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A simple method of calculating higher orders of perturbation theory (PT) in powers of g for the D- 
dimensional isotropic oscillator with arbitrary anharmonicity gv(r) is developed. The method is based on 
transforming from the Schradinger equation to the Riccati equation (2.3). In the important particular case 
of power nonlinearity v(r) = ?N, N = 2,3,4, ..., all the terms &(r) of the PT series (2.4) become 
polynomials, and this simplifies considerably the calculation of the higher orders of PT. A new variant of 
PT is proposed, which converges at all values of the coupling constant g: O<g < m .  The structure of the 
PT series for the energy levels is investigated for potentials with a power increase [v(r)-ry and 
exponential increase [v(r)-exp(b?") at infinity. It is shown that, in the latter case with 0 < v < 1, the PT 
series is asymptotic for g 4  but is not summable by the Borel method. For v >  1 a PT series in integer 
powers of g does not exist, and the energy difference Edg) - E(0) vanishes more slowly than g as g 4 .  
The energy correction ECg) - E(0) for small values of g is calculated. The character of the singular point 
of E(g) at g = 0 changes at v = 1. 

PACS numbers: 03.65.Ge 

1. INTRODUCTION harmonic oscillator is a convenient model upon which 
we can elucidate a number of questions of importance 

Many papers (see, e.g., Refs. 1-15) have been de- 
for field theory (e.g., the summability of the P T  se r i e s  

voted to the study of the anharmonic oscillator 
by different methods of summation of divergent ser ies ,  
the structure of the expansion (1.3) in powers of l/k, 

(1'1) and s o  forth). 

(N=2,3,4,. . .). This is explained by the fact that this 
problem not only has important applications in solid- 
state theory and molecular physics but is alsoof funda- 
mental interest in connection with certain problems in 
quantum field theory. In a ser ies  of papers,'-= Bender 
and Wu investigated the structure of the perturbation- 
theory (PT) ser ies  for the energy levels 

and showed that the coefficients of the P T  ser ies  in- 
crease factorially as  k- m: 

(1.3) 

~ i p a t o v "  established that the coefficients of the P T  
ser ies  for the Cell-Mann-Lowfunction in scalar field 
theory with the interaction 

dDx gcp" 2n H .  .=J-, D=- 
n! n-2 

behave analogously. In view of this analogy, the an- 

The present paper is devoted to an investigation of the 
P T  ser ies  for the anharmonic oscillator. In Sec. 2 a 
simple method of systematic calculation of the terms 
of the PT  ser ies ,  based on transforming from the 
Schr6dinger equation to the nonlinear Riccati equation, 
is described. The application of this method to the D- 
dimensional oscillator with anharmonicity grZN enables 
us to obtain a large number of coefficients of the P T  
ser ies  with ease. 

In Sec. 3 a new variant of P T  is proposed, in which 
the expansion is performed not in powers of g but in the 
deviation of the wave function from its asymptotic form 
for Y -  a. This makes i t  possible, with the aid of a 
small  number of approximations, to obtain the level 
energies Ek(g) with good accuracy for  all  O <  g< m. The 
analytic properties of the Ek(g) a s  functions of g a r e  
close to the properties of the exact solution. In Sec. 4 
the energy discontinuity A E ( ~ )  across the cut as  g-  -0 
is calculated in the semiclassical approximation for 
arbitrary anbrmonicity v(r ) .  

The structure of the P T  se r i e s  for the energy eigen- 
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values is investigated on the basis of these results  in 
Sec. 5. Besides potentials having a power behavior a s  
Y -  a, potentials growing like exp(br2') a r e  considered. 
In the latter case, for 0<  v< 1 the coefficients of the P T  
ser ies  increase faster than (ka)! with any finite a. 
This leads to examples of asymptotic quantum-mechan- 
ics PT  se r i e s  that cannot be summed by the Bore1 
method. If v 2 1, a P T  se r i e s  in powers of g does not 
exist. In Sec. 6 the f i rs t  correction to the energy for 
g- 0 is calculated for such potentials by the method 
proposed in Sec. 3. As we should expect, it has a sin- 
gularity a t  the point g = O ,  and for v > 1 (and also for 
v = 1 and b> 1) vanishes more slowly than g. 

