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The presence of parabolic points on the Fermi surfaces of metals leads to singularities in the angular 
dependence of the ultrasound absorption coeficient re when the sound propagates in the direction of the 
tangent to the parabolic point (re has a discontinuity or diverges logarithmically, depending on the local 
properties of the surface). At the same sound-propagation direction Wk, a restructuring of the Pippard- 
oscillations takes place in a magnetic field H (klH), and in some cases their amplitude should increase. 
The component r , ( H ) ,  which depends monotonically on the magnetic field, has the same singularities as 
r,(O). The impedance singularities of the metal in the case of anomalous skin effect, which are due to 
parabolic points on the Fermi surface, are also considered. 

PACS n~unbers: 72.55. + s, 71.25.Pi 

1. INTRODUCTION 

Collisionless interaction with a wave i s  experienced 
by those metal electrons whose velocity satisfies the 
Cerenkov condition 

where v = z;v i s  the electron velocity, s = (w/k)n i s  the 
phase velocity of the wave, w i s  its frequency, and 
k = (w/s)n is the wave vector. In metals at Rw<< EF and 
T<< EF (T is the temperature and EF i s  the Fermi ener- 
gy), the principal role in the absorption of the wave en- 
ergy is played by electrons located on the Fermi sur- 
face: 

( p  is the electron quasimomentum and ~ ( p )  is its ener- 
gy). 

We a r e  interested below in the interaction between the 
electrons and the acoustic and electromagnetic waves. 
For sound s<<vF [the subscript F denotes that we have 
in mind the Fermi electrons (2)]; for electromagnetic 

. waves we confine ourselves to the case of strong spatial 
dispersion (kv,>>w). In either case, the condition (1) 
singles out the electrons whose velocity i s  almost per- 
pendicular to the wave propagation direction n. We 
shall frequently leave out completely the right-hand 
side of (1) and assume that 

nv=O. (1') 

near the "equator," all  that shifts is the position of the 
"pole"). In the case of an ellipsoid the topology of the 
strip does not change with changing n, although its di- 
mensions, of course, change. However, if the Fermi 
surface has depressions, necks, etc., then the situation 
changes in principle: Whep the wave propagation direc- 
tion n changes, a structure of the strip and of its top- 
ology must of necessity change. We emphasize that the 
change of the structure of the strip i s  a general proper- 
ty of the metals. It appears that only in the case of Na, 
K, Cs, Rb, and Bi a r e  the Fermi surfaces so simple 
that the topology of the strip does not depend on n (see 
Ref. 3, Appendix 111). 

We turn to two very simple but, a s  will be clear from 
the sequel, exhaustive examples of Fermi surfaces (see 
also Refs. 4-6). We consider strips on a Fermi surface 
of the dumbbell (or "dog bone") type, and on a Fermi 
surface of the type of corrugated plane (or "hilly local- 
ity"). They a r e  shown in Figs. 1 and 2. It is seen from 
the figures that the topological structure of the strip re-  
mains unchanged until the direction of n coincides with 
some critical direction n, (n, = n, in Fig. 1 and n, =no  
in Fig. 2). In both cases, an entire cone of such direc- 
tions exists. In the case of the dumbbell, at n=n, the 
belts coalesce a t  the points A and A', o r  else the belt 
breaks for "motion in the opposite direction" (Fig. 1). 
In the case of a corrugated plane at n = n o  the belt de- 
generates to a point and vanishes. That the structure 
of the belt must change topologically in these cases i s  

The condition of interaction in the absence of colli- 
sions 

(3 k D 1 ,  

where I = vF7 i s  the electron mean free path and 7 is the 
time between the collisions, does not require satisfac- a A 

"r 
tion of the inequality 07>>1. It is possible that wr S1 
(see Refs. 1 and 2, a s  well as Appendix I1 of Ref. 3). 

