value of p, at large detunings I y l  z 1 can substan- 
tially differ from the value obtained without allowance 
for the deviation of the wings of the radiation line from 
a Lorentz shape. 

(2) The poles 

where 6,+ ,  and 6,+, are corrections that are small in 
terms of E. In particular, under the condition 

where the upper and lower signs correspond to the sub- 
scripts 2n + 2 and 2n + 3, respectively, and 
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these poles make small contributions to ( p ( t ) ) ,  namely, 
the pole pa+,,, makes a contribution proportional to &". 

(3) The poles p,, p,, and p,, which play the decisive 
role in the variation of (p( t ) ) .  The dimensionless quan- 
tities 

~ , = p J y ,  ~ = p J y ,  z,=ptly 

are  the roots of the cubic equation 
~ ~ + d , ~ ~ + d a ~ + d r = O ,  

where 
d,=26+ql+6,+6,  

dl=2y2+6'+E(1-e) +2q16+ (6r+65) (q1-1+6) -6~65, 
d,=6'ql+ (e+6)  E-2y2(qt-4) +6,6,(2-q) 

+ (6,+63) [1+2yZ+E+q,(6-1)-26r6aI. 

They can be determined with the aid of Cardan's formu- 
las. 

By virture of the foregoing, the solution of (18) takes 
the form 

We have already mentioned that the problem of the 
population dynamics in a two-level systems had been re-  
peatedly considered for various radiation models. 

It is clear that wherever the poles belonging to the 
third group play the decisive role the solution method 
used by us is equivalent to a solution of a differential 
equation for (p(t)) with constant coefficients, with a 
characteristic polynomial (20), and with corresponding 
initial conditions. In particular, when the conditions 
(6) a re  satisfied and q,, q,<< 1 we have 

and (20) reduces to the characteristic polynomial ob- 
tained in Refs. 5-7 for a third-order differential equa- 
tion. If (6) is not satisfied, the equation is of third 
order, but the roots differ greatly. 

The solution of (21) in general form is too cumber- 
some to write out here, and we present the results for 
the most interesting particular cases. 

A) Exact resonance, 6 0  = 0 

In this case only two roots of (20) a r e  significant, 
since the term with x,= -6 makes no contribution to (21). 
At 

( l + 6 r E - q r ) 2 ~ S &  11-I I 

the roots of interest to us take the form 

In particular, under the condition f <<l the results 
agree with those of Refs. 5-7, whereas a t  [>>c2 and 
ql= q2= 0 we obtain the result of Ref. 8: 

(p)=-cos ft exp [ - e y t / 2 ( l +  E )  1, 

which is an additional confirmation of the applicability 
of the employed uncoupling procedure, for i t  is precisely 
in the region of strong fields that its use might not be 
valid. 

Interest attaches also to the case when 

and a substantial role in the change of ( ~ ( t ) )  is played 
by one of the poles of the second group. 

Under the additional condition 

we obtain 

This result cannot be obtained within the framework of 
Refs. 5-8. The population difference can have such a 
time dependence in the relatively r a r e  case when the 
time of the longitudinal relaxation i s  shorter than the 
time of the transverse relaxation. 

B) Large detuning 16w I >> f 
In this case the solution (21) can be represented in the 

form 

where hp,,  a r e  small  rapidly oscillating terms that at- 
tenuate rapidly compared with the f i rs t  term of the ex- 
pression; 

In the particular case when there is no intrinsic relaxa- 
tion, the character of the onset of saturation is deter- 
mined by the shape of the emission line wing a t  the re-  
sonant frequency of the system. 

As for the applicability of the approximations (15) and 
(16) which were the basis for all  the results, a direct 
estimate of the discarded terms of the expansion ( l l ) ,  
taken each separately, would yield an applicability con- 
dition 

but a more detailed analysis of the entire sum of the 
terms not taken into account in (15) shows that the cri- 
terion of the applicability of the employed approxima- 
tion is provided by the inequalities (7). 

In the region (7) i t  is easy to trace with the aid of the 
results the transformation of the character of the pop- 
ulation of the upper level from a coherent character 
(the Rabi precession) to a noncoherent one (the transi- 
tion model) with increasing spectral width of the radia- 
tion with the fluctuating frequency. 

If the field-intensity amplitude E,(t) is a definite func- 

49 Sov. Phys. JETP 49(1), January 1979 V. Yu. ~inkel'shteyn 49 



tion of the time, then near the line center, i.e., in the 
region where the line can be regarded a s  having a 
Lorenk shape, Eq. (16) can be solved for radiation with 
a fluctuating frequency in those situations when the 
equation has a solution for a system with unequal re-  
laxation times in a monochromatic field. 