2. MODIFIED PERTURBATION THEORY IN POWERS 
OF g 

The SchrBdinger equation for the D-dimensional an- 
harmonic oscillator with anharmonicity gv(r) has the 
form 

where R(r)  is the radial wavefunction, 

I =  0 ,1 ,2 , .  . . , and l ( 1  +D - 2) is the eigenvalue of the 
square of the D-dimensional orbital angular momentum. 

Our approach to the P T  is based on going over from 
(2.1) to the nonlinear Riccati equation. Introducing the 
new function 

we obtain, for I= 0, 

(in this section we shall confine ourselves to treating 
the ground state). 

For g=O the solution of this equation is obvious: 

Let ~ ( g )  =E(g)/E(O), where E(g) is the energy of the 
ground level. Expanding ~(g)  and [(r,g) in P T  series:  

and substituting them into (2.3), we obtain a system of 
recurrence equations: 

with [,(0) =O. 

The solution of Eq. (2.5) has the form 

E,(r) -exp (i-')r'-D ~ e x p ( - z ~ ) x D - ~ [ D 8 1 - v  ( z )  ]dx.  (2.7) 
0 

The constant &, is determined from the condition that the 
function not increase like exp(r2) a s  r -  a. This 
gives a result coinciding with that of ordinary perturba- 

tion theory: 

where, by definition, 

In an  analogous way, from (2.6) we find (n 2 2) 
n-l 

En= ( - I ) ~ D - I ~  ( g.~.-~), (2.9) 
*-I 

(2.10) 
These formulas determine the terms of the P T  ser ies  

(2.4) by successive quadratures. The difference from 
the ordinary PT is that what is expanded in a ser ies  in 
powers of g is not the wave function itself (R(r,g) 
=CR,(r)fl) but its logarithmic derivative. We note that 
the f i rs t  n terms of the expansion (2.4) not only com- 
pletely determine R,, R,, . . . ,H,-, but also incorporate 
par t  of the higher-order corrections. 

We now consider a nonlinearity of the power form 

u ( r )  =rv, v>-D. (2.11) 

In this case, formula (2.7) gives 

i r (  (D+v) / 2 )  
E l  ( r )  = exp ( r Z )  r'-D 

,(Dl,) 

where y ( p ,  x )  is t h e  incomplete gamma function. For 
the Hamiltonian (l . l) ,  v =2N = 4,6, .  . . ; in this physical- 
ly interesting case [,(r) becomes a polynomial: 

where a, = N - 1 and 6 = (D +2)/2 (cf. Appendix A). Using 
(2.10) we can show that this also happens for the subse- 
quent terms of the P T  series.  For example, 

In general, [,(r) is a polynomial of degree 2an  + 1. The 
fact that, for even v, the function [,(r) in any order of 
P T  is a polynomial is an important advantage of this 
approach (as compared with the ordinary variant of PT)  
from a calculational point of view. 

From (2.9) we obtain the formula 

which expresses the nth order of P T  for the energy of 
the ground level in t e rms  of the coefficients of the poly- 
nomials [,(r) of lower order (1 c m s n -  1). Hence, 
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[the parameters a and 6 a r e  defined after (2.12)l. Ex- 
pressions for &, and &, wauld be difficult to obtain by 
the usual PT, and this illustrates the effectiveness of 
the proposed method. 

In the important particular case N =2 (an oscillator 
with anharmonicity gr4), a = 1 and all  the formulas a r e  
simplified considerably. In this case, the 5, a r e  poly- 
nomials of degree 2n + 1 : 

. . 
and the procedure for calculating the coefficients a t )  
can be formulated purely algebraically. If the polynom- 
ials tl, t2 , .  . . , €,, a r e  already known we determine the 
numbers b, from the equality 

By means of (2.6) we can show that the leading coef- 
ficient of the polynomial t,+,(r) does not depend on D 
and is equal to 

and the other coefficients a r e  determined by the recur- 
rence relation 

(*+I) a,-, =I/,[  ( 2 k + ~ ) a r " + b ~ ] .  (2.16") 

Descending successively from k = n  +1 to k=O we de- 
termine the correction to the energy: = &,+,, after 
which we move on to the next approximation. 