Equations (1) and (2) describe a line that passes over 
the Fermi surface. This line is frequently called a OOO-CW-G~ n r nr n. 

strip (and we shall henceforth use this term). If the FIG. 1 .  a) Surface of the dumbbell ("dog bone'') type. The thin 
Fermi surface is a sphere, then a change in the wave . lines denote the strips no"= 0 [see (It)] and the thick ones 
propagation direction changes neither the magnitude nor strips of parabolic points; b) scheme showing the variation of 
the structure of the strip (it passes along a "parallel" the strip structure with changing orientation n: n2 -nx-n,. 
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FIG. 2. Part of periodically repeating surface of the corrugat- 
ed-plane type (or "hilly location" type). Strips [see (l')] are  
shown corresponding to n=q, and n=nio. At n=n, there is no 
strip, and at n=no i t  degenerates into a point (pointA). ?hick 
line-strip of parabolic points. 

clear from the figures. In Fig. 1 we have one strip at 
n = n, and three at n = n, ; when n goes continuously from 
n, to n,, coalescence of the strips should take place. In 
Fig. 2 there is no strip at all at  n=n, but there is  one 
at n = n ,, ; a direction should exist (between n, and n ,, ) 
at which the strip is generated (vanishes). 

The behavior of the families of strips at n = %  will be 
the subject of an analytic investigation (see Sec. 3). It 
is  clear even now, however, that each critical strip 
(i.e., the strip at n = %) contains a singular point (or 
singular points): In the case of a dumbbell these a r e  
self-intersection points (points A and A' on Fig. I), 
while in the case of a corrugated plane this is the point 
into which the strip degenerates (point A on Fig. 2). 
Self-intersection points will be called X-type points, 
and strip generation (vanishing) points will be called 
0 -type. 

Thus, each value of n, corresponds to a definite sing- 
ular point (or several points) on the Fermi surface. Its 
(their) determination i s  a geometrical problem whose 
solution calls for knowledge of the actual details of the 
Fermi-surface structure. At n=% in the case of a point 
of 0-type (for example, on a corrugated plane) the strip 
is an ellipse, and in the case of point of X -type (for ex- 
ample, on a dumbbell) the strip is approximated by seg- 
ments of hyperbolas in the vicinity of the singular point 
(Fig. 3). If it is assumed that the strip singles out the 
electrons whose velocity is strictly perpendicular to the 
vector n [see (1'11, then the singular points (of X and 0 
type) lie on the line of parabolic points1' of the Fermi 
surface, but if we start from Eq. (I), then the singular 
points lie near the line of the parabolic points. Figure 
4 shows by way of example the Fermi surface of copper 
and the lines of the parabolic points a r e  indicated. The 
location of the parabolic points on the Fermi surface i s  
quite random, i.e., the direction of the unit normal v to 
the Fermi surface at the parabolic point usually does 
not have high symmetry. 

Points of any surface can be classified as 1) elliptic, 
2) hyperbolic and 3) parabolic: Parabolic points can be 
of 0-type or X-type. In addition, a degenerate type of 
parabolic points is possible. They a re  produced in the 
form of conical points or  in the form of cylindrical sec- 

FIG. 3. Structure of 
strips n.v=O a t  n = q :  a) 
n = -, b) n - - 

FIG. 4. Fermi surface of 
copper. The thick lines 
denote strips of parabolic 
points. A and A' are  pa- 

, rabolic antipode points. 
A' 

tions on a surface. Points of this type a re  apparently 
extremely ra re  on the Fermi surfaces of metals. We 
shall not consider here parabolic points of the degener- 
ate type.2 

The purpose of the present communication is an in- 
vestigation of the angular dependence~, at n=  %, of the 
absorption coefficient and velocity of sound (Secs. 2 and 
3), and of the conductance tensor (Sec. 4). In Sec. 5 we 
examine the role of parabolic points when sound is  ab- 
sorbed in a magnetic field. 

Concluding the introduction, we present an example of 
a closed Fermi surface cavity containing lines of para- 
bolic points of both type-see Fig. 5. Similar cavities 
a r e  possessed, for example, by the Fermi surfaces of 
platinum, cadmium, and chromium (Appendix III of Ref. 
3). 

2. SlNGULARlTlES OF THE SOUND ABSORPTION 
COEFFICIENT AT T=O, hw+O,kl-+m 

If the conditions listed in the section heading are  sat- 
isfied, then the electronic part l", of the sound absorp- 
tion coefficient can be calculated with the aid of the 
formula1 

in which the integration is over the Fermi surface, dS 
is  the area element on the surface, and A is the corre- 
sponding component of the deformation potential. A de- 
pends on the polarization of the sound wave and on its 
propagation direction, but there a r e  no grounds for ex- 
pecting A to be anomalously small a s  a function of the 
quasimomentum a t  the parabolic points and (or) to have 
singularities a t  n= n, . 