Returning to the general case (13), we point out that 
the solution of EQ. (16) also reduces to finding the three 
most significant poles of the corresponding function 
(L(p ) ) .  The coefficients of the cubic equation contain 
in this case two k functions 6,, 6,, . . . ,6,+, [k is the 
number of the poles of the function g2(iw) a t  w > 01. The 
criterion of the applicability of the decoupling in this 
case is likewise given by the inequalities (7). 

4. MULTIPHOTON TRANSITIONS 

4.1. We extend our analysis to include multiphoton 
resonant transitions in multilevel systems. We consider 
a molecule o r  an atom with an energy spectrum that has- 
a level gn such that 

where go is the energy of the ground state and a, is the 
frequency of the external field. It is assumed that the 
system is in the ground state a t  the instant when the field 
is turned on. 

In addition, we assume that there a r e  no levels that 
might have a resonance of any order with the levels 10) 
and In) (see Fig. 2). In the derivation of the equations 
for  the density-matrix elements i t  is possible to take in- 
to account exactly only the stimulated transitions be- 
tween the levels 10) and In), and use perturbation theory 
for all the remaining levels. The last levels serve only 
a s  intermediate virtual states and have small popula- 
tions. In addition, we assume that a direct transition 
between the levels 10) and In) is forbidden ( d ,  = 0) and the 
"shortest upward way" from 10) to In) consists of n steps, 
s o  that the probability of populating the state In) appears 
only in n-th order of perturbation theory. Similar tran- 
sitions ("multiphoton coherent transitions") were pre- 
viously considered for the case of a monochromatic ex- 
ternal field and without allowance for the relaxation 

Assume that the conditions 

a r e  satisfied for all p #  0,n and for all  m and k, where 
h, = E, - & ,, f (t), is the f ield-induced broadening for 
the transition Ip) - Ik) and can depend on the time, and 
T, are  the proper relaxation times. 

FIG. 2. Level scheme 
considered in the problem. 

Taking into account all  the off-diagonal elements of the 
density matrix with the exception of p,, we obtain by 
perturbation theory for the slow variables p,,,p,,,,p,~ 
the system of equations 

+ P-Po -=--- i$E," ( t )  (e'"Pp.,'-e-'nepO.,'), 
dt T , , ~ .  (24) 

where 

The quantity (a, - a,)~:(t) yields the dynamic Stark shift; 
if i t  vanishes (a,= a,), then the shift must be sought in 
higher order in E,(t). If @ =  0, this means that a reson- 
ant n-photon transition is impossible in the system. 

From (23) we can easily see  that if we establish the 
correspondence 

6 0 - n o l - e n +  (ao-a,)E,l(t) =Am, 
f ( t )  --$En" (t)  = A h ,  

cP - ncp, 

then the problem reduces exactly to the same problem 
considered above for a two-level system, with the only 
difference that the frequency detuning depends on the 
time if ~ , ( t )  is not constant, and we obtain Eq. (16) for  
n-photon resonance. As can be readily determined from 
(I?), the moments A i j  increase by a factor n2. Con- 
sequently &y is replaced by n2zy, and the criterion for 
the applicability of the employed approximation of fast  
and small approximations becomes more stringent: 

nze<l .  (26) 

It should be noted that if the sign of the inequality (26) is 
reversed when n is large enough, then the multilevel 
system behaves in a Lorentz-shaped radiation field like 
a two-level system in a field 'with a Gaussian spec- 
trum, with a line half-width n(S2') 'I2< n2&y. 

The presence of a time-dependent Stark shift cannot 
be ignored, since i t  is a t  any rate not smaller than A,, 
but in the case 

allowance for this shift should not necessitate large cor- 
rections to the results obtained with constant Aw. 

Whereas in sufficiently strong fields the nonmono- 
chromaticity of the radiation does not play a substantial 
role for a two-level system, inasmuch as f/&y>>l, a 
finite laser line width is of prime significance for multi- 
photon processes, for even in the case of narrow lines 
(~v,=0.03 cm-l) in strong fields (12 lo5 W/cm2) the fol- 
lowing inequality is well satisfied for  many systems: 

Thus, whereas for a two-level system the field can 
frequently be regarded a s  monochromatic under the or- 
dinary experimental conditions, the situation is re-  
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versed for multilevel systems, a fact pointed out al- 
ready in Ref. 20. 

With the aid of the results obtained in Sec. 3 i t  is easy 
to trace the change from coherent multiphoton transi- 
tions in a nonmonochromatic field. In particular, if 
h,/n2cY>>l and if the intrinsic relaxation in the system 
is disregarded, we obtain the results of the theory of 
coherent multiphoton  transition^^^-^^; a t  h,/n2&y<<l and 
t en2& y/h we obtain the perturbation-theory results. 