We shall give the f i rs t  few polynomials 5, and coef- 
ficients E, obtained in this way: 

For D = 1 the formulas for &, agree with the values 
obtained by Bender and Wul for the coefficients of the 
P T  ser ies  for the one-dimensional oscillator with an- 
harmonicity gx4. The coefficients &, increases rapidly 
with increase of k (see Fig. 1, from which the influence 
of the dimensionality D is clear). As is well 
they have a factorial asymptotic form a s  k - a. The 
corresponding values of the parameters in formula (1.3) 
a r e  equal to 

We note certain properties of the coefficients &, and 
@): 

1) The coefficient of r in the polynomial [,(r) coin- 
cides, to within the sign, with &,: 

FIG. 1. Coefficients of the 
PT series for the energy 
of the ground level of a 
D -dimensional oacillator 
with anharmonicity & . 
The values of the dimen- 
sionality D are indicated 
alongside the curves. 

2) The quantity c, is an nth degree polynomial in D, 
divisible, for n 21, by (D +2). 

3) We shall indicate a simple method of calculating 
the leading coefficients of the polynomials [,(r). Making 
in Eq. (2.3) the replacements r- t and c- q, where 

r=g-"t, g-g-'"q ( t ,  g )  -g''3 (D-1) /2 t ,  (2.2 1) 

we transform it to  the following form: 

Putting here 

we obtain for k 2-2 a recurrence relation for qk: 

It is not diffficult to show that qk(t) is a generating func- 
tion for the coefficients 4") with a fixed value of the 
difference n - i = k. In particular, from the explicit ex- 
pressions for IJ, and IJ, we find 

and the next coefficients a($, with k = 2,3, . . . can be 
obtained analogously. 

To conclude this section we consider a one-dimension- 
a1 oscillator with cubic nonlinearity: 

The substitution $'/$ =-€,(x) brings the Schrddinger 
equation to the form 

This equation is invariant under the replacement x - -x ,  g- -g; therefore, the P T  se r i e s  have here the 
following form: 
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k-t  

with ( , ( -x)  = (- l)k+'(k(x). Equations analogous to (2.6) 
a r e  found for the (,(x), and from these we find, succes- 
sively, ') 

The energy levels a re  quasistationary for either sign of 
the coupling constant g. The fact that the PT ser ies  for 
c(g) (determining the asymptotic expansion of the real  
part of the energy of the level for small values of lgl) 
is not alternating, a s  in the case of the Stark shift of 
atomic levels in a constant electric field (see example 
IV in our previous paperI7), is connected with this. 
Analogous results also hold for  the Hamiltonian H =p2 
+2 +g2.+'. 

3. PERTURBATION THEORY IN  THE DEVIATION 
FROM THE ASYMPTOTIC FORM 

An obvious drawback of expanding in powers of g is 
the fact that it is applicable only for sufficiently small 
values of kl. In this section a new type of PT,  valid 
for all g(O< g< .o) will be considered. The starting point 
is the Riccati equation (2.3). Below we shall consider 
the ground level and f i rs t  excited level of the one-di- 
mensional gx4 oscillator. The generalization to other 
potentials v(r) is obvious. 

For the ground level we choose, a s  the zeroth approx- 
imation, the function 

which tends to the exact solution when r- .o o r  g- .o. If 
we write 

then i ,  satisfies the equation 

where 

Eq. (3.3) is easily solved: 

where 

The quantity Ek is determined from the condition 
Sk(r = 0) = 0, which gives 

FIG. 2. Energy &@)(g) of the ground level (n =O) and energy 
~ 0 )  (g) of the first excited level (n =1) of a one-dimensional 
oscillator with anharmonicity gx4. The solid curves are the 
results of the numerical calculation in Ref. 15, and the dashed 
curves are the results calculated from formula (3.5). 

It can be shown that z, = 0($) for g- 0 and k z2. Even 
the lowest approximation El  to the energy of the ground 
level is fairly accurate: 

where E = 2'13 x 31/31'($)/r(t) = 1.157. At the same time, 
the exact value'0." is c = 1.060, while the exact coeffic- 
ient of g2 is equal to -21/16, i.e., differs from that in 
(3.6) by 13%. The results of the calculation of El&) by 
the formula (3.5) a re  shown in Figs. 2(a) and 2(b). Even 
in the worst case g>> 1 the accuracy of this approxima- 
tion is -9%, while, e.g., for g = 1 the accuracy is -2%. 
The next approximation for g- .o gives (see Appendix B) 
E2 = -0.109g'/3; then El  + 6 = 1.048g'I3, which differs from 
the exact coefficient c in the asymptotic form of &(g) by 
only 1%. 