The argument of the delta function vanishes, naturally, 
a t  the points of the strip (1). As already mentioned, at 
n=n, the strip degenerates into a point or has a self- 
intersection point. We assume the singular point on the 
strip of the Fermi surface to be given (we denote it by 
the letter A), and by the same token we assume given 
the critical propagation direction n,. We fix at the point 

FIG. 5. a) Closed surface of "tog' type. Lines of parabolic 
points of X and 0 type a r e  shown (X-type-two large strips, 
0-type-two small ones). b) Schematic variation of the struc- 
ture of the s t r ip  with changing direction of n from nl to n2. 
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FIG. 6. Profile of Fermi surface near parabolic point. The 
origin is  located at the parabolic pointA. The py axis is  di- 
rected along the outward normal v to the Fermi surface. The 
p, axis is  tangent to the line of zero Gaussian curvature. 

A an orthogonal coordinate system such that the plane 
p, = 0 is tangent to the Fermi surface at the point A, 
while the axes p, and p, lie in the principal sections of 
the surfaceg) (see Fig. 6). 

Assume (for simplicity) that the plane p, = O  is a local- 
symmetry plane of the Fermi surface. Then, if a vec- 
tor n close to n, lies in the plane p,=O, then the equa- 
tion of the strip (1) takes the following form: In the 
case of an 0-type point (see Fig. 3a) 

laxlpXz+ la, lpzZ=60, 60=0-0,, (5) 

and in the case of an X-type point (Fig. 3b) 

o: and a, are  in the general case quantities of the order 
of 1/p: (see the next section); 8, is an angle in the "lab- 
oratory" frame and corresponds to the critical direc- 
tion n, (A). The angle 68 = 8 - 8, ( 1 68 1 << 1) describes the 
deviation of the vector n from n,# n, (A); 66 
= [2(1- n. n, (A))] ' I2 .  Near an 0 -type point, the strip 
exists only a t  6 0 0 ,  and near an X-type point the strip 
changes its topology at 6 0 = 0. 

Kp.=O is not a locaI-symmetry plane of the Fermi 
surface, then, for (5) and (6) to be valid, the vectors n 
and n, (A) must be located in a plane making an angle 
to the plane p, =O. When the vector n is close to n, (A) 
but does not lie in the corresponding plane, then a point 
A, exists close to A and specifies the critical direction 
n, (A) that is  closest to n but does not coincide with %(A). 

We shall show in this section that in the case of a point 
of 0-type the value of re does not depend on 68 and is of 
the same order as for a larger strip, while the contrib- 
ution of the region near a point of X type contains a 
large logarithmic factor, i.e., it exceeds ( I )  the con- 
tribution from the entire strip. These results serve a s  
the foundation for the entire approach (see Sec. 3). 

Substituting (5) and (6) in (4) we obtain for the singular 
part 6re of re in the case of an 0-type point 

6r.'O1=0, 60<0; 

for an X-type point 

The superscript of re indicates the type of the singular 
point, and the quantities A, and v, a re  taken at the sing: 
ular point (at p, =p, = 0). 

Comparison of the value of 6rk0) (at 60>0) and of the 
coefficient at ln(l/ (68 I ) in 6I'f) with the value4) of re at 
n# n, demonstrates the validity of the statement made 
above concerning the role of the local vicinity of the 
singular points of 0 and X type. In addition, formulas 
(7) and (8) illustrate the character of the singularities 
of the electron part of the absorption coefficient of 
sound: An 0 -type point leads to a jump of re, and an 
X-type point leads to a logarithmic divergence. 

3. ANALYTIC TREATMENT 

As stated above, to avoid excessively cumbersome 
expressions, we chose from among the parabolic points 
one located in a local-symmetry plane of the Fermi 
surface. The choice of the coordinate system relative 
to the Fermi surface is clear from Fig. 6. Using the 
flattening of the surface at the parabolic point and the 
local symmetry of the Fermi surface with respect top,, 
it is convenient to write down the dispersion law in the 
vicinity of this point by expressin$) p, in terms p, , p,, 
and E (the energy E is reckoned from the Fermi sur- 
face): 