The two-level-system approximation used by us is 
valid if the levels intermediate between 10) and In) have 
small populations. However, they can acquire a sub- 
stantial population because of the presence of the emis- 
sion line wings, inasmuch as the order of the transitions 
into these states is lower than for  10) - In). 

The criterion for the applicability of the approxima- 
tion (24) is the requirement that the time of equaliza- 
tion of the populations of the ground and nth level be 
short compared with the time r0 given in (23). In partic- 
ular, a t  ~ , / n ~ & y  >> 1 we must have 

On the other hand, if the inequality (27) does not hold, 
then the decisive role can be assumed not by multiphoton 
but by multistep excitation of the system from level to 
level, despite the nonresonant character of the excita- 
tion. 

4.2. We consider now several examples of quantum 
systems for which our results a r e  valid. 

A) Nonlinear quantum oscillator 

The energy spectrum of a quantum oscillator with 
weak nonlinearity is described by the formula 

where (Y is the anharmoniciiy constant. 

Assuming that the dipole moments of the transitions 
a re  the same as for the harmonic oscillator, we obtain 
in this casez0 for  n-photon resonance 

The Stark shift is then quadratic in the field intensity, 
and the condition (27) takes the form 

a az eayz (n!)' 
[ I  +- (n-11'1 [T (n- l ) '+e"lz+~]  > n2(I,a),(.-l) (28) 

41" 

For example, for the typical experimental values 
CY = 5 cm-l, d =  0.3D, I =  lo7 w/cm2, and AV,= 0.05 cm-I 
we have 

I bo,, 1 -0,07cm-' for n=2, I bOn1 =3.10-' cm-' for n=3. 

We see therefore that, regardless of the character of 
the radiation fluctuations, allowance for the nonmono- 
chromaticity of the radiation becomes necessary when 
the excitation of molecules in a strong external field 
is analyzed outside the framework of perturbation theo- 
ry. 

In particular, if we specify the model of small and 

fast  fluctuations of the frequency, then an analysis of 
the inequality (28) a t  n = 3 shows that a t  & = 0.1 the third 
level is significantly populated via a three-photon reson- 
ance transition. On the other hand, if c = 0.01, then 
multistep excitation from level to level can become the 
principal channel of population of the third level. 

If the model of the nonlinear oscillator i s  used to con- 
sider the molecule excitation processes, i t  must be 
recognized that, because of intermediate transitions 
with change of rotational numbers, the number of tra- 
jectories in expression (25) for p can become large if 
a multiphoton transition with n>>l  is realized. 

This leads, in particular, to an increase of the region 
in which the inequality (28) is satisfied. 

B) Multiphoton transitions in a two-level system 

It is possible to reduce to this problem also multi- 
photon transitions induced in a two-level system by one 
laser line. It is easy to show that substantial population 
of the upper level is possible if 

In this case we obtain fo r  the density-matrix elements 
the system of equations 

where P = P I ~ - P ~ , P ~ ~ = P o ~ ~  i(a+l)w~t. This system, sub- 
ject to some transformations, coincides with (24). Then 
(27) goes over into 

From (29) we obtain for a monochromatic field the re-  
sults of Ref. 25. 

C) Multiphoton transitions in a system of two 
vibrational levels with rotational substructure 

The energy spectrum of such a system is of the form 

where B is the rotational constant (see Refs. 26 and 27 in 
this connection). 

Whereas in the dipole approximation only single- 
photon transitions lo,& - 11, J &  1) a r e  allowed, multi- 
photon resonance makes possible effective population of 
the upper levels with change of the rotational number 
J -  1 +2n + 1 (see Fig. 3). Let 2BJ/fi>>f,k~z BJ2 (where 
T is the temperature), and 

The problem of the change of the populations of the 
levels )o,J) and l l , J + 2 n +  1) reduces then to the pre- 
viously considered problem of the two-level system 
subject to the condition 
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FIG. 3 .  Sequence of virtual transitions that lead to the multi- 
photon transition 1 O,J)  - 1 1 ,  J +  3 )  . 

The effective field broadening A, becomes equal to 

1-1 

where d,,,+, is the dipole matrix element of the lo,& - 11,5+1) transition, and the effective width of the emis- 
sion spectrum for the IO,J) - 11, J +  2n + 1) transition is 
equal to the true width &y,  since a single emission quan- 
tum is really absorbed in the transition. We note that 
the populations of the intermediate states 10,5+2k) can 
be comparable with the population of the 10, J) state. 
This, however, does not prevent us from using the pro- 
posed scheme; it is easy toverify that allowance for this 
fact introduces only corrections that are small in ~ / B J  
into the solutions obtained within the framework of the 
two-level system. 