The f i rs t  excited level can be treated analogously. 
The only difference is that the zeroth approximation to 
the function has a pole a t  r =0: 

The energy eigenvalues a re  determined by Eq. (3.5) 
with the replacement d r  - r2dr ,  and cp, = (3 +4gr2) 
x (1 +8)-"'. The corresponding curve is given in Fig.. 
2b) .  

For g- the lowest approximation to the energy 
eigenvalue of the f i rs t  excited level gives z, 
= 4r(4/3)(3g/2)'13 = 4.089g'/3, whereas the exact result l1 
is c =3.860g1l3. The relative e r r o r  in this case is some- 
what better than for the ground state. 

We have proved that the expansion (3.2) under con- 
sideration converges at sufficiently small kl. However, 
it seems plausible that i t  converges in the entire corn.- 
plex g-plane with the cut (-a,  0). 

We note that the analytic properties of ck(g) a re  close 
to the properties of the exact solution ~ ( g ) .  The func- 
tions E,(g) have a branch point g=O, the discontinuity 
across the cut (-a, 0) a t  small values of g being propor- 
tional to e2l3': 

(see Appendix B). These expressions differ from the 
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exact results  of Ref. 3 by a factor const The ques- 
tion ar ises  a s  to how summation of the convergent 
se r i e s  (3.2) for &(g) can provide a singular (-g-'") fac- 
tor. The simple example 

shows how this might be accomplished. 

It is  well known that a singularity of the discontinuity 
of the type A&&) -g-Xe2tw leads to  a factorial increase 
of the coefficients in the expansion of &(g) in powers of 
g. Consequently, we see  that the convergent expansion 
considered in this section becomes asymptotic when re-  
expanded in powers of g. 

The variant of perturbation theory described here is 
easily generalized to other potentials. In particular, 
in Sec. 6 we shall apply it to investigate the form of 
the singularity in the coupling constant g for exponential- 
ly increasing potentials v(r) = rpexp(b?~ ,  for which an 
expansion in integer powers of g does not exist. 

4. THE SEMICLASSICAL APPROXIMATION 

As is well l ~ n o w n , ' ~ * ~  to  calculate the asymptotic form 
of the coefficients E, of the P T  se r i e s  a s  k- m it is suf- 
ficient to find the imaginary part  y of the level energy 
(i.e., the probability of decay of the quasistationary ' 

level in unit time) for a coupling constant of the opposite 
sign: g=-A< 0. For g- -0 this problem is easily solved 
by the WKB method for a level with arbitrary quantum 
numbers n and I .  The semiclassical momentum is equal 
to 

I p  ( r )  I -[ (2n+D) -11(A+ I )  r-'-i+Au ( r )  ] 7 (4.1) 

where 2n +D is the energy of a level of the harmonic 
oscillator (with A  =0) ,  and A = I + @ - 3)/2. The centrifu- 
gal term in (4.1) is absent in two cases: D = 1 (when 1 
= 0 automatically) and D = 3, 1 = 0 (the s-levels of a 
three-dimensional oscillator). In the other cases, the 
Langer which improves the accuracy of 
the WKB approximation for r - 0 ,  must be added to the 
expression for the momentum. When this correction 
is taken into account the term A(A + 1)r" in (4.1) is re -  
placed by (A + +)2r'Z. 

The width y is determined by the penetrability of the 
barr ier  in the r e g i o n r - < r < r + .  For X - + O  the position 
of the first  turning point 7- does not depend on A: 

while 7, is determined from the equation 

v (r )  r-'-A (4.2) 

and moves away to  infinity. Therefore, there exists a 
region 7-<< 7<< 7, in which the semiclassical expres- 
sion for ~ ( r )  =~,,~(r)r(~")", asymptotically exact for 
7 >> 7-, matches with the tai l  of the harmonic-oscillator 
wavefunction. As a result, we obtain 

-+ 
T=A:~XP {-2j l p  ( r )  I&] . .- 

Here, 

where 

The formula (4.3) has a clear physical meaning. The 
factor w/n is equal to the frequency with which a particle 
localized in the region r < r ,  str ikes the barr ier  wall 
(here it is necessary to take into account that for the 
harmonic oscillator the period of the radial vibrations 
is half the period T = 2n/w of the oscillator in our 
chosen normalization of the Hamiltonian (l.l), w = 1). 
The exponential in (4.3) corresponds to the probability 
of tunneling on each impact of the particle against the 
wall a t  r =r-. Finally, the factor A takes account of the 
fact that the motion is not semiclassical in the region 
7 Sr-. For large quantum numbers (more precisely, 
for n - 1 >> I) ,  the motion in the inner well is semiclassi- 
cal and A approximates to unity: A= 1 +[6n(l - 12/n2)]". 