We have confined ourselves to the principal terms in 
the Taylor expansion in E, p,, and p, ; v, = Ey(O,O, 0); 
E ~ ,  z j ,  E~~~ here and below a r e  the partial derivatives of 
c(p) with respect to the components of the quasimo- 
mentum p at the parabolic point ( p ,  =py = p ,  = 0). The 
order of magnitude of the nonzero derivatives is  esti- 
mated from dimensionality considerations (see footnote 
4) and is the same for 0 andX points: 

By definition, the velocity component is 

and at the required calculation accuracy we get from (9) 

The equation 

defines analytically a family of second-order curves- 
the ellipses or  hyperbolas shown in Fig. 3. It is seen 
that the character of the singular point is determined by 
the sign of a,, the expression for which contains the 
third derivatives of E with respect to pi ; if ab>O, then 
the parabolic point is of the 0 type (Fig. 3a), and if a, 
< O  it i s  of the X type (Fig. 3b). The expansion (11) is 
justified by the fact that in the cases of interest to us (u  ( 
<< 1. 

902 Sov. Phys. JETP 48(5), Nov. 1978 Avanesyan et a/. 902 



Formulas (9) and (11) were obtained without additional 
assumptions concerning the properties of the Fermi 
surface. If for some reason the expansion n. v begins 
with higher powers of p, and p,, then the singularities 
observed should be sharper than those investigated in 
the present a r t i ~ l e . ~ '  

The value n =n, at & = 0 corresponds to a singular strip 
(point p, =p,=O for the 0-type point and two intersecting 
straight lines for the X-type point). 

An important role in what follows is played by the 
functions 

whose singular parts do not depend on the parameters of 
the integration region. Designating by the symbol ... the 
equality of the singular parts, we obtain after elemen- 
tary integration; for an 0-type point (a,>O) 

where 9(x)= 1, x> 0 and 9(x)= 0, x <  0, and for anX-type- 
point (a,< 0) 

$ ~ ' ( ~ ) = ~ / , n  sign u-iln(i/IuI). (1 5) 

To calculate the singular parts of the sound-absorption 
coefficient and the frequency shift Aw, we use an ex- 
pression obtainable in first-order perturbation theory 
if the sound wave is  regarded as the cause of transi- 
tions in the electron gas1: 

Here A has the same meaning as in formula (4), and 
n(&) is  the equilibrium Fermi function. Assuming the 
phonon momentum hk to be small, we can rewrite (16) 
in the form 

Allowance for the next terms of the expansion of 
&(p + lik) in powers of k leads to a renormalization of 
the term s / v ( ~ )  in the denominator of (17); this re- 
normalization is  quite inessential at k<<sm*(v,/~)"~ 
(this condition in fact does not impose any limitations 
on the sound frequency). 

As a result of the central symmetry of the electron 
dispersion law &(-p) = ~ ( p ) ,  each parabolic point on the 
Fermi surface has a point with antiparallel velocity 
(antipode point). If we start  from the condition (I), then 
the antipode points correspond to the same value of the 
critical direction nc =net. In view of the allowance for 
the term s/v in the denominator of (I?), the critical 
directions due to the antipode points differ somewhat 
from each other (n,# n,,). To limit the integration re- 
gion to the vicinity of one parabolic point, we change 
over in (17) to integration over the half-space of the 
quasimomenta: 

Ao-ire FL: 
2 lAIZ 1 

(2ah)'hps I-6- [n(e)bn('+ho) 'l(s/v(p)-iv(p)+i/kl 

+ 1 
S/U (p) +nv(p) +ilk1 ) d3p .  (18) 

Using the chosen coordinate system (see Fig. 6) a s  well 
a s  expressions (ll), we get 

Substituting (19) in (181, we see that the singular parts 
of Aw and re a re  determined only by the immediate vic- 
inity of the singular point. As kl-GQ and T-0 we have 

Here no(&) i s  the Fermi step and 

O at e < - h o ,  e > O  
n, (e )  rz, (: + h o )  = 

i ,t - n , - = ~ < o  . 
Expressions (20), (Zl), and (14) solve formally our 

problem of determining the singularities of A w and re . 
The arguments of the functions p ,  contain small param- 
eters with different scales [see (lo)]: 

This enables us to describe the singularities with dif- 
ferent degrees of detail. We neglect the second term in 
the right-hand side of (19) and replace the difference 
(21) by a delta function. We then have 

Figure 7 shows plots of re and Aw against 68 for 0 
and X points; these plots agree with (23), (14), and (15). 
From the presented formulas and from Fig. 7a it is 
seen that: 1) the singularity takes place at 68, = s/vo 
and 68, = -s/vo, 2) a jump of the absorption coefficient 
re corresponds to a logarithmic singularity of Aw while 
a jump of Aw corresponds to a logarithmic singularity 
of re. As s/v-0 the singularities in Aw vanish (the 
real parts of p cancel out), and the singularities of re 
a re  doubled (Fig. 7b). 