4.3. In conclusion, we consider resonant fluore- 
scence induced in a rarefied gas of two-level atoms by 
radiation of frequency w, = wo,/2n + 1. Let the population 
of the upper level reach after a time equal to the dura- 
tion of the laser pulse a value much larger than unity. 
Let furthermore the duration of the pulse be shorter than 
the collision time and let the rates of the intrinsic re- 
laxation in the system be determined only by the spon- 
taneous emission. 

Then, recognizing that a s  t- m the system returns to 
the equilibrium state, we obtain from (29) an estimate 
for the number of fluorescence protons a t  the frequency 
wo1: 

where ~ ( t )  = [f(t)/4~,]~"', V is the irradiated volume, 
P is the gas pressure, T is the gas temperature, k is 
the Boltzmann constant, A is the probability of the spon- 
taneous 1- 0 transition, and 6w=(2n+l)w, -ao,. In the 
derivation of (30) we summed over the particles and took 
into account the Doppler scatter the resonant frequencies 
to the atoms with half-width 1 . 6 7 ~ ~ .  

It is possible to take into account jn (30) both the fluc- 
tuations of the phase of the radiation and the changes 
of its-amplitude with time, by averaging the correspond- 
ing terms in the integrand over the realizations. The 

changes of the amplitude must be necessity lead to the 
presence of an alternating Stark shift of the resonant 
frequency in (30). Allowance for the influence of this 
factor on the fluorescence requires a separate analy- 
sis. On the other hand, if I in the radiation is constant 
and its phase fluctuates, then the Stark shift is of no 
significance. The fluctuations of the phase can then play 
an important role in the phenomenon in question, since 
they influence both the quantity No and the width of the 
fluorescence line. Namely, No will depend substantially 
on the fluctuations of the phase if (A <<Aw,) 

(2n-i1)'(AoL-2nltp )>on at e a l .  (31) 

As for the fluorescence line width, it can be shown that 
it depends on the fluctuation spectrums when the inequal- 
ity sign in (31) is  reversed: 

We consider now a concrete experiment. A three- 
photon resonant transition Xe(5p6 'So - 5p56s s~,) was re- 
vealed in Ref. 28 by fluorescence of wavelength k = 1470 
A due to prior ~xcitation with pulsed radiation of wave- 
lengthk =4400 A. Theparameterswere V =  1.2 cm3, P 
=8.10-STorr, T =300K,A = 2.2. 108sec"; 3.3w0= 2.5 .10l0 
sec-', do., = 2.5 D [the transition oscillator strength was f o  
=0.21 (Ref. 29)], the radiation intensity at the maximum 
was I= 4. lo9 W/cm2, the width of the laser-emission 
spectrum was Aw, = 1.5. lo0 sec-I and hw,,  =2.5. lo9 
sec-I.. The experimental estimate cited in Ref. 28 is 
No= 850. 

There were apparently no amplitude fluctuations inthe 
experiment, since variation of the radiation intensity 
in a wide range near 4X lo9 W/cm2 did not cause a change 
change of w,,. Such a change would be the direct con- 
sequence of the presence of fluctuations of this kind, 
since the Stark shift is large: 3f '/8w, =2.  loL0 sec-I. 

We confine ourselves to the assumption that whatever 
fluctuations exist are  those of the phase. We note im- 
mediately that, on the basis of the presented numerical 
data, the phase fluctuations do not influence significantly 
the value of No, and allowance for the Doppler scatter 
is important here (this was not taken into account in Ref. 
28). We therefore obtain from (30) 

The duration of the pulse is unfortunately not cited in 
Ref. 28. It can be determined, however, from the other 
experimental data, by assuming the model of the radia- 
tion fluctuations. Namely, since Aw,,> Aw,, we get 
from (32) a t  &<<I 

In this case t,= 5 nsec. If we use this value to calculate 
No, we get No= 1500, in fair agreement with the experi- 
mental value. We note that the estimates obtained in 
Ref. 28 were based on the results of Ref. 30, which are  
not applicable in this case. It is  therefore not surpris- 
ing that to obtain a reasonable value of No it was neces- 
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sary to use a rather arbitrary estimate of do,, instead 
of using all the necessary experimental data. 

In conclusion, the author i s  grateful to V. N. Sazonov 
for valuable advice and constant interest in the work, 
and to V. L. Ginzburg, A. E. Kaplan, and A. G. Kofman 
for an evaluation of the results and for valuable discus- 
sions. 
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