We note that a(x) is a sluggish function for x> 0.5. 
Therefore, the difference between the exact formula 
(4.3) and the semiclassical asymptotic form (for which 
A = 1) is small for all values of the quantum numbers n 
and 1 and the dimensionality D. 

The integral in (4.3) is built up in the region of large 
distances r -r+, where the principal t e rms  in the mo- 
mentum p ( ~ )  a r e  p and Av(r). Using this, we can trans- 
form formula (4.3) to aform more convenient for calcula- 
tions : 

where the integration is carried out up to the point r 
=r+ determined from the condition (4.2). The details of 
the calculations leading to the formulas (4.3) and (4.5) 
for y will be described elsewhere. We emphasize that 
the expressions (4.3) and (4.5) a r e  equivalent to each 
other only in the limit X  - 4. 

The formulas (4.3) and (4.5) were obtained using the 
semiclassical approximation in the region r>>r - .  The 
condition for applicability of the semiclassical approxi- 
mation is 

where p =?, u(p) = v ( r ) ~ - ~ ,  and the prime denotes the 
derivative with respect to p. For potentials with a 
power behavior at infinity we have 

u ( p )  -pv, u+pu'= ( v + l )  u for p+". 

It can be seen from this that the condition (4.6) is ful- 
filled for p>> l everywhere except in a small  neighbor- 
hood of the turning point 7=7,. The matching of the 
solutions on both sides of the turning point r,, which is 
necessary forithe calculation of the flux of particles a s  
r -  and the level width y,  is carried out in the stan- 
dard way. Therefore, the formula (4.3) has, in the 
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given case, an exact pre-exponential factor, if the con- 
stant X is sufficiently small. 

For potentials with exponential growth a s  r - m 

u'/u - bvpV-' increases without limit as p- m, if v> 1; 
in this case the condition (4.6) is violated for large p. 
Thus, the formulas (4.3) and (4.5) a re  asymptotically 
exact in the limit A- +0, if the potential v(r) increases 
more slowly than exp(bra) at infinity. 

5. THE STRUCTURE OF THE PERTURBATION- 
THEORY SERIES 

Using the results of the preceding section we shall 
determine the rate of increase of the coefficients E, of 
the ser ies  (2.4) a s  k- m. We shall s t a r t  from the formu- 
l a  (4.5) and consider anharmonicities v(r) of different 
types. 

L Power anharmonicity: v(r) arV a s  r- m, v > 2. 
The integral (4.5) determines the energy discontinuity 
A E ( ~ )  =y across the cut a s  g= -X - -0: 

where 

Using the formulas from Ref. 17 that give the rela- 
tionship b e t e e n  the discontinuity of a function across 
the cut and the asymptotic form of the power ser ies  
corresponding to it, for E, as k- we obtain the ex- 
pression (1.3) with the parameters 

For a power potential v(r) =PN, O c  y <  m, these results 
were obtained in Refs. 3 and 7. 

II. We turn t o  nonpolynomial interactions. Let, for 
Y- m, 

Then from (4.5) we obtain (X - +0) 

(here we have omitted the pre-exponential factor). Sub- 
situting this expression into the dispersion relation 

and calculating the integral by the method of steepest 
descents, we find 

1 e,l mexp (a'k"), k+m, (5.6) 

where o = 1/(1- v), a' =(a - l)*-l(b/u)". Thus, the coef- 
ficients &, increase faster than (ka)! with any finite 
value of the parameter a; therefore, the PT ser ies  for 
potentials (5.3) is not summable by the Bore1 method. 
In particular, for v = (i.e., for potentials of the form 

v(r) =sh  2w/ r ,  ch2w - 1, etc.), we obtain 

III. As v - 1 the parameter o - m, ie . ,  the growth of 
becomes arbitrarily rapid. The reason for this is 

easily understood by considering successive terms of 
the P T  se r ies  for v(r) a exp(br2). If b> 1, the f i rs t  
order already leads t o  a divergent integral ]v(r)gdr, 
in which the integrand increases like exp((b - l)@} as 
r- m. In the second order of P T  the correction to the 
energy of the ground level is 

The leading term in this sum behaves like 

i.e., it diverges a s  soon a s  b > i. In an analogous way, 
the kth order of P T  behaves like (d), and begins to  div- 
erge when b > k". 