Retaining in (19) the term that contains E and integrat- 
ing with respect to &, we can determine the structures 

Type of point I m w - I ;  Re cu 

C 

FIG. 7. Structure of angular singularities of re and AOJ for the 
cases of points of X and 0 type (T= 0, kl -m, w - 0). 
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of the singularities described above: The jumps (of re 
and Ao) a re  replaced by jumps of the derivatives at the 
points is/v, and *s/vo + ~ , E w / v ~ ,  and the logarithmic 
singularity is replaced by a singularity of the type xlnx, 
with the maximum value of re (or I A w  1 ) of the order of 
re ln( E/Ro), where E= E,. 

The fine structure of the singularities can be observed 
only under unique conditions; at T<< R o  and k l>> &,/Rw. 
The finite temperature and the finite mean free path, 
naturally, smear out the singularities [see (IS)]. If we 
assume for the sake of argument that the main smear- 
ing factor is the temperature (i.e., T>> R/T), then at 
T>>Ww the temperature smears out the jumps of re and 
A& (the smearing width is -T/cF), and the maximum 
value of the logarithm in (14) and (15), meaning also 
(23), is ln(cF/T). At T<< Wo the weakened singularities 
a re  smeared out. Even at relatively high temperatures 
(T>> Rw), when the directions 60, = s/vo and 60,, = -s/vo 
a re  indistinguishable (owing to the temperature smear- 
ing), the existence of parabolic points should manifest 
itself in an irregular re =re(@ dependence; either an 
abrupt change (0-type) or a logarithmic increase (X- 
type) of the value of re in the interval 60- T/E,. Since 
r e - k  [see (23)], the singularities (23) can be treated a s  
singularities in the angular dependence of the sound vel- 
ocity of the metal s = s' - isn (sn =re /k). 

4. SlNGULARlTlES OF THE CONDUCTANCE TENSOR 

Starting from the Boltzmann kinetic equation in the 7 

approximation, we easily obtain an expression for the 
conductance tensor': 

The analysis of this expression is perfectly similar to 
the analysis of the expression for Aw -ire (see (17) a s  
Aw-0). The main difference is that the numerator of 
the integrand contains the product of direction cosines- 
the normals to the Fermi surface v,v,, which make the 
singular parts of all the components, with the exception 
of a,, very small or even zero (we use the required co- 
ordinate system, see Fig. 6). We shall therefore deal 
only with the component a,,, which is one of the trans- 
verse components of the tensor u,, and is significant in 
the investigation of the propagation of electromagnetic 
waves in a metal, and n, =[l, 0, 0] . In expression (24) 
the smearing factor is recognized to be the mean free 
path (it is  assumed that kl<< cF/T). Without repeating 
the analysis of the preceding section, we note the fol- 
lowing: 

1) The presence of an 0-type point leads to a jump of 
Reu,, and to a logarithmic singularity in Imu,,, where 
I Imu, 1 >>Reuyy. The component Imu,, has opposite 
signs at 6e=6ec and 6e=-6e,1. 

2) The presence of a point of X-type leads to a log- 
arithmic increase of Rev, and to a jump of Imu,, . It 
seems just a s  possible to observe anomalies in the ang- 
ular dependence of Reu,, a s  to observe analogous ano- 
malies in the speed of sound and in its absorption coef- 
ficient, but the following must be borne in mind: 

It is known from the theory of the anomalous skin ef- 
fect that an electromagnetic wave attenuates in a metal 
as 1 -w,  i.e., Irnk+O. Therefore the singularities of 
a,, a re  smeared out even at T = O  and 1 - *. According 
to the dispersion equation 

we have a s  I -- 00 [we omit a, numerical factor of order 
unity in (25)l: 

It is  seen from (24) and (26) that the width At3 of the 
smearing is determined by the following expression: 

The requirement Ae .c< 1 does not impose any substantial 
limitations on the frequency. It must be borne in mind 
that in order for the formulas of this section to be valid 
it is necessary that the frequency w satisfies the con- 
dition of the anomalous skin effect 

The logarithmic increase of Imu,, on account of 0-type 
points leads to a curious situation wherein a weakly 
damped wave can propagate in a narrow angle interval. 
Indeed, according to the foregoing, wherever 

Im a,,<O, I Im awl %Re o,,, 

the solution of the dispersion of the dispersion equation 
has the following structure ( I  - =J) 

Observation of a weakly damped wave calls for satis- 
faction of a stringent requirement with respect to the 
direction of its propagation, and lowering the frequency 
[of course, within the limits of the inequality (28)] in- 
creases the ratio k'/kn, but decreases the region of 
accessible angles. 

5. ROLE OF PARABOLIC POINTS IN THE ABSORPTION 
OF SOUND IN A MAGNETIC FIELD 

It is known7 that a sufficiently strong magnetic field 
H  influences noticably the electronic absorption of sound 
by metals, and the character of this influence depends 
substantially on the value of H and on the relative posi- 
tions of the vectors k  and H. We confine ourselves to 
intermediate fields 

klWkr,%l, r,-cpJeH, (31) 

assuming that k l H .  Then, according to Refs. 7 and 8, 
the sound absorption coefficient I',(H) is  a sum of mon- 
otonic and oscillating parts: 

==rmon+~osc. (32) 

We shall show that at n= n, both rmon and r should 
have characteristic singularities. 
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The monotonic part rmon can be written in invariant 
form 

where w, =eH/m *c, from which it is seen that rmon has 
the same singularities a s  re at H = 0.  

We note that 

We proceed now to the oscillating part ro,, of the ab- 
sorption coefficient. According to Ref. 7, the periods 
of the oscillations are given by 

where ~p,"  is  one of the projections of the extremal 
(with respect to pd diameters that join the points (i, j) 
on the strip. When a line of parabolic points is present 
on the Fermi surface, the spectrum of the oscillations 
depends substantially on the direction of the vector 
k=kn. Figure 8 shows by way of example a Fermi sur- 
face on the dumbbell type, on which all the parabolic 
points of Xtype. It i s  seen that the number of periods is 
equal to four for some directions and to six for othersQ7) 

On a surface of the top type (see Fig. 5), the change 
of the number of periods is connected not only with the 
break of the strip, which leads to departure of the stri~. 
from the extremal trajectory N-type), but also with 
vanishing of the strip (0 -type). 

The amplitude of the oscillations is determined by the 
electrons located near the ends of the diameters. 
Therefore the influence of the flattening points of the 
Fermi surface is very substantial. It manifests itself 
in an angular dependence of the oscillation amplitudes. 

Solution of the kinetic equation leads to the following 
expression for the sound absorption coefficient7*" 
(kl H, w , ~  >> 1): 

dp.dtdtl ,\ ( t )  A' ( t ' )  
T 

where T =2n/w, ,  while t and t' a re  the times of motion 
on the electron trajectory in the magnetic field H. The 

FIG. 8. Trajectory of motion of electron in coordinate space 
(Fermi surface of the dumbbell type). The dashed lines show 
the constant-phase planes of the sound wave, a t  the points of 
tangency with which of the Fermi surface the sound is  effec- 
tively absorbed. A=cAF/eH, where Ap i s  the corresponding 
characteristic distance in momentum space. a) Direction n 
=n,-there a re  four periods, b) n=nxi-six periods, c) n=nr 
four periods; d, e) directions n=nz, and n2-one period. 

argument of the exponential contains the large param- 
eter IT,. Therefore the main contribution to the inte- 
gral is made by the stationary-phase points defined by 
the conditions 

The stationary-phase points (ij) a re  the points of inter- 
section of the strip with the local-symmetry plane p, 
= const. We assume that one of them (to be specific, 
the point i )  is an ordinary elliptic point, and the other, 
j, is  parabolic. Then, integrating in (36) with respect 
to t and t ' ,  we get according to Ref. 8 

E,.=E,.'+ E,,'. (3 8) 
The amplitude and the phase of ro , , (H)  with period 
A"(~/H) a re  determined by the factors J ,  and J j  , which 
depend on the structure of the Fermi surface near the 
points i and j . In our case the point i is elliptic and 

and c p ,  =n/4 if a,>O and c p ,  = -r/4 if a,<O (assume, for 
the sake of argument, that ai<O). 