Thus, for a potential with the behavior (5.3) with v= 1, 
b> 0, the coefficients c, of the P T  se r ies  become infinite 
for all k > b-'; therefore, a P T  se r ies  in integer powers 
of g does exist. This also follows from the formula 
(5.4), which for v- 1 gives 

y (?.) mi.' ', (5.8) 

i.e., the singularity of E(g) at g =  0 changes i ts  char- 
acter, being transformed into a branch point of the 
power type. In the next section i t  will be shown that for 
v 21 the ratio [~(g) - ~ ( 0 ) ] / g -  a s  g- m. 

IV. For potentials of the form 

analogous calculations give 

, ( i . )  mcsp (-b,F.l e s p  (2.-' ") ) , 

e,mexp ( p k  ln ln k ) ,  

i.e., the coefficients of the PT se r ies  increase more 
slowly than (ka)! for any, arbitrarily small, a > 0. 

The examples considered show that the stronger is 
the growth of the anharmonicity v(r) at large distances 
the faster the coefficients of the P T  se r ies  increase as  
k- m. For potentials (5.3) with exponential growth the 
P T  ser ies  in integer powers of g ceases to  exist if v al. 

V. Up to now we have considered potentials with 
spherical symmetry, which, in the one-dimensional 
case, correspond to even potentials: v(-x) = v(x).  We 
now discuss an oscillator with odd anharmonicity: 

where D = 1 and N = 1,2,3, .  . . . The width y is calculated 
in the same way a s  in Sec. 4 (the only difference is that 
the flux of particles flying away to  infinity is now in one 
direction, and this gives an extra factor i). 

In place of (4.3) we obtain 
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where A = & + $) for the nth level of the oscillator. 
Hence, for g- 0, 

where 

We now take into account an essential difference be- 
tween the Hamiltonian (5.12) and the previous examples. 
In the potential v(x) = IxPN*' all levels for g >  0 a re  stable, 
and when g changes sign decay occurs. Because of this 
the energy E(g) has a cut along -m< g <  0, and the dis- 
continuity hE(g) across this cut coincides with the level 
width y. At the same time, for v(x) =gN+' decay is pos- 
sible for either sign of g, and all the levels a r e  quasi- 
stationary. Therefore, a suitable variable is z =-$ 
(compare with the treatment of the Stark effect in Ref. 
17). Rewriting the formula (5.14) in terms of the vari- 
able 5 =-z =$ [5 > 0 on the cut for the function E(z)], 
we determine the asymptotic form of the coefficients of 
the PT series. For the energy of the nth level we ob- 
t ain 

in which a, a s  k- m has the form (1.3), with 

The coefficients a, for k >> 1 are  negative (according 
to  (2.27), the same is also true for small k); te. ,  the 
PT series,  unlike the cases considered earlier,  is not 
alternating in sign. 

6. CORRECTION TO THE ENERGY ASg -+ 0 FOR 
EXPONENTIALLY INCREASING POTENTIALS 

We shall calculate the leading (for g- 0) correction 
bE =E(g) - E(0) to the energy of the ground level for po- 
tentials of the form (5.3) with v 31. We shall make use 
of the method described in Sec. 3. The first  approxima- 
tion i l k )  for arbitrary anharmonicity v(r2) has the form 

where 
P 

p=P,  f ( p ) = j [ 1 + g v ( z ) l ~ I ~ ~ d z  
0 

[for v(p) = pa and k = 1 this formula coincides with (3.5)]. 

It can _be shown that for small g the next-order cor- 
rection E, .o [El&) - E(O)]', and therefore the leading 
(for g- 0) t e r m  in 6E is determined by the expression 
(6.1). For g- 0 the singularity in is determined by 
the region of large p ,  and therefore for v(p) we can use 
the asymptotic form (5.3). After rather cumbersome 
calculations we obtain2): 

dE=K,g(-In g)'p+1112 for p>-1, 
d) v = l ,  b<l  

(6.4) 

6E=K,g. (6.5) 

From this it can be seen that in those cases in which 
the anharmonicity u(r) increases faster than exp(ll) a s  
r- .o the f i rs t  correction to the energy already de- 
creases more slowly than g, s o  that [~(g) - E(O)]/~- 
as g- 0. In this case the dependence of 6E on g is non- 
trivial. It is clear from the expressions (6.2H6.4) that 
E(g) cannot be expanded in a ser ies  in integer powers 
of g. 

To conclude we indicate a nonrigorous but intuitive 
derivation of the dependence of 6E on g, which permits 
us  to obtain the principal (exponential) factor in formula 
(6.2). For g- 0 the anharmonic term gv(r) is compar- 
able with the oscillator term 9 only in the region of 
very large r. Defining r, from the condition ? =gv(r), 
taking (5.3) into account we find 

Near r =yo we have 
" - 1  

r z+gv(r)  = esp {bvr,  ( r - r , ) ) ,  v> 1 ,  

whence it can be seen that the interval Are,  over which 
the anharmonicity gv(r) becomes substantially larger 
than r2 tends to zero: 

Ar.,,- (-In g )  (l-zvJ"v. 

Therefore, in the limit g- 0 we arrive at the problem 
of an oscillator with a wall: 

As shown in the book by ~eading;' for  such a poten- 
tial the corrections to the energies of the levels for xo 
>> 1 are  equal to 

6E, = ~,x:"+'e-":. (6.7) 

Substituting the value of xo from (6.6) into this, we ob- 
tain the exact form of the exponential factor in formula 
(6.2). Unfortunately, this simple method does not give 
the correct pre-exponential factor in bE that was ob- 
tained above. 

The authors a re  grateful to V. L. ~ l e t s k d f o r p e r f o m -  
ing the numerical calculations and for useful discussions. 

APPENDIX A 

We shall consider in more detail the properties of 
the expansion (2.4) for the case of the power nonlinearity 
(2.11). In the expression for the first-order correction 
tl(r) it is convenient to transform from y ( ~ ,  X )  to  the 
modified function 

2-a I ' 
q ( a ,  z) - - 7 ( a ,  x )  = - j e-"tD-ldt, r ( a )  r ( a )  

which is an entire function of x and has the representa- 
tional 
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The correction [,(r) takes the form 

If v is not an integer, f,(r) has a branch point r = 0 and 
a cut (--, 0). For  integer v the cut disappears and [,(r) 
becomes a single-valued analytic function of r. From 
(A. 2) and (A. 3) we find 

For even v = 4,6,8, . . . the infinite sums cancel each 
other and [,(r) reduces to  a polynomial-cf. formula 
(2.12). But if v =3,5,7, .  . . , then [,(r) is an entire func- 
tion of r and not a polynomial. In this case there a re  
directions in the r-plane along which {,(r) increases ex- 
ponentially. For example, for D = 1, v = 3 (a one-dimen- 
sional oscillator with Hamiltonian H =$ +2 +glxI3), we 
obtain 

b,(r)='/2{rz+1-esp(r')Erfc(r)), r= lx l .  (A. 5) 

As r- - in the sector larg rl< 3n/4 the asymptotic ex- 
pansions 

a re  valid, but in the sector 3n/4 < largr 1 <n the function 
increases exponentially. For example when r - -- along the negative real  semi-axis, Erfc(r) - 2 and 

t ,(r) = -exp(?). 

Thus, the anharmonicity v(r) = rV with even v is dis- 
tinct in the respect that the function [,(r) is transformed 
into a polynomial. This is also true for the next terms 
{,,(r) of the expansion (2.4) (cf. Sec. 2). In this case, 
the advantages over the ordinary P T  of the P T  variant 
based on the use of the Riccati equation a re  obvious. 

For D >  1 the analyticity of the potential v(r) =rV is 
destroyed at the point r =0, except for v = 4,6,8,. . . . 
But if D = 1, then v(x) =xu is an analytic function of x for 
integer v. The analyticity of the potential leads to a 
substantial simplification of the terms [,(r) of the P T  
series. Thus, for v(x) =g we have 

ti (x) ='I? (xZ+ I ) ,  (A. 6) 

which can be compared with the formula (A.5) for the 
potential v(x)= IxB, which is not regular a t  zero. 