We change over to the variables p,, E, and t with the 
aid of the equations of motion 

Since") v, = v,  + ~(p , ) ,  it follows that p, fi: e~v , t / c+  o(t2) 
and 

Hence - 
I,= I exp (i$jt"kujp2azjt}dt, 

-- (41) 
~j=kv , /6=keaf fu~16cZ-kvY~, ' ,  

i.e., c p j  =O and consequently J j  is a real function. 

If we use the Airy function 

whose asymptotic values a r e  

then we can rewrite (41) in the form 

When (38) is integrated with respect top, it must be 
recognized that the argument of the Airy function, which 
is of the order of (k~,)~ '~p,~/p,~,  is smaller by a factor 
( k ~ , ) * ~  than the argument of the exponential. Conse- 
quently, in the vicinity of a stationary point the Airy 
function can be regarded a s  smoothly varying and be 
replaced by its constant value at the stationary point 

905 Sov. Phys JETP 48(5), Nov. 1978 Avanesyan et ab 905 



The oscillating part of the sound absorption coefficient 
at 8 = 8, takes the form 

In the usual case ( j  i s  an elliptic point)' we have 

From a comparison of expressions (43) and (44) we ver- 
ify that since hp," is based on anX-type point, the 
amplitude of the corresponding oscillation has an addi- 
tional large factor (kr,)"'. The phase of this oscilla- 
tion differs from the ordinary one by n/4. Thus, in or- 
der of magnitude we have 

If both i and j a r e  parabolic X-type points (for exam- 
ple i is the antipode of the point j ), then 

Compared with the case of two elliptic points, the amp- 
litude of the absorption coefficient was increased by 
(kr,)us times. 

Let now the sound propagate in a direction tangent to 
an X-type point (k lH  as before), i.e., 68# 0, with the 
sign of 68 corresponding to breaking of the strip (68>0, 
see Fig. 9, strips a). At p,  = O  there a r e  two close 
stationary-phase points, j and j ' . Consequently, oscil- 
lations a re  produced with close periods. Their addition 
leads, naturally, to beats. At 68# 0 we have in place of 
(40) 

and 

The angular dependence of l?:,', is determined by the de- 
pendence of the argument of the Airy function on 68. It 
follows from (48) that at 68<<l/kr, the integration with 
respect top, causes the dependence on 68 to vanish, and 
we return to (43). At 68>>l/krH, after integrating with 
respect to p, , we obtain 

FIG. 9. Structure of strips at  n=n, near the X point on the 
central section (shaded): a) break of strip and b) strip slips 
off the central section at  a small deviation of n from n,. 

We have retained the quantity 68 only where it enters 
with a large parameter (k~,,)~". At a fixed magnetic 
field H, according to (49), an oscillating dependence on 
68 should be observed. The first maximum of the func- 
tion Ai(5,) is located near 5,  = -1.02 (the first maximum 
of Ai([,) = 1.16). 

Simple formulas can be obtained in the angle range 
l>>68>>l/(kr,)us: 

0.7 sin ('l'kr,, (60)%+n/4) kc ros-r. .in ( -AP>)  . 
(kr,,) "60" eH (50) 

At a fixed angle, beats should be observed with a per- 
iod 

1 3ne 1 
ckp, 1601% 

When the angle changes in the opposite direction 
(68<0) the strip "slips off" the section p,=O (Fig. 9b) 
and the period is determined by the endpoints of the in- 
tegration with respect to p, (p, =*p, =* (68/a,I ?. US- 
ing the saddle-point method in the integration with re- 
spect to p,, we obtain for a function with a maximum at 
the end of the interval 

The Airy function can be regarded as a smooth func- 
tion in the vicinity of y Sl and replaced by its value at 
zero. We can therefore express l?:; in terms of Fres- 
nel integrals and write down in explicit form the asymp- 
totic expressions 

Attention should be called to the fact that with increas- 
ing 68 the amplitude of the oscillations decreases and 
vanishes at a certain angle value that depends on the 
shape of the Fermi surface. 