APPENDIX B 

In this Appendix an account is given of the derivation 
of some of the formulas from Sec. 3. 

For large g the function fi) - 2df2r3/3, SO that i t  is 
convenient to make a change of variable in the integral 
(3.5): 

r= ( 3 1 2 )  7i.g-v<e'l.. 

Substituting cp2(r) = -l;(r) into the expression (3.5), 
where f ,(r) is determined by the equality (3.4) and E, by 
the equality (3.6), for g- m we easily obtain 

where 

r ( a , z ) =  e-'za j d t  e- lz( l+t)u- l=r(a)-y(a,  z). 
0 

Using the latter expression for r(a, z) and integrating 
f i rs t  over z in (B.l), we find 

where 

(the substitution t =u-I - 1 has been made). The first  
integral is easily calculated: 

I ,  = - (In 3-3'" arctg 3 :) . 
2rP/S) 

As regards the second, we proceed as follows: 

and, expanding the integrand in a ser ies  in powers of 
w(1- u), we finally obtain 

Numerical summation gives E, = -0.109g'J3. 

We now discuss the derivation of the f i rs t  of the form- 
ulas (3.6) and the formula (3.8). Putting t = (1 +&)312 
and p = 2/3g in (3.5), we have 

Expressions for J, and J2 for small g a r e  obtained by 
expanding the integrand functions f,(t) about the point 
t = l :  

whence follows the f i rs t  formula (3.6) for El. 

To calculate the discontinuity of z,(g) a s  g- -0 we 
make in(B.6) the replacement t = 1 +y/p, p-= lp leL''. 
The imaginary part  of the integral J ,  and J2 is connected 
with the appearance of the imaginary part  of the func- 
tions f,(l +y/p) when y > )p 1. As a result, we obtain 
formula (3.8), in which the constant c, = -($)213n1/2/I'($). 
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')In the present case the polynomials 6 (x) have degree k +1 
and a definite parity, equal to (-lpP: 

 ere, the K i  are certain coefficients, depending on the 
parameters v, b , and p. We shall give details of the calcu- 
lations, and also the explicit form of the coefficients K i  , 
in another publication. 
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Resonance broadening of two-photon S-S transitions 
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A theoretical investigation is made of the influence of resonance excitation-exchange collisions on the line 
profile of a two-photon S S  transition. It is shown that the profile differs from the form predicted by the 
adiabatic collision theory of the broadening. In particular, the ratio of the line width I' to the shift Ao, 
does not obey the relationship T/lAo, I = 1.4. The characteristics of the broadening in the presence of 
hyperfine splitting of the levels are considered. 

PACS numbers: 32.80.Kf, 32.70.12, 3 1.30.G~. 

01. INTRODUCTION Waals interaction plays the main role in such collisions 

The theoretically predicted1 advantages of two-photon 
and its influence on the broadening of one-photon tran- 
sition lines has been investigated quite thoroughly. 

absorption as the most accurate method for  investigating 
atomic and molecular transitions have recently been 
confirmed convincingly by several  experimental inves- 
t igation~. ' -~ One of the most attractive features of this 
method is that it can be used to eliminate in principle 
and reduce considerably in practice the influence of the 
Doppler effect on the line width. Therefore, beginning 
f rom relatively low pressures of -1 Torr,  when the 
collisional line width becomes comparable with the ra- 
diative width, collisions play the dominant role in the 
formation of a line profile. 

We shall a lso  assume that the density of the perturbing 
particles is sufficiently low so that the collision (impact) 
theory of the broadening can be applied. The broadening 
of the two-photon transition lines by a foreign gas does 
not require any special treatment. We can use the 
standard formulas of the collision theory for  the broaden- 
ing of one-photon absorption ~ p e c t r a . ~  

The situation is different in the case of the broadening 
of two-photon transition lines by the gas of the same 
substance. In this case the broadening may be greatly 

We shall consider the characteristics of the broaden- affected by the resonance exchange of excitations in col- 
ing of two-photon transitions in atoms. In a typical ex- lisions between identical atoms, whose role is not taken 
perimental situation the line profile of such a transition into account in the standard adiabatic collision theory of 
is formed as a result  of collisions with neutral particles, the broadening. The analogous question of the influence 
which are atoms and molecules of the same substance of the resonance transfer of excitation on the profile of 
in the form of a gas o r  of an impurity. The van der a one-photon line has been considered on many occa- 
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