In the case of 0-type points, the amplitude decrease 
due to the vanishing of the strip a t  8= 8, begins with 
68 s l /kr ,  (the amplitude decreases like (kr, (68 1 )*'. 
At (68(  >l/krH the picture of the Pippard oscillation is 
similar to the X-type points a t  1>>68>0 [formulas (49)- 
(5111. 

CONCLUSION 

The anomalous angular dependences of the sound ab- 
sorption coefficient and of the electric conductivity ten- 
sor, predicted in this article, can be observed without 
satisfying particularly stringent conditions on the fre- 
quency, magnetic field, or mean free path. We see only 
one difficulty in the need of studying the spatial waves 
in a direction that is random with respect to the crys- 
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tallographic axes. It is possible that it is this difficulty 
which explains why no such anomalies were observed so  
far. 

In conclusion, we take the opportunity to thank I. M. 
Lifshitz and L. P. ~ i t a e v s k i i  for stimulating discus - 
sions. 

 he lines of parabolic paints a r e  the border llnes between 
Fermi-surface sections having Gaussian curvatures of oppo- 
site sign, At the parabolic point, one of the principal curva- 
tures of the surface reverses sign. A parabolic point is a 
point where the surface flattens. 

 he propagation and absorption of sound in metals whose Fer- 
mi surfaces contain degenerate parabolic points were con- 
sidered in Refs. 5 and 6 with chalcogenides as  examples. 

3 ' ~ h e  critical-direction cone can be constructed by moving 
along a line of parabolic points. 

"In the case of a spherical Fermi surface, assuming that A 
does not depend on the angles, we easily obtain from (4) 

If we assume ~FC:pgm*, pp.=li/a, p=M/a3, m*=mo (mo i s  
the mass of the free electron, M is the mass of the ion met- 
al, and a is the interatomic distance), and sZ= (mdM)v$, then 
I?Jw FC: ( m d ~ ) ' / ~ .  This is  only an order-of-magnitude equali- 
ty, and it determines the scale of the electronic part of the 
sound absorption coefficient. 

5'In this system the coordinates of the parabolic point a re  p, 
=p,=O and &= 0. 

 his is most unlikely, since the parabolic points do not have 
high symmetry (see above, as  well as  Ref. 6). 

7 ' ~ t  is  seen from the very same figure that a t  certain directions 
of n (pi in the figure) the number of periods can decrease 
because of the symmetry of the Fermi surface, which causes 
some extremal diameters to coincide. 

')we measure p,-from that value a t  which d j p , ( p , )  has an ex- 
tremum. 
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Symmetry of "current" states and spontaneous oscillations 
in bismuth 
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Irradiation of a metal plate with radio waves may produce a macroscopic magnetic moment in zero 
magnetic field, i.e., it may induce a transition to a "current" state. A calculation is given of the width 
and position of hysteresis loops which appear because of the induced magnetic moment. A study is made 
of the stability of the current states and it is shown that-under certain conditions-periodic oscillations of 
the magnetic moment may be expected. A report is given of measurements carried out on bismuth in 
which such spontaneous oscillations were observed experimentally. 

PACS numbers: 78.70.Gq, 75.60.Ej, 75.70.K~ 

Irradiation of a metal plate with radio waves may 
produce a macroscopic magnetic moment because of 
rectification of the rf current? *2 The inequivalence of 
two consecutive half-periods of'the rf current is due to 
the presence of a static magnetic field. When the mag- 
netic field created by the rectified current itself is 
sufficient to maintain the rectification process, a sam- 
ple retains a magnetic moment even in zero magnetic 
field. A metal can then assume at least two "current" 
states which differ in respect to the direction of the 
rectified current and, consequently, in respect to the 
sign of the magnetic moment of the sample. Applica- 
tion of an external magnetic field anti-parallel to the 
magnetic moment causes a sudden transition from one 

current state to the other. The dependence of the mag- 
netic moment on an external magnetic field in the 
presence of an additional large-amplitude alternating 
field exhibits a hysteresis loop. This behavior has been 
observed experimentally and investigated in bismuth 
and tin.'.2 

The rectification mechanism, which produces such 
current states, was proposed by us earlier? In one of 
the half-periods of the alternating field when the ex- 
ternal magnetic field is antiparallel to the alternating 
field, an open trajectory shown in Fig. l b  appears near 
the surface. Electrons moving along this trajectory 
enter more frequently the skin layer than those moving 
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